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AN EFFICIENT DP ALGORITHM ON A TREE-STRUCTURE FOR
FINITE HORIZON OPTIMAL CONTROL PROBLEMS\ast 

ALESSANDRO ALLA\dagger , MAURIZIO FALCONE\ddagger , AND LUCA SALUZZI\S 

Abstract. The classical dynamic programming (DP) approach to optimal control problems is
based on the characterization of the value function as the unique viscosity solution of a Hamilton--
Jacobi--Bellman equation. The DP scheme for the numerical approximation of viscosity solutions of
Bellman equations is typically based on a time discretization which is projected on a fixed state-space
grid. The time discretization can be done by a one-step scheme for the dynamics and the projection
on the grid typically uses a local interpolation. Clearly the use of a grid is a limitation with respect
to possible applications in high-dimensional problems due to the curse of dimensionality. Here,
we present a new approach for finite horizon optimal control problems where the value function is
computed using a DP algorithm with a tree structure algorithm constructed by the time discrete
dynamics. In this way there is no need to build a fixed space triangulation and to project on it. The
tree will guarantee a perfect matching with the discrete dynamics and drop off the cost of the space
interpolation allowing for the solution of very high-dimensional problems. Numerical tests will show
the effectiveness of the proposed method.
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1. Introduction. The dynamic programming (DP) approach was introduced
and developed by Richard Bellman in the 1950s in a series of pioneering papers (see,
e.g., [5]). Since then it has been applied to many problems in deterministic and sto-
chastic optimal control although its real application has been up to now limited to
low-dimensional problems. Via the dynamic programming principle (DPP) one can
obtain a characterization of the value function as the unique viscosity solution of
a nonlinear partial differential equation (the Hamilton--Jacobi--Bellman (HJB) equa-
tion) and then use the value function to get a synthesis of a feedback control law. This
is the major advantage over the approach based on the Pontryagin maximum principle
(PMP) [6, 28] that gives necessary conditions for the characterization of the open-loop
optimal control and of the corresponding optimal trajectory. As is well-known, the
DP approach suffers from the curse of dimensionality since one has to solve a non-
linear partial differential equation (PDE) whose dimension is the same as that of the
dynamical system. This has always been the main obstacle to applying that theory to
real industrial applications despite the large number of theoretical results established
for many classical control problems via the DP approach (see, e.g., the monographs
by Bardi and Capuzzo-Dolcetta [4] on deterministic control problems and by Flem-
ing and Soner [17] on stochastic control problems). Even in low-dimension this is a
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challenging problem since the value function associated to the control problem (i.e.,
the viscosity solution of the HJB equation) is known to be only Lipschitz continuous
also when the dynamics and the running costs are regular functions. The numerical
analysis of low order numerical methods is now rather complete even for a state space
in \BbbR d and several methods have been proposed to solve the HJB equation using a
number of different techniques including finite differences, semi-Lagrangian (SL), fi-
nite volumes, and finite elements. We refer the interested reader to the monographs
by Sethian [31], Osher and Fedkiw [26], and Falcone and Ferretti [12] for an extensive
discussion of some of these methods and for an extended list of references on numerical
methods. All the above-mentioned methods are based on a space discretization which
requires the construction of a space grid (or triangulation). For higher-dimensional
problems the method needs a huge amount of memory allocations and makes the prob-
lem unfeasible for a dimension d > 5 on a standard computer. Several efforts have
been made to mitigate the curse of dimensionality. Although a detailed description of
these contributions goes beyond the scope of this paper, we want to mention [14] for
a domain decomposition method with overlapping between the subdomains and [10]
for similar results without overlapping. It is important to note that in these papers
the method is applied to subdomains with a rather simple geometry (see the book by
Quarteroni and Valli [29] for a general introduction to this technique) to pass down
conditions to the boundaries. More recently another way to decompose the problem
has been proposed in [25], which used a patchy decomposition based on the Al'brekht
method (see, e.g., [1]). Later in [8] the patchy idea was implemented taking into
account an approximation of the underlying optimal dynamics to obtain subdomains
which are almost invariant with respect to the optimal dynamics; clearly in this case
the geometry of the subdomains can be rather complex but the transmission condi-
tions at the internal boundaries can be eliminated saving on the overall complexity
of the algorithm. More recently other decomposition techniques for optimal control
problems and games have been proposed in [15], where the parallel algorithm is based
on the construction of independent subdomains, and in [16], where a parallel version
of Howard's algorithm is proposed and analyzed. In general, domain decomposition
methods reduce a huge problem into subproblems of manageable size and allow one to
mitigate the storage limitation distributing the computation over several processors.
However, the approximation schemes used in every subdomain are rather standard.

Another improvement can be obtained using efficient acceleration methods for the
computation of the value function in every subdomain. In the framework of optimal
control problems an efficient acceleration technique based on the coupling between
value and policy iterations (see [19]) has been recently proposed and studied in [2].
The construction of a DP algorithm for time dependent problems has been addressed
in [13], where also a priori error estimates have been studied. An adaptation of similar
methods for high-dimensional problems has been proposed later in [9].

However, we also mention that high-dimensional problems often imply a huge
amount of data and are too complex to be solved even by a direct approach based
on domain decomposition. (This approach is typically feasible below dimension 10.)
A reasonable solution to attack high-dimensional problems is to apply first model
order reduction techniques (e.g., proper orthogonal decomposition [33]) to have a low-
dimensional version of the dynamics. Thus, if the reduced system of coordinates for
the dynamics has a low number of dimension (e.g., d \approx 5) the problem can be solved
via the DP approach. Model reduction techniques are based on orthogonal projections
where the choice of the basis functions is nontrivial, e.g., it requires one to compute
some reference trajectories corresponding to a priori given control strategies and com-
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pute the basis via an SVD. At the end of this step, the set of controlled trajectories will
be represented as a linear combination of the basis functions. Whenever we are able to
compute accurate projectors we drastically reduce the dimension of the control prob-
lem, say, \ell \ll d, but we lose the physical meaning of the projected dynamical system.
This makes it difficult to define a reasonable choice of the numerical domain \Omega and the
easiest solution is to choose \Omega as a rather large box in \BbbR \ell . We refer, among others, to
the pioneer work on the coupling between model reduction and the HJB approach [24]
and the recent work [3], which provides a priori error estimates for the aforementioned
coupling method. We also mention a sparse grid approach in [18], where the authors
apply HJB to the control of the wave equation, and a spectral elements approximation
in [23], which allows one to solve the HJB equation up to dimension 12.

Despite these efforts and the mathematical elegance of the DP approach, its
impact in industrial applications is limited by this bottleneck and the solution of
many optimal control problems has been accomplished instead via open-loop control.
More information on the topic can be found in the monographs by Hinze et al. [20]
and by Tr\"oltzsch [32].

