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a b s t r a c t

The SEAMIS database (Mendeley data repository; https://doi.org/
10.17632/wp4ctb4667.1) contains 546 relative sea-level indicators
from 31 different studies within the broader Southeast Asian re-
gion including the Maldives, India and Sri Lanka. Here we compare
quality-controlled and site-specific relative sea-level data from 23
studies from the SEAMIS database to a suite of ICE-5G glacial
isostatic adjustment models. The relation between robust and, if
applicable, tectonically corrected relative sea-level data with the
broad predictions of glacial isostatic adjustment models is inter-
preted and discussed in the article “Holocene sea levels in
Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS data-
base” [1] in Quaternary Science Reviews.
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Specifications Table

Subject area Earth Sciences
More specific subject
area

Coastal geomorphology

Type of data Tables, graphs, figures, netCDF files
How data was
acquired

Standardization of published data; modeling

Data format Published RSL data: standardized and quality-controlled; netCDF files of modeled RSL: raw
Experimental factors Data considered originate from previous studies carried out in Southeast Asia, Maldives, India and Sri

Lanka and contain Holocene RSL information
Experimental
features

Data were collected from literature review

Data source location Southeast Asia, Maldives, India and Sri Lanka
Data accessibility SEAMIS database and updates, netCDF files of ICE-5G model output and MATLAB script to plot data at

https://github.com/Alerovere/SEAMIS; SEAMIS database containing RSL indicators also at https://doi.
org/10.17632/wp4ctb4667.1

Value of the Data
� Data are useful to calibrate earth- and ice-models in glacial isostatic adjustment simulations
� Data is beneficial for modelers of glacial isostatic adjustment processes and field geologists in Southeast Asia
� Data can be easily updated by other researchers and compared to other models of glacial isostatic adjustment
� Data allow an evaluation of potential post-formational changes in the elevations of relative sea-level markers
� Data allow a validation of model parameters

T. Mann et al. / Data in brief 27 (2019) 1046002
1. Data

The dataset (i.e. the SEAMIS database as of July 2019) comprises 546 Holocene relative sea-level
indicators for Southeast Asia and surrounding regions (https://github.com/Alerovere/SEAMIS,
https://doi.org/10.17632/wp4ctb4667.1, [1]). Age-elevation information of published relative sea-
Table 1
Details on the Earth model parameters and different mantle viscosity profiles employed to simulate glacial isostatic adjustment
in combinationwith the Ice model ICE-5G in the areas of interest. Model short names refer to the different model curves on Figs.
1e22.

Model short name Ice model Earth model parameters

ice5g-vm2-90km.nc ICE-5G Upper Mantle ¼ 0.25 � 1021 Pa�s
Transition Zone ¼ 0.5 � 1021 Pa�s
Lower Mantle ¼ 5 � 1021 Pa�s
Lithosphere Thickness ¼ 90 km

ice5g-vm2b-90km.nc ICE-5G Upper Mantle ¼ 0.25 � 1021 Pa�s
Transition Zone ¼ 0.25 � 1021 Pa�s
Lower Mantle ¼ 5 � 1021 Pa�s
Lithosphere Thickness ¼ 90 km

ice5g-vm2-120km.nc ICE-5G Upper Mantle ¼ 0.25 � 1021 Pa�s
Transition Zone ¼ 0.5 � 1021 Pa�s
Lower Mantle ¼ 5 � 1021 Pa�s
Lithosphere Thickness ¼ 120 km

ice5g-vm3-90km.nc ICE-5G Upper Mantle ¼ 0.25 � 1021 Pa�s
Transition Zone ¼ 0.5 � 1021 Pa�s
Lower Mantle ¼ 10 � 1021 Pa�s
Lithosphere Thickness ¼ 90 km

ice5g-vm4-90km.nc ICE-5G Upper Mantle ¼ 0.25 � 1021 Pa�s
Transition Zone ¼ 0.5 � 1021 Pa�s
Lower Mantle ¼ 100 � 1021 Pa�s
Lithosphere Thickness ¼ 90 km

https://github.com/Alerovere/SEAMIS
https://doi.org/10.17632/wp4ctb4667.1
https://github.com/Alerovere/SEAMIS
https://doi.org/10.17632/wp4ctb4667.1
https://doi.org/10.17632/wp4ctb4667.1


