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ERROR ANALYSIS FOR POD APPROXIMATIONS OF
INFINITE HORIZON PROBLEMS VIA THE
DYNAMIC PROGRAMMING APPROACH∗

A. ALLA† , M. FALCONE‡ , AND S. VOLKWEIN§

Abstract. In this paper infinite horizon optimal control problems for nonlinear high-dimensional
dynamical systems are studied. Nonlinear feedback laws can be computed via the value function
characterized as the unique viscosity solution to the corresponding Hamilton–Jacobi–Bellman (HJB)
equation which stems from the dynamic programming approach. However, the bottleneck is mainly
due to the curse of dimensionality, and HJB equations are solvable only in a relatively small dimen-
sion. Therefore, a reduced-order model is derived for the dynamical system, using the method of
proper orthogonal decomposition (POD). The resulting errors in the HJB equations are estimated
by an a priori error analysis, which is utilized in the numerical approximation to ensure a desired
accuracy for the POD method. Numerical experiments illustrates the theoretical findings.
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1. Introduction. The dynamic programming approach to the solution of op-
timal control problems driven by dynamical systems in Rn offers a nice framework
for the approximation of feedback laws and optimal trajectories. It suffers from the
bottleneck of the computation of the value function since this requires the approx-
imation of a nonlinear partial differential equation (PDE) in dimension n. This is
a very challenging problem in high dimensions due to the huge amount of memory
allocation necessary to work on a grid and to the low regularity properties of the value
function (which is typically only Lipschitz-continuous for regular dynamics and run-
ning costs). Despite the number of theoretical results established for many classical
control problems via the dynamic programming approach (see, e.g., the monographs
by Bardi and Capuzzo-Dolcetta [9] on deterministic control problems, and by Flem-
ing and Soner [22] on stochastic control problems), this has always been the main
obstacle to applying this nowadays rather complete theory to real applications. The
“curse of dimensionality” has been mitigated via domain decomposition techniques
and the development of rather efficient numerical methods, but it is still a big obsta-
cle. Although a detailed description of these contributions goes beyond the scope of
this paper, we want to mention [21] for a domain decomposition method with overlap
between the subdomains, and [13] for similar results without overlap. It is important
to note that in these papers the method is applied to subdomains with a rather simple
geometry (see the book by Quarteroni and Valli [35] for a general introduction to this
technique) in order to apply transmission conditions at the boundaries. More recently
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another way to decompose the problem has been proposed by Navasca and Krener
[34], who have used a patchy decomposition based on the Al’brekht method. Later,
in the paper [12], the patchy idea was implemented by taking into account an approx-
imation of the underlying optimal dynamics to obtain subdomains which are almost
invariant with respect to the optimal dynamics; clearly in this case the geometry of
the subdomains can be rather complex, but the transmission conditions at the inter-
nal boundaries can be eliminated, saving on the overall complexity of the algorithm.
In general, domain decomposition methods reduce a huge problem into subproblems
of manageable size and allow one to mitigate storage limitations by distributing the
computation over several processors. However, the approximation schemes used in
every subdomain are rather standard. Another improvement can be obtained using
efficient acceleration methods for the computation of the value function in every sub-
domain. To this end one can use fast marching methods [37, 38] and fast sweeping
methods [42] for specific classes of Hamilton–Jacobi equations. In the framework of
optimal control problems an efficient acceleration technique based on the coupling
between value and policy iterations has been recently proposed and studied by Alla,
Falcone, and Kalise in [2]. Finally, we should mention that the interested reader can
find in [19] a number of successful applications to optimal control problems and games
in rather low dimension.

In parallel to these results, several model reduction techniques have been de-
veloped to deal with high-dimensional dynamics in a rather economical way. These
techniques are really necessary when dealing with optimal control problems governed
by PDEs. Despite the vast literature concerning the analysis and numerical approx-
imation of optimal control problems for PDEs, the number of works devoted to the
synthesis of feedback controllers is rather small. In this direction, the dynamic pro-
gramming principle (DPP) is a powerful technique which has been applied mainly
to linear dynamics, quadratic cost functions, and unbounded control space, the so-
called linear quadratic regulator (LQR) control problem. For this problem an explicit
feedback controller can be computed by means of the solution of an algebraic Riccati
equation. However, if the underlying structural assumptions are removed, the feed-
back control has to be obtained via approximation of a Hamilton–Jacobi–Bellman
(HJB) equation defined over the state space of the system dynamics. As we men-
tioned, this is a major bottleneck for the application of DPP-based techniques in the
optimal control of PDEs, as the natural approach for this class of control problems
is to consider a semidiscretization (in space) via finite elements or finite differences
of the abstract governing equations, leading to an inherently high-dimensional state
space. However, in the last years several steps have been made to obtain reduced-
order models for complicated dynamics, and by the application of these techniques it
is now possible to have a reasonable approximation of large-scale dynamics using a
rather small number of basis functions. This can open the way to the DPP approach
in high-dimensional systems.

Reduced-order models are used in PDE-constrained optimization in various ways;
see, e.g., [11, 25, 28, 36] for a survey. However, the main stream for the optimal con-
trol of PDEs is still related to open-loop controls based on the Pontryagin maximum
principle. (An extensive presentation of this classical approach can be found in the
monograph [27, 43].) We refer the reader to [3, 5, 7, 31, 32, 33], where it has been ob-
served that models of reduced order can play an important and very useful role in the
implementation of feedback laws. To the best of our knowledge, a priori error analysis
for the approximation of the value function was not derived. More recently, the proper
orthogonal decomposition (POD) has been proposed for PDE control problems in or-
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der to reduce the dynamics to a small number of state variables via a careful selection
of the snapshots. This technique, coupled with the dynamic programming approach,
has been developed mainly for linear equations starting from the heat equation, where
one can take advantage of the regularity of the solutions to reduce the dimension [5],
and then attacking more difficult problems such as the advection-diffusion [1, 4, 29],
Burgers’s [31, 32], and Navier–Stokes [3] equations. In [30] the authors apply HJB
equations to the control of a PDE, although they are not using model reduction.

The aim of this paper is to study the interplay between reduced-order dynamics,
the associated dynamic programming equation, the resulting feedback controller, and
its performance over the high-dimensional system. In our analysis we will derive some
a priori error estimates which take into account the time and space discretization
parameters ∆t and ∆x as well as the dimension ` of the POD basis functions used
for the reduced model. Clearly other types of approximations, e.g., sparse grids [23],
and different model reduction techniques can be applied (as in [6]), but the analysis
of these couplings to obtain analogous error estimates goes beyond the scope of this
paper.

The paper is organized as follows. In section 2 we recall some basic facts about
the approximation of the infinite horizon problem via the dynamic programming ap-
proach. Section 3 is devoted to briefly presenting the POD technique and the basic
ideas behind the construction of the reduced model. In section 4 we present the main
results and our a priori estimates for the numerical approximation of the reduced
model. These a priori estimates have also been used in the construction of the algo-
rithm which is described in detail in section 5. Some numerical tests are presented
and analyzed in section 6, and finally we draw some conclusions in section 7.

2. Optimal control problem. In this section we will recall the dynamic pro-
gramming approach and its numerical approximation for the solution of infinite hori-
zon control problems.

2.1. The infinite horizon problem. For given nonlinear mapping f : Rn ×
Rm → Rn and initial condition y◦ ∈ Rn let us consider the controlled nonlinear
dynamical systems

(2.1) ẏ(t) = f
(
y(t), u(t)

)
∈ Rn for t > 0, y(0) = y◦ ∈ Rn,

together with the infinite horizon cost functional

(2.2) J(y, u) =
∫ ∞

0
g
(
y(t), u(t)

)
e−λt dt.

In (2.2) we assume that λ > 0 is a given weighting parameter and that g maps Rn×Rm
to R. The set of admissible controls has the form

Uad =
{
u ∈ U

∣∣u(t) ∈ Uad for almost all t ≥ 0
}
,

where we set U = L2(0,∞; Rm) and Uad ⊂ Rm denotes a compact convex subset. We
note that we could also choose U = L∞(0, T ; Uad), but working in a Hilbert space is
convenient for writing gradients.

