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Abstract

We investigate the source detection problem in epidemiology, which is one of the most

important issues for control of epidemics. Mathematically, we reformulate the problem as

one of identifying the relevant component in a multivariate Gaussian mixture model. Focus-

ing on the study of cholera and diseases with similar modes of transmission, we calibrate

the parameters of our mixture model using human mobility networks within a stochastic,

spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a

Bayesian perspective, so that prior information on source location can be incorporated (e.g.,

reflecting the impact of local conditions). Posterior-based inference is performed, which per-

mits estimates in the form of either individual locations or regions. Importantly, our estimator

only requires first-arrival times of the epidemic by putative observers, typically located only

at a small proportion of nodes. The proposed method is demonstrated within the context of

the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.

Author summary

Tracking the source of an epidemic outbreak is of crucial importance as it allows for iden-

tification of communities where control efforts should be focused for both short and

long-term management and control of the disease. However, such identification is often

problematic, time-consuming, and data-intensive. Recently network-based analysis

approaches have been established for source detection to account for complex modern

spreading, driven substantially by human mobility. Here we develop a probabilistic frame-

work for waterborne disease, that allows investigators to infer the community or the

region sparking an outbreak based on a sparse surveillance network. The framework

can integrate prior information on the likelihood of a community being the source, for

instance as a function of population size or hygiene conditions. Furthermore, we assign

an accuracy measure to the resulting source estimate, which is crucial for its practical

usability. We test the method in the context of the 2000-2002 cholera outbreak in the Kwa-

Zulu-Natal province with promising results. Moreover, we outline a series of guidelines in
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terms of data needs and preliminary operations to implement the proposed framework in

practice.

This is a PLOS Computational Biology Methods paper.

Introduction

One of the most important factors in epidemic control is to trace the source or origin of an epi-

demic [1, 2]. This problem is sometimes called ‘source localization’ (and can in fact involve

multiple sources). Ideally, one would like to locate the source based on data capturing the

entire history of the epidemic, including times of infection / recovery of individuals as well as

information on contact between individuals and of individuals with infective aspects of the

environment (e.g., water sources). However, epidemic history is complex and high-dimen-

sional, and almost invariably the data are incomplete—often substantially so [3, 4].

Over the past 5-10 years, researchers have found it useful to reformulate the localization

problem as that of estimating a source node(s) on a complex network. There have been a large

number of contributions in this area to date. A recent and comprehensive review has been

conducted by [5]. Many approaches use network-distance-based measures of centrality to

identify the source node in a complex network, such as rumor centrality [6, 7] or Jordan cen-

trality [8, 9]. A related idea is that of effective distance-based source detection [10, 11]. How-

ever, typically these methods assume network-wide observation of the infection status of

nodes at either a single time point or a handful of such snapshots, which is generally unrealistic

for large networks—particularly in the context of human disease. Alternatively, sensor-based

methods are designed to instead locate a source based on arrival-time information of infection

from only a subset of observer nodes (e.g., [12–14]).

Despite the development in this area, there is still substantial room for improvement [5]. In

general, methods proposed to date frequently fail to assimilate the often-abundant information

that can be gained through epidemic modeling, as well as additional prior information. In

addition, they typically do not provide measures of uncertainty quantification. Both of these

aspects are especially important in the context of human disease, where policy providers and

decision makers are often data-poor and yet required to make concrete decisions that have

pronounced impact on society. In this paper, focusing on the illustrative example of cholera

epidemics, we propose a method of source detection that integrates (i) a sensor-based

approach, with (ii) a stochastic differential equation model for water-borne disease. In turn,

we adopt a Bayesian framework, thus allowing for uncertainty quantification and the formal

use of prior information.

A key component of our approach is the incorporation of human mobility networks.

