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Abstract: Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological
field and in the functionalization of conductive metal-oxides, the research of effective synthetic
protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular atten-
tion because they are useful building blocks for the tailored functionalization of complex organic
molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for
ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintain-
ing good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the
synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone
derivatives have been obtained for the first time. Considering the high affinity with metal-oxides,
KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and
photo(electro)chemical applications.

Keywords: ω-bromoalkylphosphonates; KuQuinones; phosphonate esters; diethyl phosphonates;
organic phosphonic acids; Arbuzov reaction; triethyl phosphite; phosphonate ester hydrolysis;
dibromoalkane; anchoring group

1. Introduction

Phosphonic acid (PA) functionalization of organic compounds is of great interest
in various scientific areas. Several pharmacologically active compounds bearing a PA
group (or the corresponding phosphonate salt) have been developed over the years [1,2].
Organic phosphonic acid derivatives, such as phosphonoformic or phosphonoacetic acids
and many others, resulted in promising antiviral drugs [3,4] and, recently, the aromatic
analogue, phosphonobenzoic acid, has been object of a theoretical study on Covid-SARS [5].
Additionally, fosmidomycin and its α-substituted derivatives are effective anti-malarian
drugs [6], while fosfomycin is a widely used antibiotic [7]. Notably, the presence of a
phosphonic acid group significantly improves organic molecules hydrophilicity, which is
an essential feature for biomedical application [8].

PAs are also optimal hydrogen bond donors and acceptors; therefore, they are em-
ployed in supramolecular chemistry, for metal-organic frameworks and organic proton
conductors [9–12]. The dianionic nature of the deprotonated form of PA is pivotal for
covalently binding different metal oxides, in mono-, bi- or tri-dentate architectures [13].
In fact, PA is a robust anchoring group, widely adopted for organic molecules immobi-
lization on metal oxide surfaces and nanoparticles [14–21]. Therefore, phosphonic acid
functionalization of organic and metallorganic photosensitizers is a proficient tool to deco-
rate metal oxides for their application in dye-sensitized solar cells, photoelectrochemical
devices [22,23] as well as in organocatalysis [24–27].

With respect to photoelectrochemical applications, we have been recently involved
in the use of metal-free quinoid compounds, i.e., KuQuinones (KuQs), as photosentisiz-
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ers on indium-tin oxide (ITO) [28], NiO [29] and on SnO2 [30], due to their favorable
electrochemical and photophysical properties [31]. In this respect, terminal hydroxy or
carboxylic acid functionalities were introduced in KuQuinone structure to ensure a stable
and effective metal oxide binding. Additionally, differently functionalized KuQs were
tested as anti-proliferative agents against ovarian and colon cancer cells, with promising
results [32,33].

In an attempt to extend KuQuinones application in the photo(electro)chemical and
biomedical fields, the synthesis of new KuQuinone phosphonic acid derivatives was inves-
tigated. As a matter of fact, compared to carboxylates, PAs are better anchoring groups in
terms of stability [34,35], bond strength [36–38] and monolayer deposition reproducibil-
ity [39]. Additionally, PA functionalization is expected to enhance KuQ pharmacological
applications. In this framework, according to the previously reported synthetic proce-
dure, to obtain new KuQuinone phosphonic acid derivatives, the synthesis of suitable
ω-bromoalkylphosphonate esters was required (Scheme 1) [32].

Scheme 1. Retrosynthetic analysis to obtain new KuQuinone phosphonic acid derivatives [32].