The infinite horizon problem has been chosen as a model problem to simplify
the analysis and to deal with the stationary HJB equations. Although the afore-
mentioned equations have an interest in themselves, it is also useful to investigate
long-time behavior of finite horizon problems. We note that a priori error estimates
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for the dynamic programming approximation of other classical control problems are
also available in, e.g., [19] (for the finite horizon problem, see [20]), so the analysis in
this paper gives a rather general framework which could possibly be extended to the
finite horizon and other classical control problems.

Throughout our paper we suppose the following hypotheses.

Assumption 2.1.
1. The right-hand side f : Rn × Rm → Rn from (2.1) is continuous and glob-

ally Lipschitz-continuous in the first argument; i.e., there exists an Lf > 0
satisfying

‖f(y,u)− f(ỹ,u)‖2 ≤ Lf ‖y − ỹ‖2 for all y, ỹ ∈ Rn and u ∈ Uad.

Furthermore, ‖f(y,u)‖∞ = max1≤i≤n |fi(y,u)| is bounded by a constant Mf

for all y that belongs to a compact set Ω ⊂ Rn and u ∈ Uad (see (2.7) for
more details on Ω).

2. The running cost g : Rn × Rm → Rn is continuous and globally Lipschitz-
continuous in the first argument with a Lipschitz constant Lg > 0. Moreover,
‖g(y,u)‖∞ ≤Mg for all (y,u) ∈ Ω× Uad with Mg > 0.

3. The semiconcavity assumptions

‖f(y + ỹ,u)− 2f(y,u) + f(y − ỹ,u)‖2 ≤ Cf ‖ỹ‖
2
2,∣∣g(y + ỹ,u)− 2g(y,u) + g(y − ỹ,u)

∣∣ ≤ Cg ‖ỹ‖22
hold for all (y, ỹ,u) ∈ Rn × Rn × Uad.

In (2.1) we call y the state and u the control.
Let M ∈ Rn×n denote a symmetric positive definite (mass) matrix with smallest

and largest positive eigenvalues λmin and λmax, respectively. Then, we introduce the
following weighted inner product in Rn:

〈ϕ, ϕ̃〉M = ϕ>Mϕ̃ for ϕ, ϕ̃ ∈ Rn,

where “>” stands for the transpose of a given vector or matrix. By ‖ · ‖M = 〈· , ·〉1/2M
we define the associated induced norm.

Remark 2.2. The mass matrix allows different inner products for the computation
of the POD basis functions. In our numerical experiments, the mass matrix is the
identity because we deal with a finite difference discretization.

Recall that we have

λmin ‖ϕ‖22 ≤ ‖ϕ‖
2
M ≤ λmax ‖ϕ‖

2
2 for all ϕ ∈ Rn.

Then, y = y(t) solves (2.1) if

(2.3)
〈ẏ(t)− f(y(t), u(t)), ϕ〉M = 0 for all ϕ ∈ Rn and for almost all t > 0,

〈y(0)− y◦, ϕ〉M = 0 for all ϕ ∈ Rn.

We call (2.3) the variational formulation of the dynamical system. It follows from
Assumption 2.1 that (2.1) has a unique solution y = y(u; y◦) ∈ Y = W 1,1(0,∞; Rn)
for every admissible control u ∈ Uad and for every initial condition y◦ ∈ Rn; see, e.g.,
[9, Chapter III]. Thus, we can define the reduced cost functional as follows:

Ĵ(u; y◦) = J(y(u; y◦), u) for u ∈ Uad and y◦ ∈ Rn,



POD ERROR ANALYSIS FOR INFINITE HORIZON PROBLEMS 3095

where y(u; y◦) solves (2.1) for given control u and initial condition y◦. Then, our
optimal control can be formulated as follows: for given y◦ ∈ Rn we consider

(P̂) min
u∈Uad

Ĵ(u; y◦).

2.2. The HJB equation and its time discretization. We define the value
function of the problem v : Rn → R as follows:

v(y) = inf
{
Ĵ(u; y)

∣∣u ∈ Uad
}

for y ∈ Rn.

This function gives the best value for every initial condition, given the set of admis-
sible controls Uad. It is characterized as the viscosity solution of the HJB equation
corresponding to the infinite horizon

(2.4) λv(y) + sup
u∈Uad

{
− f(y,u) · ∇v(y)− g(y,u)

}
= 0 for y ∈ Rn,

which is unique for sufficiently large λ, as indicated in Theorem 2.3. In order to con-
struct the approximation scheme (as in [17]) let us consider first a time discretization
where h is a strictly positive step size. A DPP for the discrete time problem holds
true given the following semidiscrete scheme for (2.4):

(2.5) vh(y) = min
u∈Uad

{
(1− λh)vh(y + hf(y,u)) + hg(y,u)

}
for y ∈ Rn.

If Assumptions 2.1.1 and 2.1.2 and λ > Lf hold, the function vh is Lipschitz-
continuous and satisfies

(2.6)
∣∣vh(y)− vh(ỹ)

∣∣ ≤ Lg
λ− Lf

‖y − ỹ‖2 for all y, ỹ ∈ Ω and h ∈ [0, 1/λ);

see [18, p. 473]. Let us recall the following result [17, Theorem 2.3].

Theorem 2.3. Let Assumption 2.1 and λ > max{Lg, Lf} hold. Let v and vh
be the solutions of (2.4) and (2.5), respectively. Then, there is a constant C ≥ 0
satisfying

sup
y∈Rn

∣∣v(y)− vh(y)
∣∣ ≤ Ch for any h ∈ [0, 1/λ),

where the constant C can be bounded explicitly; cf. [17, Remark 1].

2.3. The large-scale approximation of the HJB equations. For the nume-
rical implementation of the approximation scheme for the above mentioned Hamilton–
Jacobi equation, we have to restrict ourselves to a bounded subset of Rn. Let us
suppose, to simplify, that there exists a (bounded) polyhedron Ω ⊂ Rn such that for
sufficiently small h > 0

(2.7) y + hf(y,u) ∈ Ω for all y ∈ Ω and u ∈ Uad,

where Ω denotes the closure of Ω. In [17] a sufficient condition for (2.7) was proved; in
this paper we start directly from (2.7). If assumption (2.7) is not satisfied, the method
proposed below can still work for optimal control problems with state constraints un-
der weaker assumptions; e.g., for every point y ∈ Ω there exists an admissible control
û(y) such that the vector f(y, û(y)) points strictly inward (see, e.g., [40, 41]). Test 2
in section 6 will show one of these examples. We refer the interested reader to [19]
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for some hints on the implementation of these and more general boundary conditions
as well as for additional references. We want to point out that the above invariance
condition (2.7) is used here to simplify the problem and to avoid the introduction of
state constraint boundary conditions in order to focus our attention on the a priori
error estimate. Furthermore, we note that the numerical approximation proposed in
this paper will be applied to the problem in reduced coordinates obtained via the POD
method introduced in section 3 since the problem in Rn for a large n is practically
unfeasible.

From the numerical viewpoint, since we are going to use a regular simplicial mesh
of the domain Ω, we need the latter to be bounded in order to keep the complexity of
the problem finite. Thus, the choice of Ω is made for convenience, and every invariant
set Ω satisfying (2.7) will fit. Let {Sj}mS

j=1 be a family of simplices which defines a
regular triangulation of the polyhedron Ω (see, e.g., [24]) such that

(2.8) Ω =
mS⋃
j=1

Sj and k = max
1≤j≤mS

(
diam Sj

)
.

Throughout this paper we assume that we have nS vertices/nodes y1, . . . , ynS
in the

triangulation. Let V k be the space of piecewise affine functions from Ω to R which
are continuous in Ω having constant gradients in the interior of any simplex Sj of the
triangulation. Then, a fully discrete scheme for the HJB equations is given by

(2.9) vhk(yi) = min
u∈Uad

{
(1− λh)vhk

(
yi + hf(yi,u)

)
+ hg(yi,u)

}
for any vertex yi ∈ Ω. Clearly, a solution to (2.5) satisfies (2.9).

Let us recall the following result (see [17, Corollary 2.4] and [18, Theorem 1.3]).