Human mobility is one of the main drivers for the spreading of infectious diseases. Under-

standing, predicting and possibly controlling the propagation of an epidemic in a population

cannot prescind from the analysis of the underlying human mobility patterns. Historically,

network-based research incorporating human mobility has focused on infectious diseases

transmitted through direct contact between individuals e.g. [15–18]. However, the role of

human mobility in the spreading of waterborne diseases (where transmission is mediated by

water) has also recently attracted increasing attention e.g. [19–22]. Indeed, a susceptible indi-

vidual can be exposed to contaminated water while travelling or commuting and seed the

infection in the resident community once back. On the other hand, asymptomatic infected

individuals (who potentially shed pathogens but whose movement is not impaired by the
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disease symptoms) can spread pathogens while moving among different human communities.

These two mechanisms highlight the critical role of human mobility as a notion extending

beyond direct contact.

In this paper, we recast the source detection problem as one of identifying the relevant mix-

ture component in a multivariate Gaussian mixture model from [12]. Human mobility within

the stochastic, spatially-explicit epidemiological model of [22] is used to calibrate the parame-

ters. Our estimator requires only first-arrival times of the epidemic at a small proportion of

nodes, termed sensors or observers. Adopting a Bayesian perspective opens the possibility to

seamlessly integrate available nontrivial prior knowledge from previously observed spreading

patterns or other data sources. Moreover, we are able to quantify uncertainty in the resulting

estimators. Specifically, our approach provides (a) statistically well-defined region(s) of nodes

that are likely to be the spreading origin of the observed process, accompanied by a corre-

sponding posterior probability.

We develop and apply our method in the context of the 2000–2002 cholera outbreak in the

KwaZulu-Natal province, South Africa. In particular, our integrative, Bayesian approach dem-

onstrates significant improvement in this context over the use of a generic sensor-based source

detection approach alone [12].

To better place our contributions in context, we note the following points in comparison to

related work in the literature. First, while there are a number of network-based methods of epi-

demic source detection that are not generic and that incorporate some knowledge of disease epi-

demiology (e.g., [23–25]), this is the first article to integrate cholera-specific transmission

models in network-based source detection. Second, while human mobility networks have been

used previously in network-based epidemic source detection (e.g., [26], who also use a gravity

model similar to ours), this is the first article to integrate the role of human mobility in the com-

plex spreading of waterborne diseases. Finally, while a number of Bayesian approaches have

been suggested or developed in epidemic source detection (e.g., [23, 24, 27]), to the best of our

knowledge none of these have developed an informed prior probability distribution. In addition,

while our use of generic networks for the underlying spreading pattern is less common in the lit-

erature (in contrast to assuming a tree-like structure), there is indeed precedent (e.g., [14, 25]).

Code implementing our proposed method has been integrated into the NetOrigin package

in R.

Results

Sensor-based source localization: Overview of proposed method

We assume a network G = (V, E) to be given that is composed of a set of nodes v 2 V that are

inter-connected by links (u, v) 2 E. Furthermore, there is a spreading process on this network,

which originates in source node s� 2 V. For pre-defined sensors at a small fraction of nodes,

O ¼ fokg
K
k¼1
;K � jVj, we observe the first-arrival times of the spreading process, i.e. t = (t1,

. . ., tK)>. In the epidemiological context motivating our work, the set of nodes v 2 V are

human communities, and the first-arrival times are the time points at which a given level of

disease incidence is attained in observed communities. Our aim is to develop a good estimator

for the source s� and to quantify the uncertainty in that estimator.

Conditional on the underlying spreading process and a given source s�, the first-arrival

times t are assumed to follow a K-dimensional multivariate Gaussian distribution. The a priori
chance that a given node s is the epidemic source is modeled according to a prior distribution

π = (π1, . . ., πN)> over network nodes v 2 V with
PN

v¼1
pv ¼ 1, where N = |V| is the total num-

ber of nodes. Through this prior we incorporate subjective beliefs or other sources of informa-

tion about the origin of the spreading process. Statistical inference on source location is then
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based on the corresponding posterior, with the most probable source determined as

ŝ ¼ arg max
s2V

PðS ¼ sjtÞ; ð1Þ

and the most probable region, by

Ĉ ¼ fs : PðsjT ¼ tÞ > tag; so that
X

s2Ĉ

PðsjT ¼ tÞ � 1 � a; ð2Þ

where here α 2 (0, 1) is pre-specified and τα 2 (0, 1) is the largest such threshold for which the

conditions in (2) hold.