The aim of this paper is to eliminate the space discretization and the construction
of a grid to reduce the memory allocations and improve the applicability of the DP
approach. This can be done for the finite horizon problem via the construction of a
tree-structure that will account for the controlled dynamics. For numerical purposes,
we will assume that the system has a finite number of controls at every time step tn
and, to simplify the presentation, we are keeping this number M constant during the
evolution although the extension to a variable number Mn is straightforward. Under
these hypotheses starting from a point x we can reach M points in the state space
according to the discrete time dynamics. So a single starting point will produce a tree

\scrT of order O(MN+1) points in N time steps and the number of points is exponentially
increasing as expected. Note that we will not compute the value function by the DP
algorithm on that tree: exploiting the Lipschitz continuity of the value function in the
space variable (see section 2) we are going to prune the tree identifying the nodes that
are ``very close."" The pruning step of the algorithm will be governed by a pruning
parameter \varepsilon \scrT and at every step many branches will be cut away so the final complexity
will be drastically reduced.

Working on the tree has several advantages:
(i) we do not need to define a priori a numerical domain \Omega where we want to

solve the problem; the original tree is constructed by the controlled dynamics;
(ii) we do not need to build a space grid and to make a space interpolation on

the grid nodes, and therefore we do not introduce the interpolation error;
(iii) the pruned tree allows us to deal with high-dimensional problems.

In conclusion, with respect to the standard space discretization we can drop the
interpolation step that is rather expensive in high-dimension and we do not need the
classical assumptions at the boundary of \Omega which classically requires one to have an
invariant dynamics or to impose boundary conditions (Dirichlet, Neumann, or state
constraint).

Via the tree structure algorithm (TSA) we eliminate these difficulties at least for
the finite horizon problem and we can directly solve the discrete time HJB equation
for d = 1000 without any particular assumption on the structure of the problem as in
a model reduction context. This will be shown in section 5.

The paper is organized as follows: in section 2 we recall some basic facts about
the time approximation of the finite horizon problem via the DP approach, introduce
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our notation, and prove that the discrete time value function is Lipschitz continuous
in space. Section 3 is devoted to presenting the construction of the tree-structure
related to the controlled dynamics. In section 4, we present some hints on the actual
implementation of the method, in particular the pruning technique used to cut off the
branches of the tree in order to reduce the global complexity of the algorithm. Some
numerical tests are presented and analyzed in section 5. We give our conclusions and
perspectives in section 6.

2. Finite horizon optimal control problems via dynamic programming
principle. In this section we will summarize the basic results that will constitute the
building blocks for our new algorithm. The essential features will be briefly sketched,
and more details can be found in [4, 12] and the references therein. Let us present
the method for the classical finite horizon problem. Let the system be driven by

(2.1)

\biggl\{ 
\.y(s) = f(y(s), u(s), s), s \in (t, T ],
y(t) = x \in \BbbR d.

We will denote by y : [t, T ] \rightarrow \BbbR d the solution, by u the control u : [t, T ] \rightarrow \BbbR m, by
f : \BbbR d \times \BbbR m \times [t, T ]\rightarrow \BbbR d the dynamics, and by

\scrU = \{ u : [t, T ]\rightarrow U,measurable\} 

the set of admissible controls where U \subset \BbbR m is a compact set. We assume that there
exists a unique solution for (2.1) for each u \in \scrU .

The cost functional for the finite horizon optimal control problem will be given
by

(2.2) Jx,t(u) :=

\int T

t

L(y(s, u), u(s), s)e - \lambda (s - t) ds+ g(y(T ))e - \lambda (T - t),

where L : \BbbR d \times \BbbR m \times [t, T ]\rightarrow \BbbR is the running cost, g : \BbbR d \rightarrow \BbbR is the final cost, and
\lambda \geq 0 is the discount factor.

The goal is to find a state-feedback control law u(t) = \Phi (y(t), t), in terms of the
state variable y(t), where \Phi is the feedback map. To derive optimality conditions we
use the well-known DPP due to Bellman. We first define the value function for an
initial condition (x, t) \in \BbbR d \times [t, T ],

(2.3) v(x, t) := inf
u\in \scrU 

Jx,t(u) ,

which satisfies the DPP, i.e., for every \tau \in [t, T ],

(2.4) v(x, t) = inf
u\in \scrU 

\biggl\{ \int \tau 

t

L(y(s), u(s), s)e - \lambda (s - t)ds+ v(y(\tau ), \tau )e - \lambda (\tau  - t)

\biggr\} 
.

Due to (2.4) we can derive the HJB for every x \in \BbbR d, s \in [t, T ):

(2.5)

\left\{    - \partial v

\partial s
(x, s) + \lambda v(x, s) + max

u\in U
\{  - L(x, u, s) - \nabla v(x, s) \cdot f(x, u, s)\} = 0 ,

v(x, T ) = g(x) .

Suppose that the value function is known, by, e.g., (2.5); then it is possible to compute
the optimal feedback control as

(2.6) u\ast (t) := argmax
u\in U

\{  - L(x, u, t) - \nabla v(x, t) \cdot f(x, u, t)\} .

Equation (2.5) is a nonlinear PDE of the first order which is hard to solve analitically
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although a general theory of weak solutions is available in, e.g., [4]. Rather, we can
solve (2.5) numerically by means of finite difference or semi-Lagrangian methods.
In the current work we recall the semi-Lagrangian method. One usually starts the
numerical method by discretizing in time the underlying control problem with a time
step \Delta t := [(T  - t)/N ], where N is the number of temporal time steps, and then
projects the semidiscrete scheme on a grid obtaining the fully discrete scheme:

(2.7)

\left\{     
V n
i = min

u\in U
[\Delta t L(xi, u, tn) + e - \lambda \Delta tI[V n+1](xi +\Delta tf(xi, u, tn))],

n = N  - 1, . . . , 0,

V N
i = g(xi), xi \in \Omega ,

where tn = t + n\Delta t, tN = T , \Omega is the numerical domain and xi is an element of its
discretization, V n

i := V (xi, tn), and I[\cdot ] is an interpolation operator which is necessary
to compute the value of V n at the point xi+\Delta t f(xi, u, tn). (In general, this point will
not be a node of the grid.) The interested reader will find in [13] a detailed presentation
of the scheme and a priori error estimates for its numerical approximation. We note
that it is possible to show that the value function v(x, t) is Lipschitz continuous
on compact sets provided that f, L, and g are Lipschitz continuous with constant
Lf , LL, Lg > 0, respectively. It is possible to extend the result for the numerical value
function V (x, t) as explained in the following proposition. The proof follows closely
from the continuous version in [4, Prop. 3.1].

Proposition 2.1. Let us suppose the functions f(\cdot , u, t), L(\cdot , u, t), and g(\cdot ) are
Lipschitz continuous uniformly with respect to the other variables. Then, the numerical
value function V n(x) is Lipschitz in x
(2.8)

| V n(x) - V n(y)| \leq 

\left\{         
| x - y| 

\Bigl( 
LL

Lf - \lambda (e
(T - tn)(Lf - \lambda )  - 1) + Lge

(T - tn)(Lf - \lambda )
\Bigr) 

for Lf > \lambda ,
| x - y| 

\bigl( 
LL(T  - tn) + Lge

(T - tn)(Lf - \lambda )
\bigr) 

for Lf \leq \lambda 

\forall x, y \in \BbbR d and n = 0, . . . , N .