Theorem 2.4. Assume that Assumption 2.1 and (2.7) hold. Let v, vh, and vhk
be the solutions of (2.4), (2.5), and (2.9), respectively. For λ > Lf we obtain

(2.10) ‖vh − vhk‖C(Ω) ≤
Lf

λ(λ− Lf )
k

h
for any h ∈

[
0,

1
λ

)
.

For λ > max{Lf , 2Lg} we have

(2.11) ‖v − vhk‖C(Ω) ≤ Ch+
Lg

λ− Lf
k

h
for any h ∈

[
0,

1
λ

)
.

Corollary 2.5. Assume that Assumption 2.1 and λ > Lf hold. Let vhk be the
solution of (2.9). Then, we have for h ∈ [0, 1/λ)∣∣vhk(y)− vhk(ỹ)

∣∣ ≤ C1
k

h
+ C2 ‖y − ỹ‖2 for all y, ỹ ∈ Ω,

where C1 = 2Lf/(λ(λ− Lf )) and C2 = Lg/(λ− Lf ).

Proof. Suppose that vh is the solution to (2.5). Then, we derive from (2.6) and
(2.10) that∣∣vhk(y)− vhk(ỹ)

∣∣ ≤ ∣∣vhk(y)− vh(y)
∣∣+
∣∣vh(y)− vh(ỹ)

∣∣+
∣∣vh(ỹ)− vhk(ỹ)

∣∣
≤ 2Lf
λ(λ− Lf )

k

h
+

Lg
λ− Lf

‖y − ỹ‖2,

which gives the claim.
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3. The POD method and reduced-order modeling. The focus of this sec-
tion is the construction of surrogate models by means of the POD. Here we recall the
basics of the method and apply it to optimal control problems. For more details we
refer the reader to, e.g., [14, 25, 26, 39].

3.1. POD for parametrized nonlinear dynamical systems. For p ∈ N let
us choose different pairs {(uν , yν◦ )}

p
ν=1 in Uad×Ω. By yν = y(uν ; yν◦ ) ∈ Y, ν = 1, . . . , p,

we denote the solution to (2.1). We introduce the snapshot subspace as

V = span
{
yν(t)

∣∣ t ∈ [0,∞) and 1 ≤ ν ≤ p
}
⊂ Rn.

For every ` ∈ {1, . . . , d}, with dimension d ≤ n, a POD basis of rank ` is defined as a
solution to the minimization problem

(P`)


min

p∑
ν=1

∫ ∞
0

∥∥∥∥∥yν(t)−
∑̀
i=1

〈yν(t), ψi〉M ψi

∥∥∥∥∥
2

M

dt

such that {ψi}`i=1 ⊂ Rn and 〈ψi, ψj〉M = δij , 1 ≤ i, j ≤ `,

where δij is the Kronecker symbol satisfying δii = 0 and δij = 0 for i 6= j. It is well
known that a solution to (P`) is given by the solution of the eigenvalue problem

Rψi = λiψi for λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ λd > 0

with the linear, bounded, symmetric integral operator R : Rn → V,

Rψ =
p∑
ν=1

∫ ∞
0
〈yν(t), ψ〉M yν(t) dt for ψ ∈ Rn.

If {ψi}`i=1 is a solution to (P`), we have the approximation error

(3.1)
p∑
ν=1

∫ ∞
0

∥∥∥∥∥yν(t)−
∑̀
i=1

〈yν(t), ψi〉M ψi

∥∥∥∥∥
2

M

dt =
d∑

i=`+1

λi.

In real computations, we do not have the whole trajectory y(t) for all t ∈ [0,∞).
For that purpose we choose T � 0 sufficiently large and define a grid in [0, te], where
te ≥ T , by 0 = t1 < t2 < · · · < tnT

= te. Let yνj ≈ yν(tj) ∈ Rn denote approximations
for the introduced trajectories {yνj }

p
ν=1 at the time instance tj for j = 1, . . . , nT . We

set VnT = span {yνj | 1 ≤ j ≤ nT , 1 ≤ ν ≤ p} with dnT = dim VnT ≤ min(n, nT p).
Then, for every ` ∈ {1, . . . , dnT } we consider the minimization problem

(P`
nT

)


min

p∑
ν=1

nT∑
j=1

αnT
j

∥∥∥∥∥yνj −
∑̀
i=1

〈yνj , ψ
nT
i 〉M ψnT

i

∥∥∥∥∥
2

M

such that {ψnT
i }

`
i=1 ⊂ Rn and 〈ψnT

i , ψnT
j 〉M = δij , 1 ≤ i, j ≤ `,

instead of (P`). In (P`
nT

) the αj ’s stand for the trapezoidal weights

αnT
1 =

t2 − t1
2

, αnT
j =

tj − tj−1

2
for 2 ≤ j ≤ nT − 1, αnT

nT
=
tnT
− tnT−1

2
.

The solution to (P`
nT

) is given by the solution to the eigenvalue problem

RnTψnT
i = λnT

i ψnT
i for λnT

1 ≥ λnT
2 ≥ · · · ≥ λnT

` ≥ λdnT
> 0
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with the linear, bounded, symmetric, and nonnegative operator

RnTψ =
p∑
ν=1

nT∑
j=1

αnT
j 〈y

ν
j , ψ〉M yνj for ψ ∈ Rn.

Analogous to (3.1), a solution to (P`
nT

) satisfies

(3.2)
p∑
ν=1

nT∑
j=1

αnT
j

∥∥∥∥∥yνj −
∑̀
i=1

〈yνj , ψ
nT
i 〉M ψnT

i

∥∥∥∥∥
2

M

=
dnT∑
i=`+1

λnT
i .

3.2. Reduced-order modelling for the state equation. We introduce the
POD coefficient matrix

Ψ =
[
ψ1 | . . . |ψ`

]
∈ Rn×`

and the subspace V ` = span {ψ1, . . . , ψ`} ⊂ Rn. In particular, the matrix M` =
Ψ>MΨ ∈ R`×` is the identity matrix. The reduced-order model for (2.3) is derived as
follows: we replace the vector y(t) ∈ Rn by its POD approximation Ψy`(t) ∈ Rn with
the unknown time dependent coefficients y`(t) ∈ R` and choose ϕ = ψi for i = 1, . . . , `.
It follows that

(3.3) ẏ`(t) = f `
(
y`(t), u(t)

)
∈ R` for t > 0, y`(0) = y`◦ ∈ R`,

where we have set y`◦ = Ψ>My◦ ∈ R` and

(3.4) f `(y`,u) = Ψ>Mf(Ψy`,u) ∈ R` for (y`,u) ∈ R` × Uad;

i.e., no discrete interpolation method is used at the moment (compare, e.g., [10, 15]).
From (3.4) and Assumption 2.1.1 we find that

‖f `(y`,u)− f `(ỹ`,u)‖2 ≤ L
`
f ‖y` − ỹ`‖2 for all y`, ỹ` ∈ R` and u ∈ Uad.

Here, the Lipschitz constant is given by L`f = Lf ‖Ψ>M‖2‖Ψ‖2, where, e.g., ‖Ψ‖2
stands for the largest singular value of the matrix Ψ. Furthermore, f `(y`,u) is
bounded by the constant Mf ‖Ψ>M‖2, provided that the pair (Ψy,u) belongs to
Ω × Uad. Thus, there exists a unique solution y` = y`(u; y◦) ∈ Y` = W 1,1(0,∞; R`)
to (3.3) for any admissible control u ∈ Uad. Let us introduce the linear orthogonal
projection P` : Rn → V ` as

P`y = ΨΨ>My =
∑̀
i=1

〈y, ψi〉M ψi for y ∈ Rn.

We note that the error of a solution to (2.1) and (3.3) on a finite time horizon is of
the order O(

∑d
i=`+1 λi), which coincides with the approximation error (3.1).

3.3. Reduced-order modelling for the optimal control problem. Next
we introduce the POD reduced-order model for (P̂). For given (u, y◦) ∈ Uad × Ω let
y` = y`(u; y◦) ∈ Y` denote the unique solution to (3.3). Then, the reduced POD cost
is given by

Ĵ`(u; y◦) = J(y`(u; y◦), u) = J(y`, u)

=
∫ ∞

0
g
(
Ψy`(t), u(t)

)
e−λt dt =

∫ ∞
0

g`
(
y`(t), u(t)

)
e−λt dt,
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where we have set

(3.5) g`(y`,u) = g(Ψy`,u) for (y`,u) ∈ R` × Uad.