The first synthesis of alkylphosphonate esters has been proposed more than 100 years
ago by Michaelis and Arbuzov [40,41]. Optimized reaction conditions required the use of
an alkyl bromide with an excess of triethyl phosphite. Reactions proceeded solventless, at
high temperatures, with good yields. Later, the synthesis of ω-bromoalkylphosphonates
was also experienced with Arbuzov’s reaction [41]. Here, a dibromoalkane was used as
the substrate. Nevertheless, such reactions lacked selectivity, because the di-substitution
process occurred; therefore, a large excess of the dibromoalkane was required [42–46]. In
that respect, although the authors claimed that the unreacted substrate can be recovered by
fractional distillation and reused, it is worth mentioning that such a recovery procedure
is actually problematic and time-consuming, because of the very similar boiling points
of the reaction components. Therefore, in this paper, optimization of Michaelis–Arbuzov
reaction conditions for the synthesis of ω-bromoalkylphosphonate esters is investigated,
using an equimolar amount of reagents, to enhance process sustainability. The synthesized
compounds are adopted for the synthesis of new KuQuinone derivatives.

2. Materials and Methods

All commercial reagents and solvents were purchased from Sigma Aldrich/MerckLife
Science (KGaA, Darmstadt, Germany), with the highest degree of purity, and they were
used without any further purification. UV-vis absorption spectra were recorded with a UV-
Vis 2450 (Shimadzu, Kyoto, Japan) spectrophotometer. ATR-IR spectra were recorded with
a FT-IR Nicolet iS50 (Thermo Scientific, Madison, WI, USA) spectrometer. Melting points
were measured using a Büchi 512 melting point apparatus (Büchi, Flawil, CH) and all values
were uncorrected. GC-MS analyses have been performed with a (Shimadzu, Kyoto, Japan)
GCMS QP2010 Ultra system. 1H-NMR and 31P-NMR spectra were recorded with a Bruker
AM400 NMR spectrometer (Bruker, Billerica, MA, USA) operating frequency of 400 MHz.
Reactions with MW have been performed with a Microwave Accelerated Reaction System,
Model MARS Xpress 5-CEM (CEM Corporation, Matthews, NC, USA). High-resolution
mass spectra (HRMS) were recorded with a Bruker Compact QTOF instrument (Bruker,
Billerica, MA, USA). Spectra have been acquired in positive or negative ion mode, with a
mass resolution of R = 30,000.
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2.1. Optimized Procedure for the Synthesis of Diethyl ω-Bromoalkylphosphonate

Glassware was flamed under nitrogen flow. The reaction flask was connected to a
distillation apparatus, in order to distill the bromoethane produced during the process.
A total of 75 mmol of α,ω-dibromoalkane were pre-heated at 140 ◦C; 75 mmol of triethyl
phosphite were then added dropwise, within 2 h. The mixture was stirred for an additional
hour and monitored by GC-MS. Pure diethyl ω-bromoalkylphosphonate was isolated
by vacuum fractional distillation, with satisfactory yield. Product characterization has
been performed with GC-MS, 1H and 31P NMR in CDCl3 (see Supplementary Materials).
Reactions have been performed in duplicate and good reproducibility was observed.

Diethyl 6-bromohexylphosphonate (1). Colorless oil (9.19 g, 30.5 mmol, 40% yield). MS (EI,
70 eV): m/z = 221 [M − Br]+; m/z = 152 [•CH2P(=OH)(OCH2CH3)2]+; m/z = 125 [152-
C2H3]+ [47,48]. 1H NMR (CDCl3, 400 MHz): δ 1.322 (t, J = 7.09 Hz, 6H), δ 1.366–1.509 (m,
4H), δ 1.562–1.667 (m, 4H), δ 1.819–1.908 (m, 2H), δ 3.402 (t, J = 6.74 Hz, 2H), δ 4.030–4.160
(m, 4H); 31P NMR (CDCl3, 400 MHz): δ 32.248 (s, 1P).

Diethyl 5-bromopentylphosphonate (2). Colorless oil (8.17 g, 29.5 mmol, 40% yield). MS (EI,
70 eV): m/z = 207 [M − Br]+; m/z = 152 [•CH2P(=OH)(OCH2CH3)2]+; m/z = 125 [152-
C2H3]+ [47,48]. 1H NMR (CDCl3, 400 MHz): δ 1.322 (t, J = 7.06, 6H), δ 1.475–1.739 (m, 6H),
δ 1.826–1.920 (m, 2H), δ 3.404 (t, J = 6.72 Hz, 2H), δ 4.013–4.166 (m, 4H); 31P NMR (CDCl3,
400 MHz): δ 31.926 (s, 1P).