Proof. In the case n = N , we have that V N (x) = g(x), and then the estimate
follows directly from the hypothesis on g.

In the case n < N , we fix x, y \in \BbbR d and consider the following quantity V n(x) - 
V n(y):

V n(x) - V n(y) \leq  - \lambda \Delta t V n+1(x+\Delta tf(x, un
\ast , tn)) + \Delta tL(x, un

\ast , tn)

 - e - \lambda \Delta tV n+1(y +\Delta tf(y, un
\ast , tn)) - \Delta t L(y, un

\ast , tn)

\leq e - \lambda \Delta t(V n+1(x+\Delta tf(x, un
\ast , tn)) - V n+1(y +\Delta tf(y, un

\ast , tn)))(2.9)

+ \Delta t LL| x - y| ,

provided that

un
\ast = argmin

u\in U

\bigl\{ 
e - \lambda \Delta tV n+1 (y +\Delta tf(y, u, tn)) + \Delta tL(y, u, tn)

\bigr\} 
.

To achieve the desired estimate (2.8), we need to iterate (2.9) starting from x and y
at time tn. Let us first define the whole tree paths \{ xm\} m and \{ ym\} m as

xm := xn +\Delta t

m - 1\sum 
j=n

f(xj , uj
\ast , tj), ym := yn +\Delta t

m - 1\sum 
j=n

f(yj , uj
\ast , tj),
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where

uj
\ast = argmin

u\in U

\bigl\{ 
e - \lambda \Delta tV j+1

\bigl( 
yj +\Delta tf(yj , u, tj)

\bigr) 
+\Delta tL(yj , u, tj)

\bigr\} 
, j = n, . . . ,m - 1.

By the discrete Gr\"onwall's lemma, it is easy to prove the following estimate for Euler
schemes starting from xn = x and yn = y:

(2.10) | xn+k  - yn+k| \leq | xn  - yn| ek\Delta tLf = | x - y| ek\Delta tLf , k = 0, . . . , N  - n.

Then, iterating (2.9) we obtain

V n(x) - V n(y) \leq \Delta t LL

N - n - 1\sum 
k=0

e - \lambda k\Delta t| xn+k  - yn+k| + e - \lambda (T - tn)| g(xN ) - g(yN )| 

\leq \Delta t LL

N - n - 1\sum 
k=0

e - \lambda k\Delta t| xn+k  - yn+k| + Lge
 - \lambda (T - tn)| xN  - yN | 

\leq | x - y| 

\left(  \Delta tLL

N - n - 1\sum 
k=0

ek\Delta t(Lf - \lambda ) + Lge
(T - tn)(Lf - \lambda )

\right)  ,(2.11)

where we used (2.10) and the Lipschitz continuity of g.
If Lf > \lambda , then by (2.11) and the equality (N  - n)\Delta t = T  - tn, we get

V n(x) - V n(y) \leq | x - y| 
\biggl( 
\Delta tLL

e(T - tn)(Lf - \lambda )  - 1

e\Delta t(Lf - \lambda )  - 1
+ Lge

(T - tn)(Lf - \lambda )

\biggr) 
\leq | x - y| 

\biggl( 
LL

Lf  - \lambda 
(e(T - tn)(Lf - \lambda )  - 1) + Lge

(T - tn)(Lf - \lambda )

\biggr) 
,

(2.12)

whereas if Lf \leq \lambda , noticing that ek\Delta t(Lf - \lambda ) \leq 1, we directly obtain

(2.13) V n(x) - V n(y) \leq | x - y| 
\Bigl( 
LL(T  - tn) + Lge

(T - tn)(Lf - \lambda )
\Bigr) 
.

Analogously, it is possible to obtain the same estimate for V n(y) - V n(x) which leads
to the desired result.

In the next section we will take advantage of the estimate (2.9) to guarantee the
feasibility of our proposed method. The numerical approximation of the feedback
control (2.6) follows directly from the SL-scheme (2.7) and reads

un
\ast (x) = argmin

u\in U
[\Delta t L(x, u, tn) + e - \lambda \Delta tI[V n+1](x+\Delta tf(x, u, tn))].

3. HJB on a tree structure. The DP approach for the numerical approxi-
mation of viscosity solutions of the HJB equation is typically based on a time dis-
cretization which is projected on a fixed state-space grid of the numerical domain.
The choice of the numerical domain is already one bottleneck of the method. In fact,
although the theory is valid in the whole space \BbbR d for computational reasons we need
to restrict to a compact set in \BbbR d which should be large enough to include all the pos-
sible trajectories. That also yields the selection of some boundary conditions which
are not trivial.
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In this section we will provide a novel algorithm which does not require a state-
space grid and therefore avoids (i) the choice of the numerical domain, (ii) the com-
putation of polynomial interpolation, and (iii) the selection of boundary conditions,
and finally (iv) we can solve the problem for a larger dimension, such as d \gg 5. (In
section 5 we provide an example in dimension 1000.) Note that dimension 5 was the
maximum dimension for SL-schemes based on a grid on a standard computer (see,
e.g., [3]).

Construction of the tree data structure. We build the nodes tree \scrT starting
from a given initial condition x and following directly the dynamics in (2.1) discretized
by, e.g., the Euler method. Since we only discretize in time, we set a temporal step

\Delta t which divides the interval [t, T ] into N subintervals. We note that \scrT := \cup Nj=0\scrT j ,

where each \scrT j contains the nodes of the tree correspondent to time tj . The first level
\scrT 0 = \{ x\} is simply given by the initial condition x. To compute the second level
and the other levels we suppose to discretize the control domain U with step-size \Delta u.
We denote that the control set U is a subset in \BbbR m; in particular we will consider
U as a hypercube, discretized in all directions with constant step-size \Delta u, obtaining
U\Delta u = \{ u1, . . . , uM\} . To ease the notation in what follows we continue to denote by
U the discrete set of controls. Then, starting from the initial condition x, we consider
all the nodes obtained following the dynamics (2.1) discretized using, e.g., an explicit
Euler scheme with different discrete controls uj \in \BbbU 

\zeta 1j = x+\Delta t f(x, uj , t0), j = 1, . . . ,M.

Therefore, we have \scrT 1 = \{ \zeta 11 , . . . , \zeta 1M\} . We note that all the nodes can be character-
ized by their nth time level, as in the following definition.

Definition 3.1. The general nth level of the tree will be composed by Mn nodes
denoted by

\scrT n = \{ \zeta n - 1
i +\Delta tf(\zeta n - 1

i , uj , tn - 1)\} Mj=1 i = 1, . . . ,Mn - 1.