Then, the POD approximation for (P̂) reads as follows: for given y◦ ∈ Ω we consider

(P̂`) min Ĵ`(u; y◦) such that u ∈ Uad.

4. A priori error for the HJB-POD approximation. In this section we
present the a priori error analysis for the coupling between the HJB equation and
the POD method. Our first a priori error estimate is better from a theoretical point
of view, whereas for the numerical realization the second a priori error estimate is
much more appropriate. In the first estimate we assume to work in R` on a number
of vertices which have been obtained by mapping the yi nodes of Rn into R`. The a
priori error estimate, which we will present in section 4.1, depends on the POD ap-
proximation of the vertices {yi}nS

i=1. However, even if the maximum distance between
the yi neighboring nodes is bounded by k, this clearly produces a nonuniform grid,
where the distance between the neighboring nodes cannot be predicted a priori, since
it depends on Ψ. The second error estimate takes into account a uniform grid of size
K in R`. Here, we choose vertices {y`i}

nS
i=1 ⊂ R` in the POD subspace. However, the

computation of the upper bound for the error is much more involved.

4.1. First a priori error estimate. We introduce two different POD approx-
imations for the HJB equation. The first one is based on (2.9), where we project all
vertices {yi}nS

i=1 into R` by setting

(4.1) y`i = Ψ>Myi for i = 1, . . . , nS.

Here we assume that y`i 6= y`j holds for i, j ∈ {1, . . . , nS} with i 6= j. Moreover, we
suppose that the points {y`i}

nS
i=1 are vertices of a regular triangulation of a polyhedron

Ω
` ⊂ R`. Then, a POD discretization of (2.9) is given by

(4.2) v`hk(y`i ) = min
u∈Uad

{
(1− λh)v`hk

(
y`i + hf `(y`i ,u)

)
+ hg`(y`i ,u)

}
for 1 ≤ i ≤ nS, and v`hk is a piecewise affine function on Ω

`
having constant gradients

in the interior of each simplex of the triangulation. We define the piecewise affine
mapping ṽ`hk : Ω→ R by

ṽ`hk(y) = v`hk(Ψ>My) for all y ∈ Ω with Ψ>My ∈ Ω.

Using the notation P` = ΨΨ>M ∈ Rn×n, (3.4), (3.5), and (4.1), we have

ṽ`hk(yi) = v`hk(Ψ>Myi) = v`hk(y`i )

= min
u∈Uad

{
(1− λh)v`hk

(
y`i + hf `(y`i ,u)

)
+ hg`(y`i ,u)

}
= min

u∈Uad

{
(1− λh)v`hk

(
Ψ>M(yi + hf(P`yi,u)

))
+ hg(P`yi,u)

}
= min

u∈Uad

{
(1− λh)ṽ`hk

(
yi + hf(P`yi,u)

)
+ hg(P`yi,u)

}
for 1 ≤ i ≤ nS. Thus, (4.2) can be equivalently expressed as

(4.3) ṽ`hk(yi) = min
u∈Uad

{
(1− λh)ṽ`hk

(
yi + hf(P`yi,u)

)
+ hg(P`yi,u)

}
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for 1 ≤ i ≤ nS. The following result measures the error between a solution to (2.5)
and a solution to (4.3). The proof is similar to the proof of Theorem 1.3 in [18] and
requires an invariance condition which will be discussed later in Remark 4.2.

Proposition 4.1. Assume that Assumption 2.1, (2.7), and λ > Lf hold. Let
vh and ṽ`hk be the solutions of (2.5) and (4.3), respectively, and let the invariance
condition

(4.4) yi + hf(P`yi,u) ∈ Ω for i = 1, . . . , nS and for all u ∈ Uad

be satisfied. Then, there exist two constants Ĉ0, Ĉ1 such that

(4.5) ‖vh − ṽ`hk‖C(Ω) ≤ Ĉ0
k

h
+ Ĉ1

(
nS∑
i=1

‖yi − P`yi‖
2
2

)1/2

for any h ∈
[
0,

1
λ

)
.

Proof. For any y ∈ Ω there are real coefficients µi = µi(y), 1 ≤ i ≤ nS, of the
convex combination representation of y satisfying

y =
nS∑
i=1

µiyi, 0 ≤ µi ≤ 1, and
nS∑
i=1

µi = 1.

Since ṽ`hk is piecewise affine, we obtain ṽ`hk(y) =
∑nS

i=1 µiṽ
`
hk(yi). Thus, we have

(4.6)
∣∣vh(y)− ṽ`hk(y)

∣∣ ≤ ∣∣∣∣∣
nS∑
i=1

µi
(
vh(y)− vh(yi)

)∣∣∣∣∣+

∣∣∣∣∣
nS∑
i=1

µi
(
vh(yi)− ṽ`hk(yi)

)∣∣∣∣∣ .
From y ∈ Ω we infer that there exists an index j with y ∈ Sj ⊂ Ω. Let Ij =
{i1, . . . , ik} ⊂ {1, . . . , nS} denote the index subset such that yi ∈ Sj holds for i ∈ Ij .
Then µi = 0 holds for all i 6∈ Ij . Moreover,

∑nS

i=1 µi =
∑
i∈Ij

µi = 1 and ‖y−yi‖2 ≤ k
for any i ∈ Ij . From (2.6) we have

(4.7)
nS∑
i=1

µi
∣∣vh(y)− vh(yi)

∣∣ =
∑
i∈Ij

µi
∣∣vh(y)− vh(yi)

∣∣ ≤ Lg
λ− Lf

k

for h ∈ [0, 1/λ). Using (4.3) and (2.5), we have

(4.8)

vh(yi)− ṽ`hk(yi)

≤ vh(yi)− (1− λh)ṽ`hk
(
yi + hf(P`yi, ū`,ihk)

)
+ hg(P`yi, ū`,ihk)

≤ (1− λh)
(
vh
(
yi + hf(yi, ū

`,i
hk)
)
− ṽ`hk

(
yi + hf(P`yi, ū`,ihk)

))
+ h
(
g(yi, ū

`,i
hk)− g(P`yi, ū`,ihk)

)
,

where ū`,ihk ∈ Uad is defined as

(4.9) ū`,ihk = argmin
u∈Uad

{
(1− λh)ṽ`hk

(
yi + hf(P`yi,u)

)
+ hg(P`yi,u)

}
.

Applying (2.6) again, we deduce that∣∣vh(yi + hf(yi, ū
`,i
hk)
)
− vh

(
yi + hf(P`yi, ū`,ihk)

)∣∣ ≤ hLgLf
λ− Lf

‖yi − P`yi‖2
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for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Hence, from (4.4) it follows that

vh
(
yi + hf(yi, ū

`,i
hk)
)
− ṽ`hk

(
yi + hf(P`yi, ū`,ihk)

)
≤
(
vh
(
yi + hf(yi, ū

`,i
hk)
)
− vh

(
yi + hf(P`yi, ū`,ihk)

))
+
(
vh
(
yi + hf(P`yi, ū`,ihk)

)
− ṽ`hk

(
yi + hf(P`yi, ū`,ihk)

))
≤ hLgLf
λ− Lf

‖yi − P`yi‖2 + ‖vh − ṽ`hk‖C(Ω)

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Using the inequality

h
(
g(yi, ū

`,i
hk)− g(P`yi, ū`,ihk)

)
≤ hLg ‖yi − P`yi‖2,

we derive from (4.8) that

vh(yi)− ṽ`hk(yi) ≤ C̃1h ‖yi − P`yi‖2 + (1− λh)‖vh − ṽ`hk‖C(Ω)

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ) with C̃1 = Lg(Lf/(λ − Lf ) + 1). By interchanging
the role of vh and ṽ`hk in (4.8), we derive

(4.10)
∣∣vh(yi)− ṽ`hk(yi)

∣∣ ≤ C̃1h ‖yi − P`yi‖2 + (1− λh)‖vh − ṽ`hk‖C(Ω)

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Note that 0 ≤
∑nS

i=1 µ
2
i ≤

∑nS

i=1 µi = 1 holds for the
coefficients in the convex combination representation. Inserting (4.7) and (4.10) into
(4.6), we find

(4.11)

∣∣vh(y)− ṽ`hk(y)
∣∣

≤ (1− λh)‖vh − ṽ`hk‖C(Ω) + C̃0 k + C̃1h

nS∑
i=1

µi ‖yi − P`yi‖2

≤ (1− λh)‖vh − ṽ`hk‖C(Ω) + C̃0 k + C̃1h

(
nS∑
i=1

‖yi − P`yi‖
2
2

)1/2

for h ∈ [0, 1/λ) with C̃0 = Lg/(λ − Lf ), which implies (4.5) with the constants
Ĉi = C̃i/λ, i = 0, 1.