Diethyl 4-bromobutylphosphonate (3). Colorless oil (4.24 g, 15.5 mmol, 20% yield). MS (EI,
70 eV): m/z = 193 [M − Br]+; m/z = 165 [193-C2H4]+; m/z = 137 [165-C2H4]+. 1H NMR
(CDCl3, 400 MHz): δ 1.326 (t, J = 7.05, 6H), δ 1.730–1.821 (m, 4H), δ 1.918–2.002 (m, 2H),
δ 3.409 (t, J = 6.56 Hz, 2H), δ 4.042–4.156 (m, 4H).; 31P NMR (CDCl3, 400 MHz): δ 31.400
(s, 1P).

2.2. General Procedure for the Synthesis of 1-[n-(Diethyl phosphonyl) alkyl]KuQuinone

5.75 mmol of 2-hydroxy-1,4-naphthoquinone, 12 mmol of ω-bromoalkylphosphonate,
8 mmol of Cs2CO3, 0.33 mmol of sublimated ferrocene and 22 mL of dimethyl sulfoxide
were mixed at 114 ◦C, for 41 h. The crude was then diluted with 100 mL of dichloromethane,
filtered and extracted with NaCl saturated aqueous solution. The organic phase was
subsequently dried over Na2SO4, filtered and concentrated. Purification was carried out by
chromatography column (SiO2/CHCl3). The sample was dried and then further purified
by precipitation with chloroform/hexane. The product was characterized by UV-vis and
IR spectroscopy, HRMS, 1H, 13C and 31P NMR in CDCl3 (see Supplementary Materials).

1-[4-(Diethyl phosphonyl)butyl]KuQuinone (4). Purple powder (103.94 mg, 0.2 mmol, 7% yield)
mp 185–188 ◦C. 1H NMR (CDCl3, 400 MHz): δ 1.303 (t, J = 7.08 Hz, 6H), δ 1.593–1.802
(m, 6H), δ 3.350–3.423 (t, J = 7.28 Hz, 2H), δ 4.026–4.147 (m, 4H), δ 7.622–7.729 (m, 4H),
δ 8.102–8.199 (m, 4H), δ 18.072 (s, 1H). 13C NMR (CDCl3, 400 MHz): δ 181.052 and 177.973
(C=O); δ 136.089, 135.692, 135.127, 133.150, 131.905, 127,798, 127.341, 125.753 (aromatic
carbons); δ 59.894, 27.354, 23.433, 22.360, 20.465, 16.428 (aliphatic carbons). 31P NMR
(CDCl3, 400 MHz): δ 32.686 (s, 1P). UV−vis in CHCl3 [λmax, nm (ε, M−1cm−1)]: 569 (14,919);
532 (12,240). HRMS: m/z [M + Na]+ calculated for C29H27NaO7P 541.1387; found 541.1394.