We show in the left panel of Figure 1 the structure of the whole tree \scrT . All the
nodes of the tree can be shortly defined as

\scrT := \{ \zeta nj \} M
n

j=1, n = 0, . . . , N,

where the nodes \zeta ni are the result of the dynamics at time tn with the controls
\{ ujk\} 

n - 1
k=0 :

\zeta nin = \zeta n - 1
in - 1

+\Delta tf(\zeta n - 1
in - 1

, ujn - 1 , tn - 1)

= x+\Delta t

n - 1\sum 
k=0

f(\zeta kik , ujk , tk)

with \zeta 0 = x, ik = \lceil ik+1

M \rceil and jk \equiv ik+1mod M , where \lceil \cdot \rceil is the ceiling function.
We note that \zeta ki \in \BbbR d, i = 1, . . . ,Mk. In the right panel of Figure 1 we show the
path to reach, for instance, \zeta 426, if the control set contains only three elements. We,
again, would like to emphasize that the domain is not chosen a priori, but constructed
following the dynamics.

In what follows we provide two remarks about the properties of the tree \scrT under
some particular assumptions on the dynamics f .
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x

\zeta 1M

. . .

\zeta N
MN

\zeta 11

. .
.

\zeta N1

x

\zeta 13

\zeta 12

\zeta 11

\zeta 23

\zeta 39

\zeta 427

\zeta 426

\zeta 425\zeta 38

\zeta 37\zeta 22

\zeta 21

Fig. 1. Example of the tree \scrT (left), path to reach \zeta 426 starting from the initial condition x with
U = \{ u1, u2, u3\} (right).

Remark 3.1. Let us suppose that the dynamics is affine with respect to u and
that u \in [umin, umax] \subset \BbbR , e.g., the following decomposition holds true:

f(x, u, t) = f1(x, t)u+ f2(x, t).

Then, all the nodes in \scrT n will lie on the segment with extremal points given by the
controls at the boundary \partial U = \{ u1 = umin, uM = umax\} . Specifically,

if z \in \scrT n this implies z \in [\zeta ni1 , \zeta 
n
iM ],

where \zeta ni1 and \zeta niM are obtained by using the control u1 and uM , respectively.

Remark 3.2. Let us suppose that the dynamics is monotone with respect to u \in 
[umin, umax] \subset \BbbR :

min\widetilde u\in \{ umin,umax\} 
fj(x, \widetilde u, t) \leq fj(x, u, t) \leq max\widetilde u\in \{ umin,umax\} 

fj(x, \widetilde u, t)
\forall u \in [umin, umax], j = 1, . . . , d.

Then the nodes of the tree will belong to a box with vertices given by the coordinates
of the nodes obtained with the extremal controls umin and umax as follows:

min
i\in \{ i1,iM\} 

\zeta n
i
\leq \zeta ni \leq max

i\in \{ i1,iM\} 
\zeta n
i
, i \in \{ i1, . . . , iM\} ,

where the last inequality holds componentwise.

Approximation of the value function. The numerical value function V (x, t)
will be computed on the tree nodes in space, whereas in time it will be approximated
as a piecewise constant function, i.e.,

V (x, t) = V n(x) \forall x, and t \in [tn, tn+1),

where tn = t+ n\Delta t.
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We note that we start to approximate the value function once the tree \scrT has
already been built. Then, we will be able to approximate the value function V n(xi +
\Delta tf(xi, u, tn)) in (2.7) without the use of an interpolation operator on a grid. The
reason is that we build our domain according to all the possible directions of the
dynamics for a discrete set of controls and, as a consequence, all the nodes xi +
\Delta tf(xi, u, tn) will belong to the grid. It is now straightforward to evaluate the value
function. The TSA defines a grid \scrT n = \{ \zeta nj \} M

n

j=1 for n = 0, . . . , N , and we can
approximate (2.5) as follows:

(3.1)

\left\{           
V n(\zeta ni ) = min

u\in U
\{ e - \lambda \Delta tV n+1(\zeta ni +\Delta tf(\zeta ni , u, tn)) + \Delta t L(\zeta ni , u, tn)\} ,

\zeta ni \in \scrT n , n = N  - 1, . . . , 0,

V N (\zeta Ni ) = g(\zeta Ni ),

\zeta Ni \in \scrT N .

We note that the minimization is computed by comparison on the discretized set
of controls U . We refer to [7, 22] for a more sophisticated approach to compute the
minimum in (2.7).

Remark 3.3. If the dynamics (2.1) is autonomous the evolution of the dynamics
will not depend explicitly on tn and the problem can be simplified since the argument
of the minimization in (3.1) will be

e - \lambda \Delta tV n+1(\zeta +\Delta tf(\zeta , u)) + \Delta t L(\zeta , u, tn).

At the time tn we have n levels of the tree on the left and N  - n levels on the right
(till tN ). Since the computation is going backward, to compute the value function at
time tn, we need to do N - n steps in time starting from the final condition at time T.
Once we know V n this information can also be interpreted as a final condition for the
subtree \cup nk=0\scrT k and, since the dynamics is autonomous, we can proceed backward
computing V n - 1 for the nodes belonging to all the kth time levels, for k \leq n  - 1.
Indeed the nodes \zeta + \Delta tf(\zeta , u) do not depend explicitly on the time and they can
be involved in the computation of the value function at different time steps. (This is
not the case for a nonautonomous dynamics.) Thus, we will proceed as follows: first
we impose the final cost g on the whole tree, and then we start computing the value
function backward. This procedure leads to a more extensive knowledge of the value
function on the tree.

4. Hints on the algorithm. In this section we will provide further details on
the implementation of the method proposed in section 3. We will explain how to
reduce the number of tree nodes to make the problem feasible, compute the feedback
control, and recall the whole procedure.

Pruning the tree. The proposed method mitigates the curse of dimensionality
and it allows us to deal with problems in \BbbR d with d \gg 5, which is absolutely not
feasible with the classical approach. However, we still have a dimensionality problem
related to the amount of nodes in the tree \scrT . In fact, given M > 1 controls and N
time steps, the cardinality of the tree is

| \scrT | =
N\sum 
i=0

M i =
MN+1  - 1

M  - 1
,

which is infeasible due to the huge amount of memory allocations, if M or N are too
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Fig. 2. Pruning technique throughout the construction of the tree: when two nodes are very
close (left), we link those nodes in order to prune the tree.

large. Therefore, we suggest selecting the nodes of the TSA neglecting those very
close to each other, assuming that the value function will not be completely different
on those nodes, e.g.,

\zeta ni \approx \zeta nj =\Rightarrow V (\zeta ni ) \approx V (\zeta nj ).

This is a realistic assumption since the numerical value function is Lipschitz con-
tinuous as explained in Proposition 2.1. We can introduce the pruning rule.

Definition 4.1 (pruning rule). Two given nodes \zeta ni and \zeta nj can be merged if

(4.1) \| \zeta ni  - \zeta nj \| \leq \varepsilon \scrT with n = 0, . . . , N

for a given threshold \varepsilon \scrT > 0.