Remark 4.2. Let us give sufficient conditions for (4.4). First, we observe that for
any i ∈ {1, . . . , nS} and u ∈ Uad we have

yi + hf(P`yi, u) = yi + hf(yi, u) + h
(
f(P`yi, u)− f(yi, u)

)
.

To ensure (4.4) we replace (2.7) by the stronger assumption

y + hf(y,u) ∈ int Ω for all y ∈ Ω and u ∈ Uad,

where int Ω stands for the (open) interior of the set Ω, and we have yi + hf(yi, u) ∈
int Ω for any i ∈ {1, . . . , nS}. Moreover, Assumption 2.1.1 implies that

‖f(P`yi, u)− f(yi,u)‖2 ≤ Lf ‖P
`yi − yi‖2 for all u ∈ Uad

holds. Consequently, if either the mesh size h or ‖P`yi − yi‖2 is sufficiently small,
the norm of the vector h(f(P`yi,u)− f(yi,u)) can be made sufficiently small so that
yi + hf(P`yi,u) ∈ Ω.
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From Theorem 2.3 and Proposition 4.1 we derive the following a priori error
estimate.

Theorem 4.3. Assume that Assumption 2.1, (2.7), and (4.4) hold. Let v and
ṽ`hk be the solutions of (2.4) and (4.3), respectively. If λ > max{Lf , Lg}, then there
exist constants c0, c1, c2 ≥ 0 such that

(4.12) ‖v − ṽ`hk‖C(Ω) ≤ Ch+ Ĉ0
k

h
+ Ĉ1

(
nS∑
i=1

‖yi − P`yi‖
2
2

)1/2

for any h ∈ [0, 1/λ), where the positive constants C, Ĉ0, and Ĉ1 are given by Theo-
rem 2.3 and Proposition 4.1.

Remark 4.4. The a priori error estimate presented in Theorem 4.3 is natural,
because it combines the discretization error between v and vhk (compare (2.11)) with
the POD approximation quality for the (finitely many) vertices {yi}nS

i=1. In particular,
if we determine the POD basis by solving

min
nS∑
i=1

∥∥∥∥∥∥yi −
∑̀
j=1

〈yi, ψj〉2 ψj

∥∥∥∥∥∥
2

2

such that {ψi}`i=1 ⊂ Rn and 〈ψi, ψj〉2 = δij , 1 ≤ i, j ≤ `,

we get the a priori error estimate

‖v − ṽ`hk‖C(Ω) ≤ Ch+ Ĉ0
k

h
+ Ĉ1

(
nS∑

i=`+1

λi

)1/2

.

However, the POD grid points {y`i}
nS
i=1 are not well distributed in general, which is

disadvantageous for the numerical realization.

4.2. Second a priori error estimate. From a numerical point of view (4.2)
is not appropriate, because in general the grid points {y`i}

nS
i=1 are not uniformly dis-

tributed in R` and their distribution will strongly depend on Ψ. Therefore, we define
a second POD discretization of the HJB equations where we have an explicit bound
on the distance between the neighboring nodes. Clearly in this case we will need an
interpolation operator defined on the grid. (Typically, this will be a piecewise linear
interpolation operator.) With (2.7) holding, we assume that there exists a bounded
polyhedron Ω` ⊂ R` satisfying

(4.13) Ψ>My ∈ int Ω` for all y ∈ Ω.

Remark 4.5. Condition (4.13) implies that

y` + hf `(y`,u) ∈ Ω
`
,

provided the step size h or ‖ΨΨ>My− y‖2 is sufficiently small. In fact, let y ∈ Ω, let
u ∈ Uad be arbitrarily chosen, and set y` = Ψ>My ∈ R`. Then,

y` + hf `(y`,u) = Ψ>My + hΨ>Mf(ΨΨ>My,u)

= Ψ>M
(
y + hf(y,u)

)
+ hΨ>M

(
f(ΨΨ>My,u)− f(y,u)

)
.
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We infer from (2.7) that z = y + hf(y,u) ∈ Ω holds. Hence, by (4.13), we have
Ψ>Mz ∈ int Ω`. Furthermore, we derive from∥∥hΨ>M

(
f(ΨΨ>My,u)− f(y,u)

)∥∥
2 ≤ hLf‖Ψ

>M‖2 ‖ΨΨ>My − y‖2

and span {ψ1, . . . , ψn} = Rn that y` + hf `(y`,u) ∈ Ω
`

holds for step size h or
‖ΨΨ>My − y‖2 sufficiently small. If M = Id ∈ Rn×n holds, we have ‖Ψ>M‖2 = 1.

Let {S`j}
mS
j=1 be a family of simplices which defines a regular triangulation of the

polyhedron Ω` (see, e.g., [24]) such that

(4.14) Ω
`

=
mS⋃
j=1

S`j and K = max
1≤j≤mS

(
diam S`j

)
.

Let V K be the space of piecewise affine functions from Ω
`

to R which are continuous
in Ω

`
having constant gradients in the interior of any simplex S`j of the triangulation.

Then, we introduce the following POD scheme for the HJB equations:

(4.15) v`hK(y`i) = min
u∈Uad

{
(1− λh)v`hK

(
y`i + hf `(y`i , u)

)
+ hg`(y`i ,u)

}
for any vertex y`i ∈ Ω

`
. Throughout this paper we assume that we have nS vertices

y`1, . . . , y
`
nS

. We set

(4.16) yi = Ψy`i ∈ Rn for 1 ≤ i ≤ nS

and define
ṽ`hK(y) = v`hK(Ψ>My) for all y ∈ Ω.

Recall that (4.13) ensures that Ψ>My ∈ int Ω` for any y ∈ Ω. Moreover, yi = Ψy`i
and Ψ>MΨ = Id ∈ R`×` implies that

ṽ`hK(yi) = v`hK(Ψ>Myi) = v`hK(y`i) for 1 ≤ i ≤ nS.

Using Ψ>MΨy`i = y`i , (4.15), (3.4), (3.5), and (4.16), we obtain

ṽ`hK(yi) = v`hK(y`i) = min
u∈Uad

{
(1− λh)v`hK

(
y`i + hf `(y`i ,u)

)
+ hg`(y`i ,u)

}
= min

u∈Uad

{
(1− λh)v`hK

(
Ψ>M(Ψy`i + hf(Ψy`i ,u))

)
+ hg(Ψy`i ,u)

}
= min

u∈Uad

{
(1− λh)v`hK

(
Ψ>M(yi + hf(yi,u))

)
+ hg(yi,u)

}
= min

u∈Uad

{
(1− λh)ṽ`hK

(
yi + hf(yi,u)

)
+ hg(yi,u)

}
for 1 ≤ i ≤ nS.

Thus, (4.15) can be written as

(4.17) ṽ`hK(yi) = min
u∈Uad

{
(1− λh)ṽ`hK

(
yi + hf(yi,u)

)
+ hg(yi, u)

}
for 1 ≤ i ≤ nS.

Proposition 4.6. Assume that Assumption 2.1, (2.7), and (4.13) hold. Let vh
and ṽ`hK be the solutions of (2.5) and (4.17). Let

(4.18) Ψ>M
(
y + hf(P`y,u)

)
∈ Ω

`
for all y ∈ Ω and u ∈ Uad.
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be satisfied. Let the step size K be defined as in (4.14). For λ > Lf there exists a
constant c0 such that

(4.19) ‖vh − ṽ`hk‖C(Ω) ≤ c0

(
‖Ψ‖2

K

h
+ sup
y∈Ω
‖y − P`y‖2

1
h

)

for any h ∈ [0, 1/λ).

