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Abstract. In this work we present a data-driven method for the discovery of parametric partial differential
equations (PDEs), thus allowing one to disambiguate between the underlying evolution equations
and their parametric dependencies. Group sparsity is used to ensure parsimonious representations
of observed dynamics in the form of a parametric PDE, while also allowing the coefficients to have
arbitrary time series, or spatial dependence. This work builds on previous methods for the identifica-
tion of constant coefficient PDEs, expanding the field to include a new class of equations which until
now have eluded machine learning based identification methods. We show that group sequentially
thresholded ridge regression outperforms group LASSO in identifying the fewest terms in the PDE
along with their parametric dependency. The method is demonstrated on four canonical models with
and without the introduction of noise.
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1. Introduction. The extraction of physical laws from experimental data, often in the
form of differential and partial differential equations, may be critical to science and engineer-
ing applications where governing equations are unknown. Time-series data collected from
experiments, or as the macroscopic aggregate of small scale behavior, often obeys unknown
governing equations that are parametrized by time-evolving parameters \mu (t). In some cases,
it may be possible to derive physical laws from first principles using data as well as some
knowledge of the system, but there are many cases where this is elusive such as the large scale
networked dynamical systems of the power grid and the brain, or chemical kinetics of, for
example, the Belousov--Zhabotinsky reaction. Recently, there has been a substantial research
effort towards automating the process of data-driven model discovery in order to identify
interpretable expressions for the dynamics in the form of ordinary and partial differential
equations (ODEs and PDEs):

(1) ut = N(u, ux, uxx, . . . , \mu (t)), t \in [0, T ],
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\mu (t)

(a) (b)

Time t Time t

ut=N(u, \mu (t))ut=N(u, \mu (t))

Figure 1. Two prototypical scenarios for parametric model discovery: (a) Parameters \mu (t) are piecewise
constant and change at fixed points in time. (b) The underlying PDE model ut = N(u, \mu (t)) depends on
continuously varying parameter \mu (t).

where N(\cdot ) characterizes the evolution of the system and its parametric dependencies through
the parameter \mu (t) : [0, T ] \rightarrow \BbbR . Although a number of automated discovery techniques have
been developed for discovering the right-hand side of (1) with constant parameters \mu (t) = \mu 0,
none have demonstrated the capability to infer the governing equations when the parametriza-
tion \mu (t) has explicit time dependence. Through the usage of techniques imposing group
sparsity, we develop a mathematical architecture that allows us to explicitly disambiguate
the dynamical evolution (1) from its parametric dependencies \mu (t). This is a critical innova-
tion in model discovery as most realistic systems do indeed have time-dependent parametric
dependencies that must be concurrently extracted during the model discovery process.

Figure 1 demonstrates two prototypical parametric dependencies: (a) a PDE model whose
constant parameters change at fixed points in time and (b) a PDE model that depends con-
tinuously on the parameter \mu (t). Our proposed model discovery method provides a princi-
pled approach to efficiently handle these two parametric cases, thus advancing the field of
model discovery by disambiguating the dynamics from parametric time dependence. Even if
the governing equations are known, parametric dependencies in PDEs complicate numerical
simulation schemes and challenge one's ability to produce accurate future state predictions.
Characterizing parametric dependence is also a critical task for model reduction in both time-
independent [42, 24] and time-dependent PDEs [4, 5]. Thus the ability to explicitly extract
the parametric dependence of a spatio-temporal system is necessary for accurate, quantitative
characterization of PDEs.

More broadly, system identification using machine learning methods has emerged as a
viable alternative to expert knowledge and first principles derivations. It is important to
separate the field of system identification into two distinct categories: (i) methods that ac-
curately reflect observed dynamics using black box functions (e.g., neural networks), and (ii)
methods that recover closed form and interpretable expressions for the dynamics in the form
of ordinary and partial differential equations (ODEs and PDEs). This duality reflects the two
cultures narrative of machine learning and classical statistics made popular by Breiman [8].
On one hand, the research may assume a specific model for the data with known mechanism,
while on the other the research is interested in algorithmic models that, while not necessarily
reflecting the true mechanism, are accurate in prediction. While several recent works have
made progress from both viewpoints, we focus on the former. The terms in a differential
equation often have physical interpretations and motivation, e.g., diffusion and advection are
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DATA-DRIVEN IDENTIFICATION OF PARAMETRIC PDEs 645

ubiquitous in many physical systems and are characterized by prototypical expressions in a
PDE. For systems where first principal derivations prove intractable, we may gain insights into
the underlying physics of the system based on the terms in the identified PDE. Further, we
view the process of extracting closed form equations as being more generalizable than fitting
black box models to a specific dataset. Specifically, altering initial conditions will not change
governing equations, but may break a machine learned black box solver.

