A Dynamic Stochastic Block Model with infinite
communities

Un modello dinamico con blocchi aleatori e numero
infinito di comunita

Roberto Casarin and Ovielt Baltodano Lépez

Abstract This contribution proposes the use of bayesian non—parametric techniques
to make inference on the number of communities in a Dynamic Stochastic Block
Model which is then applied to real network data on international financial flows.
Abstract Questo contributo si propone l'uso di metodi bayesiani non—-parametrici
per fare inferenze sul numero di comunita in un modello dinamico con blocchi
aleatori, il quale dopo viene applicato alla rete di flussi finanziari internazionali.
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1 Introduction

The increase of network data, e.g. online social networks, has shown the importance
of clustering and community structures. In this sense, a Dynamic Stochastic Block
Model (DSBM) allows to capture heterogeneous relationships between nodes and
potential role changes in their interaction. [9, 6] proposed the use of Hidden Markov
chains in order to extent the mixture distribution used in a static setting. However,
there is no inference and therefore no measure of uncertainty on the number of
communities.

On the other hand, in the field of time series analysis, the use of Hidden Markov
chains with infinite states has a long tradition. An important extension was pro-
posed by [4]. In their contribution, they introduce state persistence in a Hierarchical
Dirichlet process framework used in a hidden Markov chain model. In a nonlin-
ear context, [2] applies the same strategy to a Generalized Auto-Regressive Condi-
tional heteroskedasticity (GARCH) model. In this paper, we combine this persistent
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Hierarchical Dirichlet process and hidden Markov chain with infinite states to the
DSBM. This is in line with [3], but their contribution was centered on a mixed—
membership setting, that is, each node can play different roles at the same time,
while here we assume each node can be in only one community at each point in
time. The description of our model is presented in Section 2. Moreover, in Section
3, we use empirical data on the bilateral financial flows between countries given its
relevance for financial stability and interdependence, and to exemplify the use of the
DSBM with infinite communities.

2 A DSBM with infinite communities

A weighted graph can be defined as the ordered triplet 4 = (¥, &,Y), where ¥ =
{1,...,N} is the set of nodes, & C ¥ x ¥ and Y is a weight matrix, ¥ € RV x RV,
The (i, j)-th element of ¥ is ¥;; = 0 if (i, j) ¢ & and V;; = a € R\{0} if (i, j) € &.
We define the sequence of sets U = ¥,..., %, with Q € {1,2,...} a partition of
¥, if each element #; C ¥ (called block or community in what follows) satisfies:
YinY;=0and /1U...UYp="7.

In this paper we assume a sequence of graphs 4. = {¥4,,r =1,...,T} is avail-
able and a latent sequence of partitions U1.7 = {0;,r = 1,...,T} drives the topol-
ogy of the graph. Following [9] and [6], the partition sequence 2Ui.r is induced by a
set of N hidden Markov chain processes. The membership of i € ¥ is captured by
Zi=A{Zy,t =1,...,T}, which evolves following a Markov Chain process with tran-
sition matrix P, where entry g,r € 2 is given by P, € (0, 1) and each row P,. sum up
to one. At time ¢, the node i belongs to the block ¥ if Z; = g. Although the chains
are independent, they share the same transition matrix, thus P gives information on
the level of persistence of the communities as a whole.

The node partition induces edge clusters with different existence probabilities
and weights. Further, we assume that the contemporaneous network Y; given Z;.7
and Yy.7 only depends on Z, = {Zy,,...,Zy,} and each entry of the adjacency matrix
is distributed as

Yiji |Zir =q,Zjs =1,0;r ~ (1 =Vg)8(y) + Vgr f (0| Agr) (D

which is a zero-inflated distribution family, where §(-) denotes the Dirac function
at zero and f(-|A,,) is a probability density function with parameter A, and support
set R\{0}. The community structure is used to allow for partial parameter pooling,
that is the edge parameters 6;j; = (V;jr, l[jt)' =0, ifi€ Y and j € 7, attime 1.
Usually, the number of communities is given and the choice depends on some
specific criteria. For instance, [6] chooses the model with the highest integrated
classification likelihood criterion, after fitting models with different 2 cardinality.
In order to infer the number of communities, a Bayesian non—parametric framework
can be applied, which to allow for infinite states Markov chains. Since the number
of state is infinite, i.e. 2 = {1,2,...}, the transition matrix P becomes infinite di-
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mensional and a parsimonious model is needed for P, which preserves the labelling
of the communities in the different rows. [7] proposed a hierarchical Dirichlet Pro-
cess (DP) to tie the different rows of P by providing the same centering measure for
each row, that is

Zir|Zir—1 =q~ qu ge 2
G4l®, Gy ~ DP(w, Gy) 2
Goln,H ~ DP(n,H),

where DP(a, H) denotes a Dirichlet process with precision parameter o and center-
ing (or base) measure H. Nevertheless, [4] underline the fact that (2) does not dif-
ferentiate between the main diagonal of P and the transition across different groups,
essentially affecting the state persistence. Therefore, using the extension proposed
by [4] for the analysis of time—series, (2) can be extended in line with the Chinese
restaurant franchise with loyal costumer,

Zit|PqA,Zit,1 =q~ Ca(Pq.)