The underlying spreading process is modeled using a set of stochastic differential equations

for the spread of water-borne disease, consisting of three main elements. First, fundamentally,

our model is a version of the well-known susceptible-infected-removed (SIR) model, but

expanded to differentiate rates of death cross each class of individuals as well as to include

components for both symptomatic and asymptomatic infection. Most of the rate parameters

are simple constants to be set by the user (e.g., using historical data, public records, etc.). How-

ever, second, the rates of (a)symptomatic infection are modeled proportional to a ‘force of

infection’ term which, for a given location, summarizes the aggregate contribution of bacterial

concentration at neighboring locations and the extent of human mobility from the latter to the

former location. Finally, third, the bacterial concentration at each location is modeled using a

linear differential equation that includes a term reflecting the number of infected individuals

and the volume of the local water reservoir.

Human mobility is represented through the network G, which is taken to be directed and

weighted. Here nodes correspond to communities and weights on links between nodes reflect

the probability of movement by individuals from one node to another. In our applications,

these probabilities are calculated using a simple gravity model, combining information on the

size of communities and the distance between them.

Our overall approach to sensor-based source localization combines a Bayesian extension of

the method in [12] with the human mobility portion of the spreading model in [20]. By con-

struction, the source localization problem in our setting effectively reduces to that of identify-

ing through the posterior distribution the relevant component in a multivariate Gaussian

mixture model. The necessary parameters for the individual Gaussian components, i.e., the

means and covariances of the first-arrival times observed at sensors 1, . . ., K, are calibrated

using a combination of stochastic simulation from our spreading model and statistical

smoothing of the corresponding output. These simulations in turn are run using various rate

parameters whose values are retrieved through literature review. Additional details regarding

modeling and implementation can be found in Methods.

Analysis of the 2000–2002 South African cholera outbreak

We applied our source estimation approach to data from the 2000–2002 cholera outbreak in

the KwaZulu-Natal province, South Africa. The outbreak lasted for two years, starting in

August of 2000, and ultimately involved about 140, 000 recorded cases in two major waves in

the respective summers [28]. Fig 1 shows the epidemic curve. We can see the peak of the first

wave is much higher than the peak of the second wave.

Figs 2 and 3 show a spatial representation of some of the data and results relevant to our

model. These data have already been described in detail in [20]. In the figures are shown the

spatial locations of N = 851 communities in the KwaZulu-Natal province, indicated by dots for

which the area scales with population size. In turn, each community corresponds to a node in

our human mobility network G. A visualization of this network is also provided, as an overlay.
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In order to improve interpretability, only the three most frequented outbound links are shown

(typically corresponding to roughly 10% of the outward mobility from a node). Among those

links, we split them into 2 sets: the links with top 10% weights and those with bottom 90%

weights. For the first set, we kept their weights unchanged; for the second set, we decreased

their weights to 10% of their original value. That is sufficient to illustrate several characteristics

of the network. In particular, we note the local, grid-like connectivity of much of the network,

which is then complemented by a handful of nodes with substantially higher and more global

connectivity. The network visualization suggests small-world behavior, which can be con-

firmed through computational methods applied to the underlying human mobility network

(see S1 File). The more highly connected nodes with global connectivity correspond roughly

to (i) Durban, the largest city in KwaZulu-Natal, and other cities in the Greater Durban

Municipality (e.g., Inanda); (ii) Pietermaritzburg, the capital and second-largest city in Kwa-

Zulu-Natal, situated 80 km inland from Durban; and (iii) Newcastle, the third largest city,

located near the northwest edge of the province.