Research towards the automated inference of dynamical systems from data is not new
[18]. Methods for extracting linear systems from time series data include the eigensystem
realization algorithm (ERA) [26] and dynamic mode decomposition (DMD) [50, 57, 62, 12,
31, 3]. Identification of nonlinear systems has, until very recently, relied on black box methods.
These include NARMAX [15], neural networks [23], equation free methods [28, 29, 30], and
Laplacian spectral analysis [22]. There has also been considerable recent work towards data-
driven approximation of the Koopman operator [39, 13, 40] via extensions of DMD [64],
diffusion maps [21], delay-coordinates [10, 2, 19], and neural networks [65, 60, 63, 38, 41, 34].

The use of genetic algorithms for nonlinear system identification [6, 58] allowed for the
derivation of physical laws in the form of ordinary differential equations. Genetic algorithms
are highly effective in learning complex functional forms but are slower computationally than
simple regression. Sparsity promoting methods have been used previously in dynamical sys-
tems [53, 35, 14], and sparse regression has been leveraged to identify parsimonious ordinary
differential equations from a large library of allowed functional forms [11, 16]. Much work
building on the sparse regression framework has followed and includes inferring rational func-
tions [36], the use of information criteria for model validation [37], constrained regression for
conservation laws [32], model discovery with highly corrupt data [61], the learning of bifur-
cation parameters [56], stochastic dynamics [7], weak forms of the observed dynamics [54],
and regression with small amounts of data [55, 27]. In contrast to sparse regression, a neural
network based approach was proposed to identify ordinary differential equations, sacrificing
some interpretability for a richer class of allowed functional forms [48].

Sparse regression based methods for PDEs were first used in [51, 52]. These methods were
demonstrated on a large class of PDEs and have the benefit of being highly interpretable,
but struggle with numerical differentiation of noisy data. In Rudy et al. [51] the noise was
addressed by testing with only a small degree of noise (large SNR), while in Schaeffer [52]
noise was added to the time derivative after it was computed from clean data. Alternatively,
Gaussian processes were used to determine linear PDEs [45] and nonlinear PDEs known
up to a set of coefficients [44]. Using Gaussian process regression requires less data than
sparse regression and naturally manages noise, but the method is only applicable to PDEs
with a known structure. Reference [33] makes a substantial contribution by using neural
networks to accurately learn partial differential equations with nonconstant coefficients. A
neural network is constructed that mimics a forward Euler timestepping scheme and the
accuracy of potential models is evaluated based on their future state prediction accuracy.
While seemingly more robust than sparse regression, the method in [33] does not penalize
extraneous terms in the learned PDE and thus falls short of producing optimally parsimonious
models. Furthermore, [33] only tests the method on a nonlinear problem using a relatively
strong Ansatz. Neural networks were also used in [46] and [47] to solve and to estimate
parameters in partial differential equations with known terms to a high degree of accuracy.
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However, similar to [44], it is assumed that the PDE is known up to a set of coefficients. A
more sophisticated neural network approach was used in [43] to learn dynamics of systems
with unknown terms. However, the approach in [43] does not give closed form representations
of the dynamics and the resulting neural network model therefore does not give insights into
the underlying physics.

In this work, we present a sparse regression framework for identifying PDEs with noncon-
stant coefficients, something that none of the previous PDE discovery methods are equipped
to do. Specifically, we allow for variation in the value of a coefficient across time or space, but
maintain that the active terms in the PDE must be consistent. This is an important inno-
vation in practice as the parameters of physical systems often vary during the measurement
process, so that the parametric dependencies may be disambiguated from the PDE itself. Our
method extends the sparse regression frameworks first proposed for PDE discovery [51, 52] by
using group sparsity and results in a more parsimonious and interpretable model than neural
networks. We are still limited by the accuracy of numerical differentiation and by the library
terms in the sparse regression. Numerical differentiation using neural networks as shown in
[43] appears promising as a method for obtaining more accurate time derivatives from noisy
data. The limitation based on terms included in the library seems more permanent. Any
closed-form model expression must be representable with a finite set of building blocks. Here
we only use monomials in our data and its derivatives, since these are the common terms seen
in physics, but there is no limitation to the terms included in the library.