Specifically, if during the construction of the tree, a node \zeta n-1 has as a son a new
node \zeta nj which verifies (4.1) with a certain \zeta ni , then we will not add the new node to

the tree and we will connect the node \zeta n-1 with \zeta ni . We cut the node which verifies
the criteria before going on with the construction of the tree; in this way we avoid
the subtree coming out from this node, saving a huge amount of memory.

The cut of the tree works as follows: during the construction of the nth level, the
new node will be compared with the previous nodes already computed at the same
level n. If the new node \zeta nj , whose father is \zeta n-1, satisfies the condition (4.1) with a
node \zeta ni , the new node will not be added to the tree and the adjacency matrix will be
uploaded, connecting the node \zeta n-1 to the node \zeta ni . Figure 2 provides a graphic idea
about the application of the pruning criteria. The choice of the tolerance plays an
important role: if \varepsilon \scrT is very small, the algorithm will be very slow, whereas if it is too
large, we will not obtain an accurate approximation. A reasonable choice turns out to
be \varepsilon \scrT = \Delta t2, as shown in section 5. The interested reader will find a rigorous proof
of this heuristic statement in [30] together with convergence results of the proposed
method.

Remark 4.1 (pruning rule in the autonomous case). If the dynamics is auton-
omous, as explained in Remark 3.3, we can extend the computation of the value
function at time tn even for nodes belonging to the subtree \cup nk=0\scrT k. Therefore, we
can extend the pruning criteria (4.1) as follows. Two given nodes \zeta ni and \zeta mj can be
merged if

(4.2) \| \zeta ni  - \zeta mj \| \leq \varepsilon \scrT with n,m = 0, . . . , N

for a given threshold \varepsilon \scrT > 0.
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Remark 4.2 (efficient pruning). The computation of the distances among all the
nodes would be very expensive, especially for high-dimensional problems. Hence, we
need an efficient algorithm to compute the distances quickly. One possible strategy is
the principal analysis component [27, 21]. Our aim is to project the data onto a lower-
dimensional linear space such that the variance of the projected data is maximized.
This can be done, e.g., computing the SVD of the data matrix and taking the first
basis. Once we project the data, the distances will be computed in a lower-dimension
space and this turns out to accelerate the algorithm.

Feedback reconstruction and closed-loop control. During the computation
of the value function, we store the control indices corresponding to the argmin in
(3.1). Then starting from \zeta 0\ast = x, we follow the path of the tree to build the optimal

trajectory \{ \zeta n\ast \} Nn=0 in the following way:

(4.3) u\ast 
n := argmin

u\in U

\bigl\{ 
e - \lambda \Delta tV n+1(\zeta n\ast +\Delta tf(\zeta n\ast , u, tn)) + \Delta t L(\zeta n\ast , u, tn)

\bigr\} 
,

\zeta n+1
\ast \in \scrT n+1 s.t. \zeta n\ast \rightarrow u\ast 

n \zeta n+1
\ast 

for n = 0, . . . , N  - 1, where the symbol\rightarrow u stands for the connection of two nodes by
the control u. We note that this is possible because in the current work we assume
to consider the same discrete control set U for both HJB equation (3.1) and feedback
reconstruction (4.3).

Algorithm. In what follows we summarize the whole algorithm including the
construction of the tree, the selection of the nodes, and, finally, the approximation of
the value function.

Algorithm 1 TSA algorithm with pruning.

1: \scrT 0 \leftarrow x
2: for n = 1, . . . , N do
3: for uj \in U , \zeta n - 1 \in \scrT n - 1 do
4: \zeta new = \zeta n - 1 +\Delta tf(\zeta n - 1, uj , tn - 1)
5: if \| \zeta new  - \zeta \| > \varepsilon \scrT \forall \zeta \in \scrT then
6: \scrT n \leftarrow \zeta new
7: \zeta n - 1 \rightarrow u \zeta new
8: else
9: \zeta = argmin\zeta \in \scrT \| \zeta new  - \zeta \| 

10: \zeta n - 1 \rightarrow u \zeta 

11: V N (\zeta ) = g(\zeta ) \forall \zeta \in \scrT N

12: for n = N  - 1, . . . , 0 do
13: V n(\zeta n) = min

\zeta n+1:\zeta n\rightarrow u\zeta n+1
\{ e - \lambda \Delta tV n+1(\zeta n+1) + \Delta t L(\zeta n, u, tn)\} , \zeta n \in \scrT n.

As one can see in Algorithm 1, we first start the construction of the tree \scrT from
1 to step 10. We note that the pruning criteria is involved in steps 5--10 of Algorithm
1. Clearly, a very small tolerance will not allow any selection of the nodes and we will
work with a full tree. Finally, in steps 11--13 we compute the approximation of the
value function. In the last step, the computation of the value function V n(\zeta n) can be
extended to the nodes in the tree \cup nk=0\scrT k in the case of autonomous dynamics.

5. Numerical tests. In this section we are going to apply the proposed algo-
rithm to show the effectiveness of the method.
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Fig. 3. Test 1: Contour lines for (5.4) with t = 0 (left), t = 0.5 (middle), and t = 1 (right).

We will present five test cases. In the first we are able to compute the analytical
solution of the HJB equation and, therefore, to compute the error with our method
compared to the classical approach (see, e.g., [13]). The second test concerns the
well-known Van der Pol equation and the third is about nonautonomous dynamics.
Finally we present the results for two different linear PDEs, which shows the power
of the method even for large-scale problems.

The numerical simulations reported in this paper are performed on a laptop with
1 CPU Intel Core i5-3, 1 GHz, and 8GB RAM. The codes are written in C++.

5.1. Test 1: Comparison with exact solution of the value function. In
the first example we consider the following dynamics in (2.1):

(5.1) f(x, u) =

\biggl( 
u
x2
1

\biggr) 
, u \in U \equiv [ - 1, 1],

where x = (x1, x2) \in \BbbR 2. The cost functional in (2.2) is

(5.2) L(x, u, t) = 0, g(x) =  - x2, \lambda = 0,

where we only consider the terminal cost g. The corresponding HJB equation is

(5.3)

\Biggl\{ 
 - Vt + | Vx1 |  - x2

1Vx2 = 0 (x, t) \in \BbbR 2 \times [0, T ],

V (x, T ) = g(x) ,

where its unique viscosity solution reads

(5.4) V (x, t) =  - x2  - x2
1(T  - t) - 1

3
(T  - t)3  - | x1| (T  - t)2.

Furthermore, we set T = 1. Figure 3 shows the contour lines of the value function
V (x, t) in (5.4) for time instances t = \{ 0, 0.5, 1\} .