Also represented in Figs 2 and 3 is a local version of the basic reproduction number, R0, for

each community, through appropriate shading of the nodes. In epidemiology, the basic repro-

duction number of an infection can be thought of as the number of cases to derive from one

infected case on average over the course of its infectious period, in an otherwise uninfected

population [2]. In a well-mixed population, when R0 < 1, the infection will die out in the long

run. On the contrary, if R0 > 1, the infection will spread. In the case of multiple interconnected

local populations, the concept of basic reproduction number has been generalized by [29, 30].

Here, a local version of the reproduction number has been computed for each node, following

the approach of [20], which combines information on community size with models for con-

tamination and exposure rates that incorporate access to (in)adequate toilet facilities and to

water, respectively. See Methods for additional details.

For each wave, nine nodes with highest weighted degree (also called node strength) in the

human mobility network were chosen, from among those nodes that were infected during a

given wave, to serve the role of ‘observers’ (or sensor nodes) in our source detection algorithm.

These represent roughly 1% of the total nodes in the underlying network for each wave. Select-

ing observer nodes based on degree is expected to improve detection accuracy. (We examine

this assertion further in the synthetic experiments described later in this section.) We see that

the two resulting sets of observer nodes are largely complementary in nature. The observer

Fig 1. Number of cases per day in the 2000-2002 KwaZulu-Natal cholera epidemic.

https://doi.org/10.1371/journal.pcbi.1008545.g001
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Fig 2. The human communities of the KwaZulu-Natal province and their corresponding mobility network (showing only three

most frequently outbound links), with nodes sized and colored to indicate population and R0, respectively. Labels indicate nine

‘observer’ nodes and top five putative sources for Wave 1 of the cholera epidemic, as identified by our proposed methodology (based

on a uniform prior).

https://doi.org/10.1371/journal.pcbi.1008545.g002
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Fig 3. The same human communities mobility network as in Fig 2, but with observers and putative sources corresponding to

analysis of Wave 2 of the cholera epidemic. (Note: The fourth putative source is also an observer node).

https://doi.org/10.1371/journal.pcbi.1008545.g003
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nodes for Wave 1, shown in Fig 2, are spread throughout much of the province, to the north

and northwest of Durban / Pietermaritzburg and to the south and southeast of Newcastle. In

contrast, the observer nodes for Wave 2, shown in Fig 3, are concentrated almost entirely

between these two major metropolitan regions.

Now consider the results of our source detection methodology applied to these data. Shown

in Fig 4 are the posterior probabilities for those ten nodes found to have the largest chance of

being a source node, for each of Wave 1 and 2, under both a uniform prior on nodes and a

prior proportional to the local R0. For each of the four combinations of wave and prior, the

corresponding ten nodes ended up representing a most probable posterior region of roughly

0.70 posterior mass. In comparing results for the two waves, there is clear evidence that the

posterior in Wave 1 is substantially more concentrated on just one (R0 prior) or two (uniform

prior) nodes. On the other hand, while in Wave 2 there is some evidence of similar concentra-

tion under the uniform prior, with the R0 prior there is comparatively less information in the

posterior to differentiate the ten most probable nodes. Accordingly, we see that incorporating

prior information in the form of the local reproduction numbers (which in turn reflect a com-

bination of community size with contamination and exposure rates) has a substantive impact

on the shape of the corresponding posterior distributions.

To understand the impact of these differences in posterior shape on the rankings of putative

sources (and, hence, the potential impact on decisions of policy, resources, etc.), consider the

plots in Fig 5. Overall, it would seem that the ranks are fairly stable, with seven and eight of

those nodes ranked top-10 under the uniform prior still remaining in the top-10 under the R0

prior, for Waves 1 and 2, respectively. However, there are important exceptions. For example,

in Wave 1, there are four points whose initial rankings change considerably by including R0

information (three of which drop well out of the top-10), all of which have very small R0 (i.e.,

0.21 or less). Interestingly, one of these four corresponds to the top-ranked node under the

uniform prior, which nevertheless remains top-10 under the R0 prior (i.e., ranked 7th), sug-

gesting that the evidence in the data towards it being a source is particularly strong. On the

other hand, another of these nodes drops from third to 16th.