2. Methods. The parametric discovery method relies on several foundational mathemat-
ical tools. In the following subsections, we will discuss the identification of constant coefficient
equations as well as regression methods for group sparsity. Finally, we combine these ideas to
show how one may identify parametric PDEs and suggest a methodology for model selection
that balances accuracy and the number of active terms in the PDE.

2.1. Identification of constant coefficient partial differential equations. Several recent
methods have been proposed for the identification of constant coefficient partial differential
equations from data. In this work we expand on the sparse regression framework, PDE-FIND,
used in [51]. We will briefly elaborate on the method and refer the reader to the original
paper for details. The PDE-FIND algorithm provides a principled technique for discovering
the underlying PDE from spatial time series measurements alone using a library of candidate
functions for the PDE and sparse regression. For the identification of constant coefficient
PDEs, we have a dataset U, which is a discretization of a function u(x, t) that we assume
satisfies the PDE of the form given in (1):

(2) ut = N(u, ux, uxx, . . . ) =
d\sum 

j=1

Nj(u, ux, uxx, . . . )\xi j .

We assume that the nonlinear expression N(\cdot ) may be expanded as a sum of simple monomial
basis functions Nj of u and its derivatives. Note that this sum is not unique and that we
can include extra basis functions by simply setting the corresponding \xi j to be zero. In PDE-
FIND, which constructs an overcomplete library of many possible monomial basis functions
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and regresses to find \xi , sparsity is used to ensure that basis functions that do not appear in
the PDE are set to zero in the sum.

To be more precise, given a dataset U \in \BbbR n\times m representing m timesteps of a PDE
discretized with n gridpoints, we numerically differentiate in both x and t to form the linear
regression problem given by (3),

(3)

\left(     
ut(x1, t1)
ut(x2, t1)

...
ut(xn, tm)

\right)     
\underbrace{}  \underbrace{}  

\bfU t

=

\left(     
1 u(x1, t1) ux(x1, t1) . . . u3uxxx(x1, t1)
1 u(x2, t1) ux(x2, t1) . . . u3uxxx(x2, t1)
...

...
...

...
1 u(xn, tm) ux(xn, tm) . . . u3uxxx(xn, tm)

\right)     
\underbrace{}  \underbrace{}  

\bfTheta (\bfU )

\xi ,

which is a large, overdetermined linear system of equations Ax = b. Note that here we
have shown a problem where derivatives up to third order are multiplied by powers of u up
to cubic order, but one could include arbitrarily many library functions. Solving for \xi and
ensuring sparsity gives the PDE. PDE-FIND has been shown to accurately identify several
partial differential equations from data alone. The sparsity constraint is a regularizer for the
linear regression [51].

2.2. Group sparsity. In a typical sparse regression, we seek a sparse solution to the linear
system of equations Ax = b. Accuracy of the predictor, \| Ax  - b\| , is balanced against the
number of nonzero coefficients in x. Thus the sparse regularization enforces a solution x with
many zeros (which is the variable \xi in (3)). In this paper, we use the notion of group sparsity
to find time series representing each parameter in the PDE, rather than single values. We
group collections of terms in x together and seek solutions to Ax = b that minimize the
number of groups with nonzero coefficients.

One well studied method for solving regression problems with group sparsity is the group
LASSO [20]

(4) \^x = argmin
\bfw 

1

2n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| b - 
\sum 
g\in \scrG 

A(g)w(g)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

+ \lambda 
\sum 
g\in \scrG 

\| w(g)\| 2.

Here \scrG is a collection of groups, each of which contains a subset of the indices enumerating
the columns of A and coefficients in x. Note that the second term in the group Lasso corre-
sponds to a convex relaxation of the number of groups containing a nonzero value, given by\sum 

g\in \scrG \delta \| \bfw (g)\| ,0. Optimal solutions to (4) satisfy the Karush--Kuhn--Tucker (KKT) conditions.

For each g\prime \in \scrG , solutions must satisfy

(5)
1

n
A(g\prime )

T

\left(  b - 
\sum 
g \not =g\prime 

A(g)x(g)

\right)  
\underbrace{}  \underbrace{}  

\bfr (g\prime )

 - 1

n
A(g\prime )

TA(g\prime )x(g\prime ) \in \lambda \partial \| x(g\prime )\| 2,

where the subgradient is a set valued function \partial \| x(g\prime )\| 2 = \{ x(g\prime )\| x(g\prime )\|  - 1
2 \} if x(g\prime ) \not = 0 or

\partial \| x(g\prime )\| 2 = \{ y : \| y\| 2 \leq 1\} for x(g\prime ) = 0. The KKT condition reveals that there is a solution
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with x(g\prime ) = 0 when \| r(g\prime )\| 2 \leq \lambda . Conditions for uniqueness of the solution to (4) are explored
in [49].