1-[3-(Diethyl phosphonyl)propyl]KuQuinone (5). Purple powder (145.21 mg, 0.3 mmol, 10%
yield) mp 204–206 ◦C. 1H NMR (CDCl3, 400 MHz): δ 1.281 (t, J = 7.08 Hz, 6H), δ 1.862–2.053
(m, 4H), δ 3.486 (t, J = 7.09, 2H), δ 3.991–4.152 (m, 4H), δ 7.628–7.780 (m, 4H), δ 8.120–8.238
(m, 4H), δ 18.150 (s, 1H). 13C NMR (CDCl3, 400 MHz): δ 180.876 and 178.090 (C=O);
δ 135.664, 135.133, 133.125, 132.638, 131.836, 127,827, 127.344, 125.515 (aromatic carbons);
δ 61.437, 26.312, 24.920, 22.263, 16.524 (aliphatic carbons). 31P NMR (CDCl3, 400 MHz):
δ 32.337 (s, 1P). UV−vis in CHCl3 [λmax, nm (ε, M−1cm−1)]: 567 (14,851); 529 (11,351).
HRMS: m/z [M + Na]+ calculated for C28H25NaO7P 527.1230; found 527.1234.
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1-[2-(Diethyl phosphonyl)ethyl]KuQuinone (6). Purple powder (152.60 mg, 0.3 mmol, 11% yield)
mp 220–222 ◦C. 1H NMR (CDCl3, 400 MHz): δ 1.423 (t, J = 7.00 Hz, 6H), δ 2.102–2.224
(m, 2H), δ 3.602–3.702 (m, 2H), δ 4.157–4.320 (m, 4H), δ 7.645–7.764 (m, 4H), δ 8.163–8.228
(m, 4H), δ 18.147 (s, 1H). 13C NMR (CDCl3, 400 MHz): δ 30.835 (s, 1P). δ 180.888 and
178.309 (C=O); δ 135.613, 135.183, 133.164, 132.404, 131.861, 127,925, 127.363, 125.434
(aromatic carbons); δ 61.827, 24.772, 20.637, 16.621 (aliphatic carbons). 31P NMR (CDCl3,
400 MHz). UV−vis in CHCl3 [λmax, nm (ε, M−1cm−1)]: 563 (14,544); 526 (11,367). HRMS:
m/z [M + Na]+ calculated for C27H23NaO7P 513.1074; found 513.1069.

2.3. Hydrolysis of Diethyl Phosphonate KuQuinone Derivatives

Glassware was flamed under nitrogen flow before use. A total of 0.1 mmol of diethyl
phosphonate KuQuinone and 5 mmol of NaI were mixed in 16 mL of dry acetonitrile:
chloroform solution (1:1 v/v) until a deep purple solution was observed. Subsequently,
5 mmol of bromotrimethylsilane were added and the mixture was stirred for 4 h, at
40 ◦C, under an inert atmosphere. The crude was then diluted with 15 mL of chloroform,
filtered and concentrated under vacuum, obtaining the bis-(trimethylsilyl)phosphonate
intermediate, as a brownish oil. The silyl ester was converted to the corresponding acid by
hydrolysis with 30 mL of methanol, under magnetic stirring, within an hour. Phosphonic
acid, in form of a purple precipitate, was isolated by vacuum filtration, washed with
diethyl ether and characterized by 1H and 31P NMR in DMSO-d6, IR and HRMS (see
Supplementary Materials).

1-[4-(Dihydroxyphosphonyl)butyl]KuQuinone (7). Purple powder (44.83 mg, 0.097 mmol, 97%
yield) mp > 250 ◦C. 1H NMR (DMSO-d6, 400 MHz): δ 1.493–1.617 (m, 6H), δ 7.529–7.697
(m, 4H), δ 7.891–8.035 (m, 4H). 31P NMR (DMSO-d6, 400 MHz): δ 26.653 (s, 1P). HRMS: m/z
[M − H]− calculated for C25H18O7P 461.0796; found 461.0786.

1-[3-(Dihydroxyphosphonyl)propyl]KuQuinone (8). Purple powder (42.56 mg, 0.095 mmol, 95%
yield) mp > 250 ◦C. 1H NMR (DMSO-d6, 400 MHz): δ 1.493–1.617 (m, 6H), δ 7.529–7.697
(m, 4H), δ 7.891–8.035 (m, 4H). 31P NMR (DMSO-d6, 400 MHz): δ 26.534 (s, 1P). HRMS: m/z
[M − H]− calculated for C24H16O7P 447.0639; found 447.0625.

1-[2-(Dihydroxyphosphonyl)ethyl]KuQuinone (9). Purple powder (43.38 mg, 0.1 mmol, 100%
yield) mp > 250 ◦C. 1H NMR (DMSO-d6, 400 MHz): δ 1.692–1.847 (m, 2H), δ 7.509–7.677
(m, 4H), δ 7.921–8.045 (m, 4H). 31P NMR (DMSO-d6, 400 MHz): δ 26.483 (s, 1P). HRMS: m/z
[M - H]− calculated for C23H14O7P 433.0483; found 433.0478.