In this example, we compare the classical approach with the TSA algorithm pro-
posed in Algorithm 1 using both strategies: (i) no selection of the nodes and (ii)
applying criteria (4.1) to select the nodes as explained in section 4. To perform a fair
comparison we projected the value function computed with the classical method into
the tree nodes. We note that it will not modify the accuracy of the classical approach
since the interpolation has to be performed also on a structured grid. We compare
the different approximations according to \ell 2-relative error with the exact solution on
the tree nodes

\scrE 2(tn) =

\sqrt{}      
\sum 

xi\in \scrT n

| v(xi, tn) - V n(xi)| 2\sum 
xi\in \scrT n

| v(xi, tn)| 2
,
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Fig. 4. Test 1: Tree nodes without tolerance (left) and with tolerance equal to \Delta t2 (right) for
x = ( - 0.5, 0, 5).
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Fig. 5. Test 1: Comparison of the different methods with initial datum ( - 0.5, 0.5) (left) and
with initial datum (1, 1) (right) for each time instance (x-axis).

where v(xi, tn) represents the analytical solution and V n(xi) its numerical approxi-
mation.

In Figure 4, we show all the nodes of the tree \scrT for the initial condition x =
( - 0.5, 0.5), \Delta t = 0.05 and different choices of \varepsilon \scrT = \{ 0,\Delta t2\} . We note that there is a
huge difference between the cardinality of the trees, that is, | \scrT | = 2097151 when the
tolerance is not applied, whereas we have | \scrT | = 3151 for \varepsilon \scrT = \Delta t2.

In Figure 5, we show the behavior of the error \scrE 2 for two different initial conditions
x. We note that its behavior is very similar using both the classical approach and the
TSA with or without the pruning criteria (4.1) for the nodes. As already mentioned,
we would like to stress that the domain for the solution of the classical approach is
chosen as large as possible to avoid that the boundary conditions are active, whereas
with TSA we do not have this kind of problem, since the domain of the tree is
constructed according to the vector field. We note that to compute the value function
in the classical approach we use the following step-size: \Delta x = \Delta t = 0.05.

In Table 1 we show the error decay decreasing the temporal step-size \Delta t for
x = ( - 0.5, 0.5) and \varepsilon \scrT = 0 (i.e., no pruning criteria has been applied). We compute
the error as follows:

Err2,2 =

\sqrt{}    \Delta t

N\sum 
n=0

\scrE 22 (tn), Err\infty ,2 = max
n=0,...,N

\scrE 2(tn)



AN EFFICIENT DP ALGORITHM ON A TREE-STRUCTURE A2397

Table 1
Test 1: Error analysis and order of convergence of the TSA without pruning rule.

\Delta t | \scrT | CPU Err2,2 Err\infty ,2 Order2,2 Order\infty ,2

0.2 63 0.05s 0.090 0.122
0.1 2047 0.35s 0.044 0.062 1.04 0.98

0.05 2097151 1.1s 0.022 0.031 1.02 0.99

Table 2
Test 1: Error analysis and order of convergence of the TSA with \varepsilon \scrT = \Delta t2 and T = 1.

\Delta t | \scrT | CPU Err2,2 Err\infty ,2 Order2,2 Order\infty ,2

0.2 42 0.05s 0.091 0.122
0.1 324 0.08s 0.044 0.062 1.05 0.98

0.05 3151 0.1s 0.021 0.031 1.04 0.99
0.025 29248 0.5s 0.011 0.016 1.005 0.994

0.0125 252620 10s 0.005 0.008 1.004 0.997

0.01250.0250.050.10.2

10-2

10-1

tol= t

tol= t3/2

tol= t7/4

tol= t2

Order 1

0.01250.0250.050.10.2
10-3

10-2

10-1

100
tol= t

tol= t3/2

tol= t7/4

tol= t2

Order 1

Fig. 6. Test 1: Comparison of the error Err2,2 (left) and the error Err\infty ,2 (right) for the
pruned TSA with different tolerances \varepsilon \scrT as a function of \Delta t.

and the order

Order2,2 = log2

\biggl( 
Err2,2(\Delta t)

Err2,2(\Delta t/2)

\biggr) 
, Order\infty ,2 = log2

\biggl( 
Err\infty ,2(\Delta t)

Err\infty ,2(\Delta t/2)

\biggr) 
.

We note that the order of convergence is linear as the order of the method used
to discretize the dynamics (2.1), e.g., forward Euler scheme. This feature will be
analyzed in a follow-up paper where we would like to provide an error estimate for
our proposed algorithm.

However, the case without selection is quite unfeasible for more than 20 time steps
since it requires storing a huge amount of nodes of order O(M21), whereas with the
selection we can obtain an impressive improvement. The results are shown in Table
2, where we can see, despite the pruning of the nodes, we are still able to achieve an
order of convergence close to 1.

The tolerance \varepsilon \scrT has been set equal to \Delta t2 to keep the same order of convergence
of the algorithm as the one without pruning. This is shown in Figure 6, where we
compare the orders of the method with different tolerances. We note that we need to
reduce the tolerance to \Delta t2 to ensure linear convergence.

Furthermore, the pruned TSA allows us to approximate the HJB equation with
rather small \Delta t and large horizon, e.g., T = 3 in a fast way, as shown in Table 3,
keeping the order of convergence found in the previous case. Finally, for the sake
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Table 3
Test 1: Error analysis and order of convergence of the TSA with \varepsilon \scrT = \Delta t2 and T = 3.

\Delta t | \scrT | CPU Err2,2 Err\infty ,2 Order2,2 Order\infty ,2

0.2 1420 0.2s 0.124 0.088
0.1 15231 0.11s 0.061 0.045 1.02 0.98

0.05 141142 4s 0.030 0.022 1.03 1.01
0.025 1204637 147s 0.015 0.011 1.009 1.002

0.0125 10037898 7171s 0.007 0.006 1.009 1.004
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Fig. 7. Test 2: Cycle limit for Van der Pol oscillator with initial point ( - 3, 3) (left) and with
initial point (0.1, - 0.1) (right).

of completeness we would like to mention that similar convergence results have been
achieved even for other initial conditions x.

5.2. Test 2: Van der Pol oscillator. In the second test case we consider the
Van der Pol oscillator. The dynamics in (2.1) is given by

(5.5) f(x, u) =

\biggl( 
x2

\omega (1 - x2
1)x2  - x1 + u

\biggr) 
, u \in U \equiv [ - 1, 1].

We note that the origin is a repulsive point for the uncontrolled dynamics in (5.5),
e.g., u = 0, if \omega \in (0, 2]. For this example we consider \omega = 0.15 in (5.5). It is well-
known that the Van der Pol oscillator is characterized by its cycle limit as shown in
Figure 7 with two different initial conditions.

In this example we want to minimize the following cost functional:

(5.6) Jx,t(u) =

\int T

t

\bigl( 
\delta 1\| y(s)\| 22 + \gamma | u(s)| 2

\bigr) 
ds+ \delta 2\| y(T )\| 22,

where \delta 1, \delta 2, \gamma are positive constants.
Case 1. We consider the minimization of the terminal cost in (5.6), e.g., \delta 1 =

\gamma = 0 and \delta 2 = 1. Let us consider x = ( - 1, 1), \Delta t = 0.05, and T = 1. The error is
computed with respect to the classical approach with a fine grid (\Delta t = \Delta x = 0.002).