The concept of group sparsity has been used in several previous methods for identifying
dynamics given by ordinary differential equations [16, 56]. As it will be shown in the following,
we find that the group LASSO performs poorly in the case of identifying PDEs. We instead
use a sequential thresholding method based on ridge regression, similar to the method used in
[51], but adapted for group sparsity. A sequential thresholding method was also used in [56]
for group sparsity but for ordinary and not partial differential equations. Reference [56] also
provides some theoretical results concerning the convergence of a hard thresholding algorithm
for group sparsity while the case of hard thresholding for nongroup sparsity is extensively
studied in [66]. Our method, which we call sequential grouped threshold ridge regression
(SGTR), is summarized in algorithm 1.

Algorithm 1 SGTR(A,b,\scrG , \lambda , \epsilon ,maxit, f(x) = \| x\| 2.)

\# Solves x \approx A - 1b with sparsity imposed on groups in \scrG 

\# Initialize coefficients with ridge regression
x = argmin\bfw \| b - Aw\| 22 + \lambda \| w\| 22

\# Threshold groups with small f and repeat
for iter = 1, . . . ,maxit:

\# Remove groups with sufficiently small f(x(g))
\scrG = \{ g \in \scrG : f(x(g)) > \epsilon \} 

\# Refit these groups (note this sets x(g) = 0 for g \not \in \scrG )
x = argmin\bfw \| b - 

\sum 
g\in \scrG A(g)w(g)\| 22 + \lambda \| w\| 22

\# Get unbiased estimates of coefficients after finding sparsity
x(\scrG ) = argmin\bfw \| b - 

\sum 
g\in \scrG A(g)w(g)\| 22

return x

Throughout the training, \scrG tracks the groups that have nonzero coefficients, and it is
paired down as we threshold coefficients with sufficiently small relevance, as measured by f .
If a group g \in \scrG meets the thresholding criterion f(x(g)) < \epsilon , then x(g) is set to zero and not
considered in subsequent iterations of algorithm 1. We use the 2-norm of the coefficients in
each group for f but one could also consider arbitrary functions. In particular, for problems
where the coefficients within each group have a natural ordering, as they do in our case as time
series or spatial functions, one could consider smoothness or other properties of the functions.
In practice, we normalize each column of A and b so that differences in scale between the
groups do not affect the result of the algorithm. For the group LASSO we always perform an
unregularized least squares regression on the nonzero coefficients after the sparsity pattern has
been discovered to debias the coefficients. We found SGTR to outperform the group LASSO
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for the problem of correctly identifying the active terms in parametric PDEs.

2.3. Data-driven identification of parametric partial differential equations. In the iden-
tification of parametric PDEs, we consider equations of the form

(6) ut = N(u, ux, . . . , \mu (t)) =

d\sum 
j=1

Nj(u, ux, . . .)\xi j(t).

Note that this equation is similar to (2) but has time-varying parametric dependence. To
capture spatial variation in the coefficients, we simply replace \xi (t) with \xi (x). The PDE is
assumed to contain a small number of active terms, each with a time varying coefficient \xi (t).
We seek to solve two problems: (i) determine which coefficients are nonzero and (ii) find the
values of the coefficients for each \xi j at each timestep or spatial location for which we have
data.

Prior knowledge of an appropriate set of basis functions may be vital to the accuracy of
the algorithm proposed in this work. In what follows we assume the true dynamics N to lie in
the span of our candidate functions \{ Nj\} dj=1. It is shown in [11] that ODEs with trigonometric
functions may be approximated by a sparse regression to their Taylor series, though no such
analysis has been done for PDEs. The supplementary material in [51] demonstrates that
regression using an incomplete library yields unpredictable results. Indeed, [11] indicates that
if the correct model term(s) is not present, sparse identification often fails in a stereotypical
way, producing a nonparsimonious representation of the dynamical system. Thus it is typically
easy to determine if the algorithm fails.

For time dependent problems, we construct a separate regression for each timestep, al-
lowing for variation in the PDE between timesteps. Similar to the PDE-FIND method, we
construct a library of candidate functions for the PDE using monomials in our data and its
derivatives so that

(7) \Theta 
\Bigl( 
u(j)
\Bigr) 
=

\left(  1 u(j) . . . u3u
(j)
xxx

\right)  ,

where the set of m equations is given by

(8) u
(j)
t = \Theta 

\Bigl( 
u(j)
\Bigr) 
\xi (j), j = 1, . . . ,m .