3. Results and Discussion

Synthesis of diethyl ω-bromoalkylphosphonates has been explored, in order to op-
timize Arbuzov reaction conditions [41]. Previous works on phosphonate esters mono-
functionalization of dibromoalkanes highlighted that a high excess (from 3 to 20 equiv-
alents) of substrate was required to avoid di-substitution reaction [42–46]. In this study,
1,4-dibromobutane, 1,5-dibromopentane and 1,6-dibromohexane have been selected as
substrates to perform Arbuzov synthesis. The reactions have been carried out solventless,
at 140 ◦C, using equimolar amount of triethyl phosphite with respect to the substrate, in
order to improve process sustainability, thus reducing waste (Scheme 2). The reactions
were monitored by GC-MS. Products isolation has been performed by fractional distillation
under vacuum. The results are reported in Table 1.

Solvent-free Arbuzov reaction between triethyl phosphite and 1,4-dibromobutane, in
equimolar amount, was performed following a previously reported procedure (Table 1,
Entry 1) [49,50]. However, in the adopted conditions, GC-MS analysis revealed that diethyl
ethylphosphonate was the main product. As a matter of fact, during the Arbuzov reaction,
bromoethane is formed as a byproduct (Scheme 3a) and it readily reacted with triethyl
phosphite, leading to diethyl ethylphosphonate, in a high amount (Scheme 3b). Only traces
of diethyl 4-bromobutylphosphonate (3) and the di-substituted product were detected.
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Scheme 2. Diethyl ω-bromoalkylphosphonates synthesis.

Table 1. Optimization of reaction conditions for the synthesis of diethyl ω-bromoalkylphosphonate.
Conditions: α,ω-dibromoalkane (75 mmol): triethyl phosphite (75 mmol); T = 140 ◦C.

Entry Br(CH2)nBr Reaction Time Isolated Yield (%)

1 n = 4 12 h -
2 a n = 4 12 h -
3 b n = 4 5 min -
4 a,c n = 6 90 min 5
5 a,d n = 6 3 h 40
6 a,d n = 5 3 h 40
7 a,d n = 4 3 h 20 e

a Bromoethane distilled during the reaction. b microwave irradiation at 150 W. c triethyl phosphite dropwise
addition within 30 min. d triethyl phosphite dropwise addition within 2 h. e isolated by column chromatography
(ethyl acetate/Al2O3).

Scheme 3. (a): Arbuzov reaction for the synthesis of 3; (b–d) concurrent processes: diethyl ethylphos-
phonate generation (b), di-phosphonation (c) and cyclization (d).

To improve the experimental conditions, the same reaction was performed while distill-
ing the generated bromoethane (Table 1, Entry 2); this was also useful to monitor the progress
of the reaction. Product analysis pointed out that di-substitution reaction (Scheme 3c) and
intramolecular cyclization of 3 (Scheme 3d) occurred, thus forming a stable six-membered
heterocycle [44]. Additionally, in this case, only traces of the mono-substituted product
were detected. Microwave irradiation was attempted [51,52], using equimolar reactants ra-
tio, and an irradiation power of 150 W for 5 min; however, the reaction lacked in selectivity
(Table 1, Entry 3).

In order to avoid cyclization reaction to a stable 6-membered ring, 1,6-dibromohexane was
used as the substrate, experimenting with the synthesis of diethyl 6-bromohexylphosphonate
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(1). Moreover, to promote mono-substitution reaction, triethyl phosphite was added drop-
wise in 30 minutes [44]. However, in such conditions, di-phosphonation process was
again the predominant one, while 1 was isolated in very low yield (Table 1, Entry 4). It
is noteworthy that slower triethyl phosphite addition (in about two hours) allowed to
achieve 1, with high selectivity and satisfactory yield (40%, Table 1 Entry 5). Thus, such
an optimized procedure was employed to synthesize diethyl 5-bromopentylphosphonate
(2) (40% yield, Table 1, Entry 6) and 3 (20% yield, Table 1, Entry 7), in acceptable yields.
Nevertheless, in the case of 3, it was necessary to further purify the product, since the
intramolecular cyclization side-reaction occurred (Scheme 3d).