Proof. Let y ∈ Ω be chosen arbitrarily. We set y` = Ψ>My. By (4.13) we have
y` ∈ int Ω`. In contrast to the proof of Theorem 4.3, here we consider a convex
combination representation for the point y` in R`. There are real coefficients µ`i =
µ`i(y

`), 1 ≤ i ≤ nS, satisfying

y` =
nS∑
i=1

µ`iy
`
i , 0 ≤ µ`i ≤ 1, and

nS∑
i=1

µ`i = 1.

Since v`hK is piecewise affine we have vhK(y`) =
∑nS

i=1 µ
`
iv
`
hK(y`i). Using yi = Ψy`i , we

have

(4.20)

∣∣vh(y)− ṽ`hk(y)
∣∣ ≤ ∣∣vh(y)− vh(P`y)

∣∣+

∣∣∣∣∣
nS∑
i=1

µ`i
(
vh(P`y)− vh(yi)

)∣∣∣∣∣
+

∣∣∣∣∣
nS∑
i=1

µ`i
(
vh(yi)− v`hk(y`i)

)∣∣∣∣∣ .
By (2.6) the first term on the right-hand side of (4.20) can be bounded as follows:

(4.21)
∣∣vh(y)− vh(P`y)

∣∣ ≤ Lg
λ− Lf

‖y − P`y‖2 for all h ∈
[
0,

1
λ

)
.

Furthermore, there exists an index j with y ∈ Sj ⊂ Ω
`
. Let Ij = {i1, . . . , ik} ⊂

{1, . . . , nS} denote the index subset such that y` ∈ Sj holds for i ∈ Ij . Then, µ`i = 0
holds for all i 6∈ Ij . Moreover,

∑nS

i=1 µ
`
i =

∑
i∈Ij

µ`i = 1 and ‖y` − y`i‖2 ≤ K for any
i ∈ Ij . Recall that P`y = ΨΨ>My = Ψy` holds. Again using (2.6), we find

(4.22)
nS∑
i=1

µ`i
∣∣vh(P`y)− vh(yi)

∣∣ =
∑
i∈Ij

µ`i
∣∣vh(Ψy`)− vh(Ψy`i)

∣∣ ≤ Lg ‖Ψ‖2
λ− Lf

K

for h ∈ [0, 1/λ). Using (4.17) and (2.5), we have

vh(yi)− v`hK(y`i) = vh(yi)− ṽ`hK(yi)

≤ vh(yi)− (1− λh)ṽ`hK
(
yi + hf(yi, ū

`,i
hK)

)
− hg(yi, ū

`,i
hK)

≤ (1− λh)
(
vh
(
yi + hf(yi, ū

`,i
hK)

)
− ṽ`hK

(
yi + hf(yi, ū

`,i
hK)

))
≤ (1− λh)‖vh − ṽ`hK‖C(Ω),

where ū`,ihK ∈ Uad is defined as

ū`,ihK = argmin
u∈Uad

{
(1− λh)ṽ`hK

(
yi + hf(yi,u)

)
+ hg(yi,u)

}
,
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which is similar to (4.9), but not equal to it. By interchanging the role of vh and v`hK ,
we find

(4.23)
∣∣vh(yi)− v`hk(y`i)

∣∣ ≤ (1− λh)‖vh − ṽ`hK‖C(Ω).

Inserting (4.21), (4.22), and (4.23) into (4.20), we derive (4.19) with c0 = Lg

λ(λ−Lf ) .

Remark 4.7.
1. In Remark 4.5 we give a sufficient condition for (4.18). If (4.13) holds and the

step size h or ‖y − P`y‖2 is sufficiently small, then (4.18) is satisfied. Recall
that ‖y − P`y‖2 → 0 for any y ∈ Ω, provided `→ n.

2. We should balance
K ∼ sup

y∈Ω
‖y − P`y‖2

in order to get a rate K/h for the convergence.
3. Let us comment on the term supy∈Ω ‖y−P`y‖2 in (4.19). For the numerical

realization we do not have Ω at hand. Therefore, we suggest the following
approach: In the context of section 3.1 we compute the discrete solutions
yνj ∈ Rn, j = 1, . . . , nT , to (2.1) for different controls uν and initial conditions
yν◦ for ν = 1, . . . , p. Then we suppose that all elements in the bounded set
Ω can be expressed by an element in the snapshot subspace VnT ⊂ Rn.
If the POD basis is determined by (P`

nT
), then we can estimate the term

supy∈VnT ‖y−P`y‖2 in terms of the decay of the POD eigenvalues; compare
(3.2).

Combining Theorem 2.3 and Proposition 4.6. we obtain the following result.

Theorem 4.8. Assume that Assumption 2.1, (2.7), (4.13), and (4.18) hold. Let
v and ṽ`hK be the solutions of (2.4) and (4.17), respectively. If λ > max{Lf , Lg},
then

(4.24) ‖v − ṽ`hK‖C(Ω) ≤ Ch+ c0

(
‖Ψ‖2

K

h
+ sup

y∈Ω
‖y − P`y‖2

1
h

)

for any h ∈ [0, 1/λ), where the positive constant C and c0 have been introduced in
Theorems 2.3 and 4.6, respectively.

Remark 4.9. Let us comment on the differences between the a priori error esti-
mates (4.12) and (4.24):

1. Both estimates involve terms depending on h and on k/h or K/h. Note that
‖Ψ‖2 = 1 if we choose M = Id in the computation of the POD basis.

2. Using
∑nS

i=1 µi = 1, we can replace (4.11) by∣∣vh(y)− ṽ`hk(y)
∣∣ ≤ (1− λh)‖vh − ṽ`hk‖C(Ω) + C̃0 k + C̃1h max

1≤i≤nS

‖yi − P`yi‖2

for h ∈ [0, 1/λ) with C̃0 = Lg/(λ−Lf ) and C̃1 = Lg(Lf/(λ−Lf )+1). Then,
(4.12) becomes

(4.25) ‖v − ṽ`hk‖C(Ω) ≤ Ch+ Ĉ0
k

h
+ Ĉ1 max

1≤i≤nS

‖yi − P`yi‖2

for any h ∈ [0, 1/λ) with the same constants C, Ĉ0, and Ĉ1. Now we compare
the POD approximation errors in (4.24) and (4.25). In (4.25) the last term
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is not divided by h. Furthermore, in (4.24) the term ‖y − P`y‖2 has to be
small for all y ∈ Ω, whereas in (4.25) this is needed only for the vertices
y1, . . . , ynS

∈ Ω. In order to get convergence for h → 0 from (4.24) one has
to guarantee that K = o(h) and supy∈Ω ‖y − P`y‖2 = o(h). In contrast, a
convergence for h→ 0 holds for (4.25), provided k = o(h) and

lim
h→0

max
1≤i≤nS

‖yi − P`yi‖2 = 0.

Recall that the choice of the vertices yi, i = 1, . . . , nS, depends on h; cf. (2.8).
Anyway, as we will see in our numerical examples, the method seems to be
rather efficient also for larger K.

5. Practical implementation of the algorithm. In this section we present
an algorithm for the HJB equation based on the POD a priori analysis presented in
section 4.2. The estimate in Theorem 4.8 suggests the following steps:

(1) Time discretization. First the infinite time horizon [0,∞) has to be replaced
by a finite one. Thus, we choose te � 0 sufficiently large so that it has little effect on
the numerical results and define a (possibly nonequidistant) grid in [0, te] by 0 = t1 <
t2 < · · · < tnT

= te.
(2) Snapshots computation. Let us suppose that the set of admissible controls

Uad is one-dimensional, i.e., m = 1, and that Uad given by choosing a discrete set
Uad = {u1, . . . , up} ⊂ U = R. To solve (2.1) we apply the implicit Euler method on
the time grid {tj}nT

j=1. By yνj ≈ yν(tj) ∈ Rn, 1 ≤ j ≤ nT and 1 ≤ ν ≤ p, we denote
the computed implicit Euler approximation of the solution to (2.1) at time instance
tj for the controls uν(t) = uν for all t ∈ [0, te] and 1 ≤ ν ≤ p. This idea can be
generalized to a higher-dimensional control set.