Our goal is to solve the set of equations given by (8) with the constraint that each \xi (j) is
sparse and that they all share the same sparsity pattern. That is, we want a fixed set of active
terms in the PDE. To do this, we consider the set of equations as a single linear system and
use group sparsity. Expressing the system of equations for the parametric equation as a single
linear system we get the block diagonal structure given by

(9)

\left(      
u
(1)
t

u
(2)
t
...

u
(m)
t

\right)      
\underbrace{}  \underbrace{}  

ut

=

\left(     
\Theta 
\bigl( 
u(1)

\bigr) 
\Theta 
\bigl( 
u(2)

\bigr) 
. . .

\Theta 
\bigl( 
u(m)

\bigr) 
\right)     

\underbrace{}  \underbrace{}  
\bfTheta 

\left(     
\xi (1)

\xi (2)

...

\xi (m)

\right)     
\underbrace{}  \underbrace{}  

\xi 

.
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We solve (9) using SGTR with columns of the block diagonal library matrix grouped by
their corresponding term in the PDE. Thus for m timesteps and d candidate functions in the
library, groups are defined as \scrG = \{ \{ j + d \cdot i : i = 0, . . . ,m - 1\} : j = 1, . . . , d\} . This ensures
a sparse solution to the PDE while also allowing arbitrary time series for each variable. For
problems with spatial, rather than temporal, variation in the coefficients, we simply group
by spatial rather than time coordinate. A similar block diagonal structure is obtained but
with n blocks of size m \times d rather than m blocks of size n \times d. The groups are defined by
\scrG = \{ \{ j + d \cdot i : i = 0, . . . , n - 1\} : j = 1, . . . , d\} .

Since we are evaluating the relevance of groups based on their norm, it is important to
consider differences in the scale of the candidate functions. For example, if u \sim \scrO (10 - 2), then
a cubic function will be \scrO (10 - 6) and relatively large coefficients multiplying this data may
not have a large effect on the dynamics, but will not be removed by the hard threshold due
to its size. To remedy this, we normalize each candidate function represented in \Theta as well as

each u
(j)
t to have unit length prior to the group thresholding algorithm and then correct for

the normalization after we have discovered the correct sparsity pattern.

2.4. Model selection. For each model we test both the group LASSO as well as SGTR
using an exhaustive range of parameter values. Let \~\Theta denote the block diagonal matrix \Theta 
shown in (9) but with all columns normalized to have unit length and \~ut be the vector of all
time derivatives having been normalized to unit length so that \| \~ut\| =

\surd 
m. For the group

LASSO, we find the minimal value of \lambda that will set all coefficients to zero which is given by

(10) \lambda max = max
g\in \scrG 

1

n
\| \~\Theta (g)T \~ut\| 2.

We check 50 evenly spaced values of \lambda between 10 - 5\lambda max and \lambda max on a logarithmic scale.
For SGTR, we search over the range of tolerances between \epsilon min and \epsilon max defined as

(11) \epsilon max/min = max/min
g\in \scrG 

\| \xi \mathrm{r}\mathrm{i}\mathrm{d}\mathrm{g}\mathrm{e},(g)\| 2,

where \xi \mathrm{r}\mathrm{i}\mathrm{d}\mathrm{g}\mathrm{e} = ( \~\Theta T \~\Theta + \lambda I) - 1 \~\Theta T \~ut. Note that by definition, \epsilon min is the minimum tolerance
that has any effect on the sparsity of the predictor and \epsilon max is the minimum tolerance that
guarantees all coefficients to be zero. A set of 50 intermediate tolerances, equally spaced on a
logarithmic scale, is tested between \epsilon min and \epsilon max.

To select the optimal model generated via each method, we evaluate the models using the
Akaike information criterion (AIC)-inspired loss function

(12) \scrL (\xi ) = N ln

\Biggl( 
\| \~\Theta \xi  - \~ut\| 22

N
+ \epsilon 

\Biggr) 
+ 2k,

where k is the number of nonzero coefficients in the identified PDE given by the number of
nonzero-elements of \xi divided by the number of time-steps, \| \xi \| 0/m, and N is the number of
rows in \Theta , which is equal to the size of our original dataset u.