Fig. 1. Standardized Holocene relative sea-level data obtained from Ref. [4] in comparison to glacial isostatic adjustment geophysical
model predictions for South Maalhosmadulu Atoll, Maldives. a) Original sample elevations are shown. b) Data corrected for sub-
sidence based on a number of constraints regarding the timing and elevation of Last interglacial sea level and the magnitude of
karstification resulting from subaerial exposure of the Last interglacial reef carbonate during the glacial (see Ref. [1] and above).

Fig. 2. Standardized Holocene relative sea-level data obtained from Ref. [5] in comparison to glacial isostatic adjustment geophysical
model predictions for Palau Islands in the western Pacific. a) Original sample elevations are shown. b) Data corrected for subsidence
based on a number of constraints regarding the timing and elevation of Last interglacial sea level and the magnitude of karstification
resulting from subaerial exposure of the Last interglacial reef carbonate during the glacial (see Ref. [1] and above).
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level data have been transformed into comparable relative sea-level indicators using a standardized
protocol [2]. Quality-controlled, site-specific relative sea-level indicators are here compared to
modeled relative sea-level change at each site generated with the ICE-5G geophysical model (Table
1, [3]).

The present dataset comprises a collection of RSL data from 23 studies that have been conducted in
22 locations. Figs. 1e22 present site-specific, standardized, quality-controlled and, if possible (see
Ref. [1]), tectonically corrected age-elevation information of relative sea-level indicators together with
the modeled relative sea level.



Fig. 3. Standardized Holocene relative sea-level data obtained from Ref. [6] in comparison to glacial isostatic adjustment geophysical
model predictions for Huon Peninsula, Papua New Guinea. a) Original sample elevations are shown. b) Data corrected for tectonic
uplift based on a number of constraints regarding the timing and elevation of Last interglacial sea level and the magnitude of
karstification resulting from subaerial exposure of the Last interglacial reef carbonate during the glacial (see Ref. [1] and above).
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2. Experimental design, materials and methods

2.1. Relative sea-level data

The methods that have been applied to compile a standardized dataset of sea-level index and
limiting points meet the criteria recently summarized by Ref. [2]. In those sites where the elevation of
the Pleistocene unconformity relative to the analyzed sequence of Holocene relative sea-level data is
known [i.e., Refs. 4, 5, 6], the tectonic overprint resulting from active uplift or long-term subsidence has
Fig. 4. Standardized Holocene relative sea-level data obtained from Ref. [7] in comparison to glacial isostatic adjustment geophysical
model predictions for the section between Cape Comorin and Rameswaram in Southeastern India.



Fig. 5. Standardized Holocene relative sea-level data obtained from Ref. [8] in comparison to glacial isostatic adjustment geophysical
model predictions for the Pulicat Lagoon in Southeastern India.

Fig. 6. Standardized Holocene relative sea-level data obtained from Ref. [9] in comparison to glacial isostatic adjustment geophysical
model predictions for the Cocos (Keeling) Islands in the eastern Indian Ocean.
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Fig. 7. Standardized Holocene relative sea-level data obtained from Ref. [10] in comparison to glacial isostatic adjustment
geophysical model predictions for the Mekong River lowland near Phnom Penh, Cambodia.

Fig. 8. Standardized Holocene relative sea-level data obtained from Ref. [11] in comparison to glacial isostatic adjustment
geophysical model predictions for the Mekong River lowland near Phnom Penh, Cambodia.
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Fig. 9. Standardized Holocene relative sea-level data obtained from Ref. [12] in comparison to glacial isostatic adjustment
geophysical model predictions for the northeastern Mekong River Delta, Vietnam.