The obtained diethyl ω-bromoalkylphosphonates (1–3) were then employed as reagents
to synthesize new KuQuinone derivatives (4–6), bearing a diethyl phosphonate terminal
group. KuQ synthesis was executed following the previously reported one-pot proce-
dure [32], in which 2-hydroxy-1,4-naphthoquinone is reacted with an excess of an appro-
priate alkyl bromide, in the presence of a base and ferrocene (FcH) in catalytic amount
(Scheme 4). Overall, three KuQuinone phosphonate derivatives, differing in side-chain
length, were synthesized with yields (7 to 11%, Table 2) that compare well with that of
other KuQuinone analogues [29,30,33].

Scheme 4. Synthesis of KuQuinone phosphonate esters 4–6.

Table 2. Synthesis of KuQuinone diethyl phosphonate derivatives. Reaction conditions: 5.75 mmol of
2-hydroxy-1,4-naphthoquinone, 12 mmol of bromoalkylphosphonate, 8 mmol of Cs2CO3, 0.33 mmol
of FcH, in 22 mL of DMSO, at 114 ◦C, for 41 h.

Reagent Product Yield (%)

1 4 11
2 5 10
3 6 7

To achieve KuQuinone phosphonic acids, KuQ-phosphonate esters hydrolysis was
performed [53]. Reaction with 48% hydrobromic acid, at reflux, was first studied [54]. De-
spite the harsh conditions adopted, the phosphonic acid was not obtained. Acid hydrolysis
was then performed with 0.5 M of hydrochloric acid, under microwave irradiation, with
no results, likely because of the poor KuQuinone solubility in water [55]. Additionally,
hydrolysis with bromotrimethylsilane (TMSBr) [56–58] was not successful. At this point,
considering a seminal work by Morita [59], KuQuinone phosphonate ester hydrolysis
has been performed with TMSBr in the presence of NaI (Table 3). In fact, because of the
higher nucleophilicity of the iodide compared to other halides, trimethylsilyl intermediate
formation is favored. Therefore, the reaction was carried out, dissolving 0.1 mmol of KuQ
phosphonate ester in dry chloroform/acetonitrile (1:1), with a large excess of NaI and
TMSBr (5 mmol), under N2 atmosphere, at 40 ◦C. After 4 h, the generated intermediate
(trimethylsililphosphonate ester) was converted to the corresponding acid by methanolysis
at room temperature (Scheme 5). The reaction was checked with TLC and interrupted
when the ester band disappeared. In these conditions, almost quantitative conversions of
KuQuinone phosphonate esters 4–6 to phosphonic acids 7–9 were achieved.
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Table 3. Hydrolysis of KuQuinone phosphonate esters. Conditions: 0.1 mmol of diethyl phosphonate
KuQuinone, 5 mmol of NaI, 5 mmol of bromotrimethylsilane, in 16 mL of dry CH3CN: CHCl3
(1: 1), at 40 ◦C, 4 h, under N2 atmosphere. Then, silyl ester hydrolysis was performed with 30 mL
of methanol.

Reagent Product Yield (%)

4 7 100
5 8 95
6 9 97

Scheme 5. Hydrolysis of KuQuinone phosphonate esters.

Note that KuQ phosphonate esters were highly soluble in all conventional organic
solvents. Conversely, phosphonic acid derivatives were insoluble in apolar organic solvents
and they showed only poor solubility in methanol and dimethyl sulfoxide. Solubility was
significantly enhanced in water in the presence of a base, which allows phosphonic acid
deprotonation and dissolution [60].