Equation (12) is closely related to the AIC [1]. Typically, the mean square error of a
linear model is used to evaluate goodness of fit, but in our case there is error in computing
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Figure 2. Example of loss function evaluated for a number of candidate models for the parametric Burgers'
equation. Library included derivatives up to 4th order multiplying powers of u up to cubic. Left: 50 models
obtained via SGTR algorithm using values of \epsilon between \epsilon min and \epsilon max. Right: 50 models obtained via group
LASSO for \lambda between 10 - 5\lambda max and \lambda max.

the time derivative ut, so we assume that any linear model which perfectly fits the data is
overfit. We have added \epsilon = 10 - 5 to the mean square error of each model as a floor in order
to avoid overfitting. Without this addition, our algorithm selects insufficiently parsimonious
representations of the dynamics.

Figure 2 illustrates the loss function from (12) evaluated on models derived from 50 values
of \epsilon and \lambda using SGTR and group LASSO, respectively. Initially, a low penalty in each algo-
rithm yields a model that is overfit to the data given our sparsity criteria. For an intermediate
value of \epsilon or \lambda , a more parsimonious but still predictive model is obtained. For sufficiently
high values, the model is too sparse and is no longer predictive.

3. Computational results of parametric PDE discovery. We test our method for the
discovery of parametric partial differential equations on four canonical models; Burgers' equa-
tion with a time varying nonlinear term, the Navier--Stokes equation for vorticity with a jump
in Reynolds number, a spatially dependent advection equation, and a spatially dependent
Kuramoto--Sivashinsky equation. In each case the method is also tested after introducing
white noise with mean magnitude equal to 1\% of the L2-norm of the dataset. Noise is added
directly to the data, U prior to numerical differentiation in order to replicate the effects of
sensor noise. The proposed method is able to accurately identify the dynamics in each case
except the Kuramoto--Sivashinsky equation, where the inclusion of a fourth order derivative
makes numerical evaluation with noise highly challenging. Since final coefficient values for
both group LASSO and SGTR are found using an unregularized regression on the nonzero
terms found using sparse regression, results in any case where both algorithms determine the
correct active terms are identical. We have therefore omitted side-by-side comparison and
instead only show the group LASSO coefficients in cases where that method failed to identify
the correct active terms. Python code used for each example is available online.1

1https://github.com/snagcliffs/parametric-discovery
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Figure 3. Left: dataset for identification of the parametric diffusive Burgers' equation. Here the PDE was
evolved on the interval [ - 8, 8] with periodic boundary conditions and t \in [0, 10]. Right: coefficients for the terms
in the parametric Burgers' equation. The diffusion was held constant at 0.1 while the nonlinear advection as
coefficient is given by a(t) =  - (1 + sin(t)/4).

3.1. Burgers' equation with diffusive regularization. To test the parametric discovery
of PDEs, we consider a solution of Burgers' equation with a sinusoidally oscillating coefficient
a(t) for the nonlinear advection term

(13)

ut = a(t)uux + 0.1uxx,

a(t) =  - 
\biggl( 
1 +

sin(t)

4

\biggr) 
,

where a small amount of diffusion is added to regularize the evolution dynamics.
Burgers' equation is solved numerically using the discrete Fourier transform (DFT) to

evaluate spatial derivatives and the SciPy function odeint [25] for temporal integration on the
interval [ - 8, 8] with periodic boundary conditions and t \in [0, 10] with n = 256 grid points
and m = 256 time steps. See Figure 3 for a numerical solution and coefficients. We search
for parsimonious representations of the dynamics by including powers of u up to cubic order,
which can be multiplied by derivatives of u up to fourth order. For the noise-free dataset we
use the DFT for computing derivatives. For the noisy dataset, we use polynomial interpolation
to smooth the derivatives [51].

The resulting time series for the identified nonzero coefficients are shown in Figure 4.
SGTR correctly identified the active terms in the PDE for both the noise-free and noisy
datasets, whereas group LASSO fails in both cases to produce the correct PDE and its para-
metric dependencies. For group LASSO, the \lambda minimizing (12) is not the minimum value of
\lambda min = 10 - 5\lambda max, indicating that an appropriate range has been tested. Furthermore, no
value of \lambda yields the correct sparsity pattern. This strongly suggests that there does not exist
a \lambda such that the group LASSO realizes the correct sparsity pattern for the Burgers' equation
dataset considered in this work. This may be due to the convex relaxation from \delta \| \bfw (g)\| ,0 to

\| w(g)\| 2 used in (4). We see from (5) that x(g\prime ) = 0 if A(g\prime ) is sufficiently misaligned with

b  - 
\sum 

g \not =g\prime A(g)x(g). For A(g\prime )
Tb large this may be less likely given small errors in the other

coefficients. Indeed, since the Burgers' dataset is a traveling wave, \langle ux, ut\rangle is large, which may
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Figure 4. Time series discovered for the coefficients of the parametric Burgers' equation. Top row: SGTR
method, which correctly identifies the two terms. Bottom row: group LASSO method which adds several addi-
tional (incorrect) terms to the model. The left panels are noise-free, while the right panels contain 1\% noise.
This parametric dependency is illustrated in Figure 1b.

explain why group LASSO fails to set the coefficient for ux to zero.