Fig. 10. Standardized Holocene relative sea-level data obtained from Ref. [13] in comparison to glacial isostatic adjustment
geophysical model predictions for the section between C�a N�a and Son H�ai in southeast Vietnam.
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Fig. 11. Standardized Holocene relative sea-level data obtained from Ref. [14] in comparison to glacial isostatic adjustment
geophysical model predictions for the Phang-nga Province, Thailand.

Fig. 12. Standardized Holocene relative sea-level data obtained from Ref. [15] in comparison to glacial isostatic adjustment
geophysical model predictions for Phuket, South Thailand.
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Fig. 13. Standardized Holocene relative sea-level data obtained from Ref. [16] in comparison to glacial isostatic adjustment
geophysical model predictions for the section between Langkawi and Terengganu-Pahang at the west coast of Peninsular Malaysia.

Fig. 14. Standardized Holocene relative sea-level data obtained from Ref. [17] in comparison to glacial isostatic adjustment
geophysical model predictions for the section between Port Dickinson, Malaysia and Singapore.
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Fig. 15. Standardized Holocene relative sea-level data obtained from Ref. [18] in comparison to glacial isostatic adjustment
geophysical model predictions for the Sungei Nipah catchment, Singapore.

Fig. 16. Standardized Holocene relative sea-level data obtained from Refs. [19,20] in comparison to glacial isostatic adjustment
geophysical model predictions for the Geylang district, Singapore.
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Fig. 17. Standardized Holocene relative sea-level data obtained from Ref. [21] in comparison to glacial isostatic adjustment
geophysical model predictions for the Great Songkhla Lakes, Malay-Thai Peninsula.

Fig. 18. Standardized Holocene relative sea-level data obtained from Ref. [22] in comparison to glacial isostatic adjustment
geophysical model predictions for the area near Merang, Malaysia.
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Fig. 19. Standardized Holocene relative sea-level data obtained from Ref. [23] in comparison to glacial isostatic adjustment
geophysical model predictions for Kelang and Kuantan, Peninsular Malaysia.

Fig. 20. Standardized Holocene relative sea-level data obtained from Ref. [24] in comparison to glacial isostatic adjustment
geophysical model predictions for Tioman Island, Malaysia.
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Fig. 21. Standardized Holocene relative sea-level data obtained from Ref. [25] in comparison to glacial isostatic adjustment
geophysical model predictions for the Belitung area, Indonesia.

Fig. 22. Standardized Holocene relative sea-level data obtained from Ref. [26] in comparison to glacial isostatic adjustment
geophysical model predictions for Teluk Awur, Indonesia.
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been calculated. First, the average uplift/subsidence rate U has been calculated at each site. In doing so,
minimum and maximum rates have been determined by dividing the minimum/maximum vertical
displacements (based on the actual position of the Pleistocene Reef and a Last Interglacial sea level
between 6 and 9 m above present) by the minimum/maximum time elapsed (based on a Last
Interglacial between 116 ka BP and 129 ka BP). The average rate U is the sum of the minimum and
maximum rates divided by 2 (negative rate for uplift, positive rate for subsidence). Calculated rates U
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are 0.18 m/ka for South Maalhosmadulu Atoll, Maldives [4], 0.19 m/ka for Palau Islands in the western
Pacific [5] and �1.79 m/ka for Huon Peninsula, Papua New Guinea [6]. The corrected relative sea-level
position at each site is then calculated as H þ U � tc [following Ref. 6] where H is the actual sample
elevation and tc the radiocarbon age of the sample. Details on the reconstructions of site-specific
relative sea-level positions can be found in Ref. [1].

2.2. Glacial isostatic adjustment models

To compute the contribution of glacial isostatic adjustment to relative sea-level changes, we have
solved the Sea Level Equation [27,28] bymeans of the SELEN program [29].We employed a 1-D, radially
stratified, self-gravitating, rotating, Maxwell viscoelastic and incompressible Earth model and the ice-
sheet model ICE-5G [3]. To explore the sensitivity of the predictions to various aspects of the model, we
employed different mantle viscosity profiles and lithosphere thicknesses (Table 1). All model runs
include time varying coastline positions [3,30].
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