Although there is no ground truth for these data, some conjectures can be made based on

these results. As can be seen from the map in Fig 2, these two nodes (i.e., the first and third

ranked putative sources under the uniform prior) are in fact geographically quite close

together and located in the vicinity of Durban. They correspond roughly to Town Verulam

and Westville, respectively. The first is located on the coast about 27 kilometers north of Dur-

ban, and the second, about 10 kilometers to the west of Durban. Both have comparatively large

populations and low R0. In contrast, the node corresponding to an area called Eshane has a

small population (� 500) with a very large R0 (7.18), and yet is ranked the second most likely

source under either choice of prior. Eshane is about 45 kilometers east of Greytown, a town sit-

uated on the banks of a tributary of the Umvoti River in a fertile area that produces timber,

and which sits at the nexus of multiple regional routes (i.e., R33, R74 and R622) which might

help the waterborne disease, cholera, to spread. Examination of the epidemic time course for

Wave 1 shows that the wave was first found to spread largely along the coast (see S1 Fig).

Together, therefore, these observations suggest that the results of our analysis of Wave 1 can be

interpreted as saying that either (i) the epidemic originated in the interior (near Eshane) and

was brought to the coast, or (ii) it in fact originated on the coast (just outside of Durban).

In comparison, the results of our analysis for Wave 2 seem to tell a consistent story, whether

under the uniform prior or the R0 prior, in that the two most likely putative sources are the

same for either choice of prior (albeit with their order switched) and are located fairly close

together. As seen from the map in Fig 3, application of our methodology indicates that the epi-

demic source for this wave lies inland, in the more sparsely populated central region of the
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Fig 4. Ten largest posterior probabilities P(S = s|t) (sorted by magnitude) for source detection during Waves 1 (left) and 2 (right) of

the 2000–2002 cholera epidemic in KwaZulu-Natal, South Africa, under a uniform prior (bottom) and a prior proportional to local

R0 (top).

https://doi.org/10.1371/journal.pcbi.1008545.g004
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Fig 5. Visualization of the extent to which posterior-based ranking of the top ten putative source nodes, under the uniform

prior (x-axis), change when using the R0 prior instead (y-axis), for Waves 1 (left) and 2 (right). The size of each point in the

scatterplots is in proportion to the R0 value for the corresponding node.

https://doi.org/10.1371/journal.pcbi.1008545.g005
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province between the two major metropolitan areas of Durban / Pietermaritzburg and New-

castle. Under the uniform prior, the most likely source is Ezakheni E, a town of moderate

population size and somewhat elevated R0 (i.e., 1.67). And about half as likely is the town of

Estcourt, about 60 kilometers south, also of moderate (although smaller) population size but

with substantially larger R0 (i.e., 3.62). Alternatively, under the R0 prior, these two nodes have

nearly equal (and lower) posterior probability of being a source. Examination of the epidemic

time course for Wave 2 shows that, while the earliest reported cases were to the north and

northeast of the region surrounding these two nodes (i.e., near Newcastle), the bulk of the

infections during this wave seemed to concentrate in this region (see S2 Fig). Therefore, the

results of our analysis suggest that this second wave most likely originated from this central

region, between the two larger metropolitan areas, and spread outward from there, perhaps

through the system of rivers flowing through the area (i.e., Ezakheni E and Estcourt lie close to

the rivers Kliprivier and Boesmansrivier, respectively).

In the above analyses, a node was said to be infected once the prevalence (i.e. the number

of infected individuals) first exceeds 0.1% of the population. Additional analysis shows that

our results (i.e., the top-ten ranked nodes) remain robust when this choice of threshold is

decreased to 0.09% and even 0.05%, but deteriorates at 0.01% (see S3 Fig). At the same time,

thresholds larger than 0.1%, even 0.2%, makes the inference procedure fail, since not all

observers are infected. Formally, this failure could be avoided through appropriate adjust-

ments to the underlying formulas and procedures (i.e., accounting for right-censoring in the

data for these nodes), but one would still nevertheless expect a deterioration in performance.