Therefore, KuQ phosphonic acid characterization was performed with NMR in DMSO-
d6. 1H NMR spectra were characterized by a large and intense peak at about 3.4 ppm,
which is typical of organic phosphonic acids (Figures S13, S17 and S21), being attributable
to the hydroxyl groups of PA moiety, as well as to water traces [61]. Such intense peak
overlaps with some KuQ aliphatic signals in the 1H NMR spectrum of the products, that
are also broad and not well-resolved, likely because of the compound’s low solubility in
DMSO. Conversely, KuQuinones characteristic peaks were clearly observed in the aromatic
region of the spectra. On the other hand, 31P NMR analysis unambiguously confirmed the
effectiveness of the hydrolysis [62]. In fact, by comparing the 31P NMR spectra in DMSO-d6
of the phosphonate esters with the corresponding phosphonic acids (Figure 1), a shift of
about 5 ppm fields was observed, according to literature data [62].

Figure 1. 31P NMR spectra of 8 (purple) and 5 (green) in DMSO-d6.
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4. Conclusions

In this paper, Arbuzov reaction for the synthesis of ω-bromoalkylphosphonates has
been optimized. In fact, the main drawback in published synthetic procedures of ω-
bromoalkylphosphonates was the large excess of the substrate, i.e., a α,ω-dibromoalkane,
in order to prevent the di-substitution side process. Here, we report that slow dropwise
addition of triethyl phosphite to 1 equivalent a α,ω-dibromoalkane leads to the desired
product, with satisfactory yields. Importantly, reactions occur at 140 ◦C, while distilling
bromoethane, that is formed as the first byproduct. Note that reactions performed using
1,4-dibromobutane as the substrate lead to a high amount of the cyclization side-product,
thus lowering yields.

The optimized reaction conditions allow to significantly reduce the amount of the
substrate, consequently reducing α,ω-dibromoalkane waste. Moreover, substrate scope can
be further extended to obtain a library of ω-bromoalkylphosphonates.

The synthesized ω-bromoalkylphosphonates have been experimented in the synthesis
of KuQuinone diethyl phosphonate derivatives, following a previously reported procedure.
Hence, novel KuQuinone phosphonate esters have been synthesized and their hydrolysis
with TMSBr and NaI allowed to access new KuQuinone phosphonic acids, with almost
quantitative yields.

The introduction of a phosphonate ester in KuQ side chain sensibly enhances the
solubility of such compounds in organic solvents. More importantly, a phosphonic
acid functionality is strategic to exploit KuQuinones in different applications, such as
in photo(electro)chemical devices anchored on suitable metal oxide nanoparticles, as well
as in photocatalysis and biomedical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/org2020010/s1, Figure S1: 1H NMR spectrum of 1 in CDCl3; Figure S2: 31P NMR spectrum of
1 in CDCl3; Figure S3: Mass spectrum of 1; Figure S4: 1H NMR spectrum of 2 in CDCl3; Figure S5:
31P NMR spectrum of 2 in CDCl3; Figure S6: Mass spectrum of 2; Figure S7: 1H NMR spectrum of 3
in CDCl3; Figure S8: 31P NMR spectrum of 3 in CDCl3; Figure S9: Mass spectrum of 3; Figure S10:
1H NMR spectrum of 4 in CDCl3; Figure S11: 13C NMR spectrum of 4 in CDCl3; Figure S12: 31P
NMR spectrum of 4 in CDCl3; Figure S13: HRMS spectrum of 4; Figure S14: UV-vis spectrum of
4; Figure S15: ATR-IR spectrum of 4; Figure S16: 1H NMR spectrum of 7 in DMSO-d6; Figure S17:
31P NMR spectrum of 7 in DMSO-d6; Figure S18: HRMS of 7; Figure S19: ATR-IR spectrum of
7; Figure S20: 1H NMR spectrum of 5 in CDCl3; Figure S21: 13C NMR spectrum of 5 in CDCl3;
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