We will consider the Euler scheme with U = \{  - 1, 1\} and the tolerance is set equal
to \varepsilon \scrT = \Delta t2 with | \scrT | = 37030. In Figure 8 we compare the contour lines of the value
function computed by the classical approach with a fine grid and the TSA. We note the
approximations show the same behavior. Furthermore, we mention that the contour
line of the value functions are obtained by using MATLAB function tricontour,
based on a Delaunay's triangulation of the scattered data. We remark that we can
compute the value function V n(\zeta ) for \zeta \in \cup nk=0\scrT k since the dynamics is autonomous.
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Fig. 8. Test 2: Value function with the classical approach (top) on tree nodes at times t = 0.25
(left), t = 0.5 (middle), and t = 0.75 (right). Value function with the TSA (bottom) on tree nodes
at times t = 0.25 (left), t = 0.5 (middle), and t = 0.75 (right).
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Fig. 9. Test 2: Error in time with TSA without pruning and with pruning with tolerance
\varepsilon \scrT = \Delta t2 for Case 1 (left) and Case 2 (right) with respect to a value function computed with the
classical approach with a very fine grid.

The quality of the numerical approximation is confirmed by the error shown in
Figure 9. As we can see, pruning the nodes does not influence the error. For each
time step the error is below 0.05, which leads to an accurate approximation of the
value function.

Case 2. We consider the minimization of the cost functional in (5.6) with \delta 1 =
\delta 2 = 1 and \gamma = 0.01. Furthermore we set the same initial condition, discretization
step, and tolerance as in the previous case. The contour lines of the value function
are shown in Figure 10.

We note that the results are very similar to the previous case. Our approach
is robust with respect to different cost functionals and initial conditions. The right
panel of Figure 9 shows the error for each time step considering the tree algorithm
with and without nodal selection.

Case 3. In the last case we deal with a two-dimensional control space, considering
the parameter \omega in (5.5) as a control, e.g., \omega \in U . Therefore, we consider as control
variables (\omega , u) \in U \times U in (5.5). In the cost functional (5.6) we consider again
\delta 1 = \gamma = 0.1 and \delta 2 = 1 with x = ( - 0.5, 0.5), \Delta t = 0.05, and T = 1. We consider
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Fig. 10. Test 2: Value function with the classical approach (top) on tree nodes at times t = 0.25
(left), t = 0.5 (middle), and t = 0.75 (right). Value function with the TSA (bottom) on tree nodes
at times t = 0.25 (left), t = 0.5 (middle), and t = 0.75 (right).

Fig. 11. Test 2: Pruned tree with the uncontrolled and controlled dynamics with U = [ - 2, 0]
(left) and with U = [ - 1, 1] (right).

two different choices for the control set: U = [ - 2, 0] and U = [ - 1, 1]. The control set
is discretized with step-size \Delta u = 0.2, obtaining altogether 100 discrete controls for
both examples. In Figure 11 we show the results in both situations. We can observe
that the tree has a different shape due to the different control space. Here, we have
set the pruning criteria with \varepsilon \scrT = \Delta t2. Finally, we note that in both situations we
are able to steer the solution to the origin.

5.3. Test 3: Damped harmonic oscillator with sinusoidal driving force.
In this third example we consider a nonautonomous dynamical system: a damped
oscillator driven by a sinusoidal external force. The dynamics in (2.1) is given by

(5.7) f(x, u, t) =

\biggl( 
x2

 - \omega x2  - \omega 2x1 + sin(\omega t) + u

\biggr) 
, u \in U \equiv [ - 1, 1]

for x = (x1, x2) \in \BbbR 2. In this example, we aim to show that our approach works also
with nonautonomous dynamics. In this case we cannot compute the value function
V n(\zeta ) on the subtree \cup nk=0\scrT k, but only at the nth time level \scrT n and we will apply the
pruning rule (4.1). The uncontrolled dynamics (e.g., u = 0) converges asymptotically
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Fig. 12. Test 3: Pruned tree with the uncontrolled and controlled dynamics (left) and compar-
ison of the cost functional on time varying the number of discrete controls (right).

to the cycle limit:

x1(t) =
1

\omega 2
sin(\omega t+ \pi /2), x2(t) =

1

\omega 
cos(\omega t+ \pi /2) .

We used the same cost functional of the previous case with \delta 1 = \gamma = 0.1, \delta 2 = 1.
The parameters are set as follows: \omega = \pi /2, x = ( - 0.5, 0.5), U = \{  - 1, 0, 1\} ,\Delta t =
0.05, T = 1, \varepsilon \scrT = \Delta t2. The cardinality of the tree in this case is 32468. In the left
panel of Figure 12 we show the tree nodes and the optimal trajectory computed with
Algorithm 1 and the uncontrolled solution. To show the quality of the controlled
solution we evaluate the cost functional for each time step as shown in the right panel
of Figure 12. As expected the controlled trajectory is always below the uncontrolled
one. In order to further show the effectiveness of the pruning criteria we have increased
the number of controls up to M = 51 and the horizon up to T = 3. Again, this would
not be possible without a pruning criteria due to the dimension of the tree.

5.4. Test 4: Heat equation. The fourth example concerns the control of a
PDE. In the first three examples we showed the accuracy of our method with respect
to existing methods for low-dimensional problems. In what follows we would like to
give an idea of how the proposed method can work in higher-dimension.

We want to study the following heat equation:

(5.8)

\left\{       
yt = \sigma yxx + y0(x)u(t) , (x, t) \in \Omega \times [0, T ] ,

y(x, t) = 0 , (x, t) \in \partial \Omega \times [0, T ] ,

y(x, 0) = y0(x) , x \in \Omega ,

where the state lies in an infinite-dimensional Hilbert space (see, e.g., [11]). Here, we
consider the term y0(x)u(t) to provide a spatial dependence to the control input. This
is a particular choice, but the algorithm has no restrictions on more general shape
functions. To write (5.8) in the form (2.1) we use the centered finite difference method
which leads to the following ODEs system:

(5.9) \.y(t) = Ay(t) +Bu(t),

where the matrix A \in \BbbR d\times d is the so-called stiffnessmatrix whereas the vector B \in \BbbR n
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Fig. 13. Test 4 (smooth initial condition): Uncontrolled solution (left), optimal control solution
(middle), time comparison of the cost functional of the uncontrolled solution, and controlled solution
(right).

is given by (B)i = y0(xi) for i = 1, . . . , n and xi is the spatial grid with constant step-
size \Delta x. The cost functional we want to minimize reads

Jy0,t(u) =

\int T

t

\bigl( 
\delta 1\| y(s)\| 22 dx+ \gamma | u(s)| 2

\bigr) 
ds+ \| y(T )\| 22,

where y(t) is the solution of (5.9), u(t) is taken in the admissible set of controls
\scrU = \{ u : [0, T ]\rightarrow [ - 1, 1]\} , and \Omega = [0, 1]. We set \delta 1 = 1 and \gamma = 0.01.