(3) Rank ` of the POD basis. In (P`
nT

) we choose M as the identity matrix since
we deal with finite difference approximation and αnT

j = 1 for j = 1, . . . , nT . We
note that a finite element approximation leads to a mass matrix M different from the
identity.

The rank ` of the POD basis {ψnT
i }`i=1 is chosen such that we can show the decay

of the error when we increase `. In this paper we choose ` ∈ {2, 3, 4}. A heuristic way
to select the number of POD basis functions ` is given by the error estimate (4.24). In
particular, as explained in Remark 4.9, the term supy∈Ω ‖y − P`y‖2 should be below
a given tolerance, chosen accurately. This can be achieved with a clever selection of
the value of ` since the term goes to 0 when `→∞; compare the right panel of Figure
6.6 below.

(4) Computation of the polyhedron Ω`. We first define all the POD grid points as
the projection of the snapshots, previously computed, y`j = Ψ>yνj ∈ R` for 1 ≤ j ≤ my.
Then, a simple choice is to consider the hypercube Ω` = [a1, b1]× · · · × [a`, b`] ⊂ R`,
where we set

ai = min
{

(y`1)i, . . . , (y`my
)i
}
, bi = max

{
(y`1)i, . . . , (y`my

)i
}
,

for 1 ≤ i ≤ `. It follows that y`j ∈ Ω` for 1 ≤ j ≤ my. Then, when the domain Ω` is
obtained, we build an equidistant grid with step size computed as explained in Remark
4.7. We note that Ω` should be large enough to contain all possible trajectories and
satisfy the invariance condition (6.5) for the reduced coordinates. This is also the
reason we compute several snapshots in order to have a sufficiently accurate overview
of the problem.
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(5) Computation of the value function v`hK . The piecewise linear value function
v`hK is determined on the vertices yi for 1 ≤ i ≤ nS of the domain Ω`. Since the
reduced-order approach yields a small ` < 10, we are able to perform a standard fixed
point iteration method, e.g., the value iteration method. We also refer the reader to
faster algorithms such as those in [2] and the references therein.

(6) Feedback law and closed-loop control. We compute the value function ṽ`hK(y) =
vhK(Ψ>y) satisfying (4.2) at each grid point y = yi for 1 ≤ i ≤ my. At any grid point
yi we store the associated optimal control ū`,ihK ∈ Uad solving

u`,ihK := argmin
u∈Uad

{
(1− λh)ṽ`hK(yi + hf(P`yi, u)) + hg(P`yi, u)

}
.

Then, the (suboptimal) feedback operator Φ` : Ω→ Uad is defined as

Φ`(y) =
my∑
i=1

µiū
`,i
hK for y ∈ Ω,

where the coefficients {µi}
my

i=1 are given by the convex combination

y =
my∑
i=1

µiyi, 0 ≤ µi ≤ 1,
my∑
i=1

µi = 1.

Now the closed-loop system for (2.1) is

(5.1) ẏ(t) = f
(
y(t),Φ`(y(t))

)
∈ Rn for t > 0, y(0) = y◦ ∈ Rn.

Equation (5.1) is solved by a semi-implicit Euler scheme, where the second argument
Φ`(y(t)) is evaluated at the previous time step. We note that at every time step ti
we plug the suboptimal control u`,ih,K into (5.1) and then project into the POD space
in order to have the next initial condition. The algorithm is summarized below.

Algorithm 5.1 HJB-POD feedback control.
Require: distance K, step size h, final time te, time grid {tj}nT

j=1, discrete control
set Uad = {u1, . . . , up} ⊂ R;

1: Set Y = [] and ∆ = K;
2: for ν = 1, . . . , p do
3: Compute approximation {yνj }

nT
j=1 for the solution to (2.1) with u ≡ uν ;

4: Set Y = [Y | yν1 , . . . , yνnT
] ∈ Rn×(νnT );

5: end for
6: Set my = pnT and Y = [y1, . . . , ymy ] ∈ Rn×my ;
7: Determine a POD basis of rank ` by solving (P`

nT
);

8: Choose Ω` and compute the reduced value function ṽ`hK ;
9: Compute the suboptimal control and the optimal trajectory;

6. Numerical tests. In this section we present our numerical tests. First let
us describe the optimal control problem in detail. For numerical reasons, we have to
consider a finite time horizon, so that we choose a sufficiently large te > 0. In our
numerical experiments we choose te large enough such that it does not change our
numerical results. The governing nonlinear PDE with a finite time horizon is given
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by

(6.1)
zt − εzxx + γzx + µ(z − z3) = bu in ω × (0, te),

z(·, 0) = z◦ in ω,

z(·, t) = 0 in ∂ω × (0, te),

where ω = (a, b) ⊂ R is an open interval, z : ω × [0, te] → R denotes the state, and
the parameters ε, γ, and µ are real positive constants. The controls are elements of
the closed, convex, bounded set Uad = {u ∈ L2(0, te; R) |u(t) ∈ Uad for t ≥ 0} with
Uad = {u ∈ R |ua ≤ u ≤ ub}, with given ua, ub ∈ R. Later, we will consider Uad

as a discrete set in the approximation of the HJB equation. The initial value and
the shape function are denoted, respectively, by z◦ and b. Note that we deal with
zero Dirichlet boundary conditions. Let us mention that (6.1) includes the linear heat
equation (µ = 0, γ = 0), linear advection diffusion equation (µ = 0), and a semilinear
parabolic problem with a reaction term (γ 6= 0, µ 6= 0). As explained in the previous
section, we need to choose te big enough to have an accurate approximation of the
infinite horizon problem.

The cost functional we want to minimize is given by

(6.2) Ĵ(u; z◦) =
∫ te

0

(
‖z(·, t;u)− z̄‖2L2(ω) + α |u(t)|2

)
e−λt dt,

where z(·, t;u) is the solution to (6.1) at time t, z̄ is the desired state, α ∈ R+ holds,
and λ > 0 is the discount factor. The optimal control problem can be formulated as

(6.3) min Ĵ(u; z◦) such that u ∈ Uad.

We spatially discretize the state equation (6.1) by the standard finite difference
method. This approximation leads to the following semidiscrete system of ODEs:

(6.4)
Myt − εAy + γHy + µF(y) = Bu in (0, te],

y(0) = y◦,

where y : [0, te]→ Rn is an approximation for the solution z(· , t) to (6.1) at n spatial
grid points, A, H ∈ Rn×n, B, y◦ ∈ Rn, and F : Rn → Rn is given by

F(y) =

 y1 − y3
1

...
yn − y3

n

 for y = (y1, . . . , yn) ∈ Rn.

Here, we do not consider Assumption 2.1 for our underlying problem. Let us men-
tion that problem (6.3) has been already investigated. For instance, existence and
uniqueness results for (6.3) can be found in [7]. In general, the dimension n of the
dynamical system (6.4) is rather large (i.e., n� 10), so that we cannot solve the HJB
equations numerically. Therefore, we apply the POD method in order to reduce the
dimension of the optimal control problem and solve it by HJB equations. That fits
into our problem (P̂), and therefore we can apply Algorithm 5.1 to solve our optimal
control problem.

In the next subsections we will present our numerical tests; in particular we draw
our attention on the estimate presented in Theorem 4.8. Although the estimate is
not practical since it is unfeasible to compute the true value function, it helps us
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Fig. 6.1. Test 1: Uncontrolled solution (left), evaluation of the cost functional (middle), and
distance between y(u`) and y`(u`) (right).

choose the parameters h, K, `. In particular, the number of basis functions can be
selected as explained in section 5. In order to check the quality of the suboptimal
solution, it is hard to find an analytical representation of the value function. However,
a particular case is the so-called linear quadratic regulator (LQR) problem, where
the dynamics is linear and the cost functional is quadratic. Under these particular
conditions we are able to compute the error of our approximation of the value function.
Furthermore, for a nonlinear problem, the quality of the computed suboptimal control
u` we will be plugged into the full model y(u`) and into the surrogate model y`(u`),
and we can evaluate the cost functional. We note that the nonlinear example discussed
above is not stable in open-loop, as mentioned in [7, 8]; therefore feedback control is
mandatory to ensure stabilization of the problem. Furthermore, in section 6.3, we test
our problem under perturbation of the state to show the robustness of the method. For
the sake of completeness we also mention that other model order reduction methods
have been combined with the HJB approach. We refer to [6] for a comparison.