3)

or+8(r—
P,|w,7 ~ DP <a)+ K,M>
W+ K

7 ~ Stick(n)
6, ~H

where Ca(p) denotes a categorical (or multinoulli) distribution with probability pa-
rameter p. The parameters F,., 7 are the weights of the stick-breaking representation
of G, and Gy, and k is a parameter increasing the self-transition probability Py, g €
2. The g —th element of the infinite vector 7 is given by m, = &, H;’;ll (1-¢) and
& ~ Beta(1,n). The Fig. 1 summarizes the structure of the DSBM with infinite
communities, at each point time the allocation variables Z;z and Z;¢ of the corre-
sponding pair (i, j) determines which parameters 6, applies. Their membership
changes on the basis of the infinite dimension P, whose rows have a specific Dirich-
let process under the same centering measure.

In the case of a weighted network whose active edges have a support R\{0}, a
zero-inflated normal can be used in (1) with parameters Ay = (Byr, qur)’ . Further-
more, (1) can be rewritten as

Yije|Diji. Zie = 4,Zjs = 1,6 ~ {?((i)])llqr) ggij: :(1) (C))
where D;j; is an observable indicator variable such that D;;; = 1if (i, j) € &; and
Dijy = 0if (i,]) € &.

Dijt |Zit = CLth =1 eijt ~ Bem(Vqr) &)

Under this representation, a full Gibbs sampling procedure can be derived after
using a set of slice sampling auxiliary variables u;; applied to the stick—breaking
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Fig. 1 Directed Acyclic Graph of DSBM with infinite communities

representation in (3). The main full conditional posteriors are presented in Table
1 where the inference also covers the hyperparameters 1, &, ®." The closed form
of the parameters of the full conditional posteriors and further details, such as the
auxiliary variables /1., and g, are standard in the literature [e.g. 4, 2]. Additionally,
the allocation variables Z are sampled from Forward filtering backward sampling

[5].

Table 1 Gibbs sampling

Prior Full Conditional Posterior
qu ~N (Eqr’;‘l’) qu‘Yv ...~N (ququr)
G;r ~IG (éqr/27gqr/2) 63r|Y7 . ~1G (dql/27gq’/2)
V,r ~ Beta (qu,gqr) Vyr|Y,... ~ Beta (bq,,fq,)
P, ~DP (w+ K, %) P.lY,...~ Dir(®m +ng.,..., 0%+ K+ngq,. .., 0OTg41)
7 ~ Stick(n) T|Y,... ~Dir (i, ...,i.g,1M)
i ~ Uni(0,1) iV~ Uni (0K %1 =20y, 7, )

-1
0+ Kk~G(E,0) w+K]Y,... ~G<C1+mfs, (1/§zfz§:110gkq) >
p ~Beta(x1,22) plY,...~Beta(x1 +gx2+m—g)

N ~G(y1,¥) n\YW~G(W1+Q¥s7(l/wflogk)’l)

! In the case of x and o, the prior is set on kK + @ and p = x/(k + ®).
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3 Application

The financial flows at international level have experienced significant changes in the
last decades including the 2008 crisis [e.g., 8]. The DSBM with infinite communities
can identify specific network structures and its evolution, which can have potential
consequences in terms of contagion and financial stability. In this sense, the fol-
lowing is an application of the model described in Section 2 to the data collected
by Bank for international Settlements (BIS) on bilateral cross—border claims (and
liabilities). As in [1], given that the data presented by the BIS is in a bank—country
format, that is a banking system reports its position with respect to a country, we
transform the data to a country—country format for most of the cases using data
triangulation, with this the flows comprise other sectors and the missing data are
minimized. The resulting network includes 31 countries for the period 2001-2019.>

The main results are showed in Fig. 2 and Table 2. Regarding the number of com-
munities, the 53% of draws result in three communities, but still there is some uncer-
tainty given the relative frequency of four communities. Using the former number,
38% of countries have experience at least one change of membership in the period
2001-2019. These countries are presented in Fig.2. Although state persistence is
high, there are sudden changes in JPN, NDL, DEU and BEL. Other countries, such
as US and GBR are not in the figure because they remain in the same community.
In the case of CAN, it seems stable in terms of posterior mode, but in 2019 it starts
a transition to another community represented with lower posterior probability.

Table 2 Relative frequency

of the number of communities
in the network of financial Q 2 3 4 5 6 7 3 9
flows

0.12 5270 3297 9.70 328 1.00 0.20 0.01

2 This sample covers only reporting countries, no destinations, a subset of the countries available.
The countries (dependencies or relevant regions) are: Austria, Australia, Belgium, Brazil, Canada,
Switzerland, Chile, Germany, Denmark, Spain, Finland, France, United Kingdom, Guernsey,
Greece, Hong Kong SAR China, Ireland, Isle of Man, Italy, Jersey, Japan, South Korea, Lux-
embourg, Macao SAR China, Mexico, Netherlands, Philippines, Sweden, Taiwan, United States
and South Africa.
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Fig. 2 Countries’ membership by year, only the countries which experience a change of member-
ship are included (color intensity is proportional to the posterior probability of the posterior mode)
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