3.2. Navier--Stokes: Flow around a cylinder. We consider the fluid flow around a circular
cylinder by simulating the Navier--Stokes vorticity equation

(14) \omega t + u \cdot \nabla \omega =
1

\nu (t)
\Delta \omega .

Data is generated using the immersed boundary projection method (IBPM) [59, 17] with
nx = 449 and ny = 199 spatial points in x and y, respectively, and 1000 timesteps with
dt = 0.02. The Reynolds number is adjusted half way through the simulation from \nu = 100
initially to \nu = 75. See Figure 5 for a snapshot of numerical solution and coefficient time series.
This is representative of the fluid velocity exhibiting a sudden decrease midway through the
data collection. Our library of candidate functions is constructed using up to second order
derivatives of the vorticity and multiplied by up to quadratic functions of the data. To keep
the size of the machine learning problem tractable, we subsample 1000 random spatial location
from the wake of the cylinder to construct our library at every tenth timestep [51]. For the
noise-free dataset, far fewer points are needed to accurately identify the dynamics. We suspect
that with a more careful treatment of the numerical differentiation in the case of noisy data,
such as that used in [43], the same would be true for the dataset with artificial noise; however,
such work is not the focus of this paper. The identified time series for the Navier--Stokes
equation are shown in Figure 6. SGTR and group LASSO both correctly identify the active
terms in the PDE.
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Figure 5. Left: dataset for identification of the parametric Navier--Stokes equation (14). Right: coefficients
for Navier--Stokes equations exhibiting jump in Reynolds number from 100 to 75 at t = 10. This parametric
dependency is illustrated in Figure 1a.

Figure 6. Identified time series for coefficients for the Navier--Stokes equation. Distinct axes are used to
highlight jump in Reynolds number. Left: no noise. Right: 1\% noise.

3.3. Spatially dependent advection-diffusion equation. The advection-diffusion equa-
tion is a simple model for the transport of a physical quantity in a velocity field with diffusion.
Here, we adapt the equation to have a spatially dependent velocity

(15) ut = (c(x)u)x + \epsilon uxx = c(x)ux + c\prime (x)u+ \epsilon uxx

which models transport through a spatially varying vector field due to c = c(x). We solve (15)
on a periodic domain [ - L,L] with L = 5 from t = 0 to 5, \epsilon = 0.1, and c(x) =  - 1.5+cos(2\pi x/L)
using the DFT to evaluate spatial derivatives and the SciPy function odeint for temporal
integration with n = 256 and m = 256. See Figure 7 for a numerical solution and coefficients.
The library consists of powers of u up to cubic, multiplied by derivatives of u up to fourth
order.

Results for the advection-diffusion equation are shown in Figure 8. In the noise-free and
noisy datasets, both SGTR and group LASSO correctly identify the active terms in the PDE.

3.4. Spatially dependent Kuramoto--Sivashinsky equation. We now test the method on
a Kuramoto--Sivashinsky equation with spatially varying coefficients

(16) ut = a(x)uux + b(x)uxx + c(x)uxxxx.
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Figure 7. Left: dataset for identification of the spatially dependent advection diffusion equation. Right:
spatial dependence of PDE. In this case, the loadings \xi j(t) in (6) are replaced by \xi j(x).

Figure 8. Spatial dependence of advection diffusion equation. Left: no noise. Right: 1\% noise. Both SGTR
and group LASSO correctly identified the active terms.

We use a periodic domain [ - L,L] with L = 20 and coefficients a(x) = 1 + sin(2\pi x/L)/4,
b(x) =  - 1 + e - (x - 2)2/5/4 and c(x) =  - 1 - e - (x+2)2/5/4.

We solve (16) numerically using the DFT to evaluate spatial derivatives and the SciPy
function odeint for temporal integration to t = 200 using n = 512 grid points and m = 1024
timesteps. See Figure 9 for a numerical solution and coefficients. The second half of the data
set is used, so as to only consider the region where the dynamics exhibited spatio-temporal
chaos, resulting in a dataset containing 512 snapshots of 512 gridpoints. The inclusion of a
fourth order derivative in the Kuramoto--Sivashinsky equation makes accurate identification
difficult due to error caused by noise in numerical differentiation. Indeed, our method fails
to correctly identify the active terms when 1\% noise is added. With 0.01\% noise the correct
terms were identified but with substantial error in coefficient value. We suspect that this
shortcoming could at least be partially remedied by a more careful treatment of the numerical
differentiation such as in [9]. The results of our parametric identification are shown in Figure
10.