Smooth initial condition. In the numerical approximation of (5.8) we consider
y0(x) =  - x2 + x, \Delta x = 10 - 3, \Delta t = 0.05, T = 1, and \sigma = 0.1. The dimension of
the problem is d = 1000. We use an implicit Euler scheme to integrate the system
(5.9) and guarantee its stability. We note that the use of a one step implicit is
straightforward even if we have introduced an explicit scheme in the previous sections.
We refer to [29] for more details about the method.

The solution of the uncontrolled problem (5.8) with u(t) \equiv 0 is shown in the left
panel of Figure 13. In the middle we show the solution of the controlled problem
where the value function is computed with Algorithm 1 and the control is computed
as explained in (2.6). We note that feedback control was computed with the discrete
control set U = \{  - 1, 0, 1\} as for the value function. A refinement for the control set
would require further investigation that we will address in the near future. However,
it is extremely interesting to show that we are able to compute the value function for
(5.8) in dimension 1000. This approach might substitute recent advances where the
feedback for PDEs was computed by coupling the HJB equation with model order
reduction techniques such as, e.g., proper orthogonal decomposition [24]. Finally in
the right panel of Figure 13 we show the time behavior of the cost functional for the
uncontrolled and the controlled solution. As expected, the cost functional of the latter
is lower.

Nonsmooth initial condition. In this example we consider the following non-
smooth initial y0(x) = \chi [0.25,0.75](x), where \chi \omega (x) is the characteristic function in
the domain \omega , whereas the other parameters are set as in the previous case.

As one can see from Figure 14, we are able to approximate the control problem
even if the initial condition is nonsmooth. We note that, despite the simple diffusive
properties of the problem, a model reduction approach will not be able to reconstruct
such an initial condition with a small number of basis functions. Therefore it will
not be possible to solve this problem with a classical approach. This again shows the
effectiveness of the method.



AN EFFICIENT DP ALGORITHM ON A TREE-STRUCTURE A2403

0

0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.2

1 0

-0.2

0

0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.2

1 0 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
Uncontrolled dynamics
Controlled dynamics

Fig. 14. Test 4 (nonsmooth initial condition): Uncontrolled solution (left), optimal control
solution (middle), and time comparison of the cost functional of the uncontrolled solution and con-
trolled solution (right).

5.5. Test 5: Wave equation. In this last example we consider a hyperbolic
PDE, the wave equation which reads

(5.10)

\left\{     
wtt = cwxx + \chi \omega (x)u(t) , (x, t) \in \Omega \times [0, T ] ,

w(x, t) = 0 , (x, t) \in \partial \Omega \times [0, T ] ,

w(x, 0) = w0(x) , wt(x, 0) = w1(x) , x \in \Omega .

where \omega is a subset of \Omega . For all initial data (w0, w1) \in H1
0 (\Omega ) \times L2(\Omega ) and every

u(t) \in L2(0, T ), there exists a unique solution w \in C0(0, T ;H1
0 (\Omega ))\cap C1(0, T ;L2(\Omega ))\cap 

C2(0, T ;H - 1(\Omega )) of the Cauchy problem (5.10). We refer to [11] for more details
about this equation. We can rewrite the wave equation in the compact form

\.y(t) = Ay(t) +Bu(t) ,

defining

(5.11) y(t) =

\biggl( 
w(t)
wt(t)

\biggr) 
, A =

\biggl( 
0 I

c \partial 2
x 0

\biggr) 
, Bu(t) =

\biggl( 
0

\chi \omega (x)u(t)

\biggr) 
.

Again we apply an implicit Euler scheme to avoid narrow CFL conditions. We
want to minimize the following cost functional:

Jy0,t(u) =

\int T

0

\bigl( 
\varphi (\| y(s)\| 22) + \gamma | u(s)| 2

\bigr) 
ds+ \varphi (\| y(T )\| 22)

with w0(x) = sin(\pi x), w1(x) = 0, \gamma = 0.01, T = 1, c = 0.5, \Omega = (0, 1) and \omega =
(0.4, 0.6), \Delta x = 10 - 3,\Delta t = 0.05. We note that the dimension of the semidiscrete
problem is d = 2000.

Quadratic cost functional. We first consider a standard tracking problem, e.g.,
\varphi (x) = x in the cost functional. In Figure 15 we show the uncontrolled solution in the
left panel and the controlled solution in the middle. A comparison of the evaluations
of the cost functional is given in the right panel. As expected the controlled solution
is below the uncontrolled one for each time instance. This shows the capability of the
method for a high-dimensional problem even for hyperbolic equations.

Nonquadratic cost functional. Now, we consider a more complicated example
which deals with a nonquadratic cost functional. Let us consider, for example, the
following cost functional where

\varphi (x) =

\left\{     
sin(\pi | x| ) , | x| \leq 0.5 ,

1 , 0.5 < | x| \leq 1 ,

(| x|  - 1)2 + 1 , | x| > 1 ,
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Fig. 15. Test 5: Uncontrolled solution (left), optimal control solution (middle), and time
comparison of the cost functional of the uncontrolled solution and controlled solution (right).
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Fig. 16. Test 5 (nonquadratic cost functional): Graphics of \varphi (x) (left), optimal control solution
(middle), and time comparison of the cost functional of the uncontrolled solution and controlled
solution (right).

as shown in the left panel of Figure 16. We consider the same parameters as in the
previous case, which lead to the same uncontrolled solution as shown in the left panel
of Figure 15. In the middle of Figure 16 one can see the uncontrolled solution and
in the right panel a comparison of the evaluation of the cost functional. Again, here
we would like to stress the capability of the method to work with a high-dimensional
problem and with nonsmooth cost functionals.

6. Conclusions and future works. We have proposed a novel method to ap-
proximate time dependent HJB equations via DP scheme on a tree structure. The
proposed algorithm creates the tree structure according to all the possible directions
of the controlled dynamical system for a finite set of controls. This procedure has
several advantages with respect to the DP algorithm based on the classical time and
space discretization. The first advantage is that we do not have to build a space
grid and a local space interpolation. Furthermore, TSA does not require an a pri-
ori choice of a numerical domain \Omega to set the numerical scheme and, consequently,
there is no need to impose boundary conditions. The construction of the tree is made
step-by-step, via the pruning rule. Thus, the complexity of the problem is drastically
reduced, cutting all the branches laying in a small neighborhood. After pruning the
tree the efficiency of TSA is greatly improved in terms of CPU time. This approach
allows one to apply the DP method to high-dimensional problems as has been shown
in the numerical section for both ODEs and PDEs; in some test problems we solved
an optimal control problem in dimension 2000.

We note that the method could be easily extended to second order approximation
schemes using, e.g., the Heun method for the dynamics, and it is also possible to reduce
the CPU time via a parallel version of the method. Although the numerical results
are promising, some issues are still open in the analysis of the method. The first is to
derive error estimates in agreement with the order of convergence shown in Table 1.
Furthermore, we would like to extend the method to the control of nonlinear PDEs
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coupling TSA with model order reduction methods as discussed in [3] and taking
advantage of the theoretical results found there. These extensions could open the
way to the application of DP techniques for real industrial problems.
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