6.1. Test 1: Semilinear equation. Our first test concerns the semilinear equa-
tion. In (6.1) we set te = 3, ε = 0.1, γ = 0, µ = 1, ω = (0, 1), and z◦(x) = 2(x− x2).
The shape function b is equal to the initial condition z◦. In (6.2) we choose λ = 1
and z̄ = 0. To compute the POD basis we determine solutions to the state equa-
tion for controls in the set Usnap = {−1, 0, 1} with a semi-implicit finite differ-
ence scheme with time step of 0.05 and space step of 0.01. In (4.15) we consider
K ∈ {0.1, 0.05}, h = 0.1K. The optimal trajectory is obtained with a time step
size of 0.05. The control set Uad is given by 21 controls equally distributed in
[−1, 1]. In this test we have chosen the following domain for reduced coordinates:
Ω` = [−17.4, 7.8] × [−0.7, 0.7] × [−0.1, 0.1] × [−0.1, 0.1]. We verified that, in this
situation, the strong invariance condition

(6.5) y` + hf `(y`, u) ∈ Ω` for all y` ∈ Ω` and u ∈ Uad

holds true.
The uncontrolled solution is shown on the left of Figure 6.1. As we can see,

the semilinear part does not allow us to stabilize the solution to zero; our goal is to
steer the solution to the origin. The optimal solution and its correspondent optimal
controls are shown in Figure 6.2. Moreover, we plot the differences between the
computed solutions (please note the different scaling of the pictures). As we can
see, the difference decreases when the number of POD basis functions increases. The
quality of our approximation is confirmed by Figure 6.1. In the middle panel we plot
the decay of the cost functional Ĵ(u`, ω◦), whereas the distance between y(u`) and
y`(u`) is plotted in the right panel of Figure 6.1. As expected, the cost functional
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Fig. 6.2. Test 1: Optimal HJB states computed with Algorithm 5.1 with ` = 4 POD basis
functions (top-left), difference between optimal solution with 4 POD basis and 2 POD basis (top-
middle), difference between optimal solution with 4 POD basis and 3 POD basis (top-right), optimal
HJB controls with ` = 2, 3, 4 (bottom).

and the error in the state decrease when ` increases and K decreases. In this case the
error decays much faster than in the previous example. This depends on the decay of
the singular value of the snapshots set, as shown in Figure 6.6 below.

6.2. Test 2: Advection-diffusion equation. The second test concerns the
linear advection-diffusion equation; in (6.1) we set te = 3, ε = 0.1, γ = 1, µ = 0,
ω = (0, 2), and z◦(x) = 0.5 sin(πx). The shape function b is the characteristic function
over the subset (0.5, 1) ⊂ ω. In (6.2) we choose λ = 1 and z̄ = 0. To compute the
POD basis we determine solutions to the state equation for the following discrete
set of controls: Usnap = {−2.2,−1.1, 0}. In (4.15) we consider K ∈ {0.1, 0.05},
h = 0.1K, and the optimal trajectory is obtained with a time step size of 0.05 for the
implicit Euler method. The control set Uad is given by 23 controls equally distributed
in [−2.3, 0]. In this test we have chosen the following domain for reduced coordinates:
Ω` = [−2.5, 2.5] × [−2, 2] × [−1.5, 1.5] × [−1, 1]. We note that, although the strong
invariance condition (6.5) is not satisfied, a weaker condition holds true, namely,

(6.6) for all y` ∈ Ω` there exists u ∈ Uad : y` + hf `(y`, u) ∈ int(Ω`),

where int(Ω`) denotes the interior of Ω`. It is interesting to note that, reducing
the control space to the controls in Uad which satisfy condition (6.6), our code is
able to compute a value function with rather accurate results comparable with those
obtained via the LQR approach. Thus, the condition seems to be sufficient to set up
the proposed approximation, although this situation is not covered by the theorem.
A more detailed analysis of problems with state constraints will be addressed in the
near future. In Figure 6.3(left) we show the solution of the uncontrolled (6.1), i.e.,
for u ≡ 0. Since our problem is linear-quadratic, the solution of the HJB equation
can be computed by solving the well-known Riccati equation (for the LQR approach,
see [16]). Then, the optimal LQR state is as presented in Figure 6.3(middle), whereas
the optimal LQR control is as plotted in Figure 6.3(right).

We show the controlled solution computed by means of Algorithm 5.1 on the left
of Figure 6.4. Since it is hard to visualize differences from the optimal solutions, we
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plot the difference between the optimal solution obtained with 4 POD basis functions
and that obtained with 2 (middle) or 3 (right) POD basis functions. In order to
analyze our numerical approximation we consider the evaluation of the cost functional
Ĵ(u`; y◦), the distance between y(u`) and y`(u`), and the error between the true LQR
solution and the suboptimal y(u`). The error analysis is shown in Figure 6.5. On the
left we show the decay of the cost functional when we increase the number of POD
basis functions. In the middle we compute the L2-error between the optimal reduced
solution y`(u`) and the suboptimal solution y(u`). Even in this case the error decays
when ` increases and K decreases. This error measures the quality of the surrogate
model, since we want to check whether the suboptimal control fits into the nonreduced
problem. Finally, on the right, we compute the error between the optimal solution
and the suboptimal y(u`). As expected, increasing the number of basis function and
decreasing the step size K (remember that h and K are linked) for the approximation
of the value function, the optimal solution is improved.
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The decay of the singular values is presented in Figure 6.6. Finally, we want
to give an idea of the term supy∈Ω ‖y − P`y‖2/h in the error estimate (4.24). It is
clear we do not know Ω, but we chose several random control sequences in the set
of admissible controls in order to have an approximation of the set. Now, we can
compute the aforementioned error term. The decay is shown in Figure 6.6(right).
This term would help us select the number of POD basis functions in order to get an
error of order o(h), as explained in Remark 4.9.

6.3. Test 3: Semilinear equation with uniform noise. In this test we deal
with the semilinear equation discussed in Test 1, but we add noise to the optimal
trajectory. The uncontrolled solution is shown on the left of Figure 6.7, the optimal
trajectory in the middle panel, and the control computed by means of Algorithm 5.1
in the right panel.

The goal is to show the stabilization of the feedback control under strong perturba-
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Fig. 6.8. Test 3: Optimal HJB-POD state (left) and corresponding optimal control (right) with
|η(x)| ≤ 50% (top) and |η(x)| ≤ 90% noise (bottom).

tions of the system. We note that in this case the value function is stored from the sys-
tem without perturbation, but the reconstruction of the feedback control is affected by
uniform noise η(x) in the interval [−1, 1] in every time step: y(x, ·) = (1+η(x))y(x, ·).
Figure 6.8 shows the optimal solution and control corresponding to different noise lev-
els. In this example we can see the power of the feedback control and, in particular,
the importance of the knowledge of the value function. In both examples, the trajec-
tory is stabilized close to the origin. If we look at the optimal control input, we can
observe a strong chattering. In both cases the optimal control jumps often from −1
to 0. In particular, in the second case, it is possible to observe stronger chattering
due to the high disturbances. Nevertheless, the feedback control is able to stabilize
the perturbed system.

7. Conclusion and remarks. In this paper we present a new a priori error
analysis for the coupling between the HJB equation and the POD method. The
proposed estimate is presented for infinite horizon control problems with linear and
nonlinear dynamical systems, but this approach could be also applied to other optimal
control problems, provided one has a priori estimates on the approximation based on
the HJB equation. The convergence of the method is guaranteed under rather general
assumptions on the optimal control problem and some technical assumptions on the
dynamics and on the POD approximation. For the latter, it is clear that a clever
choice of the snapshots set can play a crucial role in the estimate in reducing the
contribution of the POD approximation in the a priori estimate. Several choices
are possible based on greedy techniques or on a previous open-loop approximation;
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these choices will be investigated in a future paper. At present, the numerical tests
illustrated in the last section confirm our theoretical findings and show the robustness
of the Bellman approach also under strong disturbances of the dynamical system.
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