4. Discussion. We have presented a method for identifying governing laws for physical
systems which exhibit either spatially or temporally dependent behavior. The method builds
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Figure 9. Left: dataset for identification of the spatially dependent Kuramoto--Sivashinsky equation. Right:
parametric dependency of the governing equations.

Figure 10. Spatial dependence of Kuramoto--Sivashinsky. Top row: SGTR. Bottom row: group LASSO.
Left: no noise. Right: 0.01\% noise using SGTR. SGTR detects correct sparsity with significant parameter
error. Group LASSO does not correctly identify the parsimonious model, nor does it do a good job at predicting
the correct parametric values.

on a growing body of work in the applied mathematics and machine learning community that
seeks to automate the process of discovering physical laws. To the best of our knowledge, our
method is the first approach for deriving parsimonious PDE expressions of spatio-temporal
systems in the case of nonconstant coefficients. Specifically, we can disambiguate between
the governing PDE evolution and its parametric dependencies. The SGTR algorithm exhibits
equal or superior performance to the group Lasso in determining correct active terms on
each of the example PDEs. Errors from the latter were generally in the form of extra terms
added with small coefficient values throughout the time series. It may seem reasonable to
threshold these time series after the discovery algorithm, but doing so assumes that the terms

D
ow

nl
oa

de
d 

04
/1

6/
19

 to
 1

34
.1

00
.2

20
.2

38
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN IDENTIFICATION OF PARAMETRIC PDEs 657

importance in the PDE is directly related to its magnitude, an assumption which we do not
make given the normalization prior to sparse regression.

In this work we have split the data into distinct timesteps or spatial locations in order to
find PDE models for each subset of the data, resulting in coefficients that can vary in space
or time. However, with a sufficiently fine grid, it seems feasible that one could bin the data
by areas localized in space and time to determine a coefficient varying in both space and time

with some loss of resolution. Future work could consider spatial bins \{ Si = [x
(i)
min, x

(i)
max]\} nx

i=1

and temporal bins \{ Ti = [t
(i)
min, t

(i)
max]\} nt

i=1. The block diagonal system of equations (9) would

then have rows given by u
(i,j)
t = \Theta (u(i,j))\xi (i,j), where u(i,j) = u| Si\times Tj and have solution \xi (i,j)

representing the course grained coefficients for the PDE. This same result may be achievable
in a more stable manner by introducing a sparsity term to the work in [33].

We highlight that the results in this work are dataset specific. For different geometries
and initial conditions the algorithm may yield variable results and determining sufficient
conditions for accurate recovery of governing equations is an open problem. For a discussion
of convergence results of hard-thresholding for the constant coefficient ordinary differential
equation case, we refer the reader to [66].

As is the case with other sparse regression methods for identifying dynamical systems,
this method is constrained by the ability of the user to accurately differentiate data. For
ordinary differential equations, this may be circumvented by looking at the weak form of the
dynamics [55], but doing so for PDEs seems difficult since there are derivatives that need to be
evaluated with respect to multiple variables. We find the automatic differentiation approach
used in [43] promising and suspect that the inclusion of neural network based differentiation
could radically improve the ability of our method to identify dynamics from noisy data. With
sufficient knowledge of data it may also be possible to obtain better estimates through tuning
the polynomial based differentiation [9].

Automating the identification of closed form physical laws from data will hopefully boost
scientific progress in areas where deriving the same laws from first principals proves intractable.
There are several limitations to many methods proposed in the field thus far. In particular,
current methods have generally studied equations of the form ut = N(u, x, t) but many equa-
tions in physics are not in this class. Indeed, if measuring a system with parametric depen-
dencies, then past methods are unable to disambiguate between the evolution dynamics and
its parametric dependencies \mu (t), thus greatly limiting model discovery. There is also a trade
off between methods that are able to derive parsimonious representations, though which are
limited to a finite set of library elements, and those that use black box models to represent
larger classes of possible functions. The researcher may also find difficulties in attempting
to infer dynamics from the wrong set of measurements. For example, one could not derive
the Schr\"odinger equation by only looking at measurements of intensity. While not addressing
these issues, this work makes a step towards generalizing the class of equations which may be
accurately identified via machine learning methods.
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