Synthetic experiments

In order to gain some insight into the reliability of the above results, we conducted a simula-

tion study in the context of the 2000–2002 cholera outbreak. Specifically, we used the genera-

tive model underlying our methodology (described above and in Methods) to generate a

collection of synthetic outbreaks in order to

• investigate the impact on source estimation performance of changes in certain fundamental

implementation details; and

• compare the proposed method with a comparable established approach [12] (see

Discussion).

We simulated N = 851 scenarios, where each node was allowed to be the epidemic source in

turn. A given source node was infected at Day 1 and the first arrival-time of the epidemic at an

arbitrary node is defined as the day on which the prevalence (i.e. the number of infected indi-

viduals) first exceeds 0.1% of the population. For each scenario, we then generated 400 realiza-

tions, 300 of which were used for training (i.e. estimating the spreading parameters and in

turn calibrating the model) and the remaining 100 of which were used for testing, allowing us

to compare the accuracy with which source estimates matched the true underlying sources.

We investigated the robustness in performance of our methodology, as a function of chang-

ing the number of observers, using different observer placement strategies, and incorporating

prior knowledge or not. Specifically, we varied the

1. number of observers: 9 or 18 observers representing 1% or 2% of the total number of nodes,

respectively.

2. observer placement strategies: random observer selection (random) or high-degree

observer placement strategy (high-degree) [12], i.e. selecting observers with the highest

(weighted) node degrees in the human mobility network.
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3. incorporation of prior knowledge: informative prior, where the prior is proportional to

each node’s R0 (R0 prior), and non-informative prior, following a uniform distribution

(uniform). Nodes with larger R0 are easier to be infected, so it is reasonable to let the prior

be proportional to these values.

Accuracy of our methodology was quantified using the following four criteria with respect

to the true source s�:

1. the probability that the 0.95 credible region contains s�;

2. the size of the 0.95 credible region;

3. the probability that s� is ranked among the Top 10;

4. the mean distance between s� and the estimated source ŝ.

We classified the nodes into different groups according to the magnitudes of their R0

(divided into 6 categories [0, 0.9), [0.9, 1.8), [1.8, 2.7), [2.7, 3.6), [3.6, 4.5), [4.5,1)) and their

populations (on a log base 10 scale, divided into three categories), and made box plots for the

above four criteria as a function of the various conditions. See S4, S5 and S6 Figs.

Based on our simulation results, we can conclude the following:

1. The high-degree observer placement strategy outperforms the random placement strategy.

2. The frequency with which the true source s� is ranked in the Top 10 increases, and the

mean distance between the true source and the estimation decreases, with increasing num-

ber of observers. At the same time, there is also a small decrease in the coverage probability

of the 95% credible region and a much larger decrease in the size of the 95% credible

region.

3. When using the high-degree placement of observers, the performance corresponding to 9

observers and that corresponding to 18 observers are comparable.

4. Use of a prior proportional to R0 yields better results than a uniform prior when the source

has large R0.

5. Using either prior (uniform prior or prior proportional to R0), empirical coverage probabil-

ities of the 0.95 credibility regions are good (> 0.7) for sources with not too small R0’s

(> 1.8) or moderate population (log10 > 3.5).

6. It is possible for the 0.95 confidence sets to contain over 100 nodes. However, these sets will

be substantially smaller (e.g., 10’s of nodes) and have good coverage probabilities if the R0

of the sources are not too small (> 1.8) and the population is large (log10� 4.5).

7. For the probability of the true source being in the Top 10 to be at least 0.5, under a uniform

prior, the R0 of sources should not be too small (> 1.8) and the population should be large

(log 10-base� 4.5). Under a prior proportional to R0, the R0 of sources should be larger

(over 2.7).

8. Using either prior (uniform or proportional to R0), if the true source has moderate R0

(� 2.7) and large population (log10� 4.5), the distance between true and estimated sources

can be smaller than 50 (km).

In general, as can be expected, our proposed method has good performance when the

source node/city has moderate or large R0 and population. These simulation results also sug-

gest the following guidelines for usage of our methodology in practice:

PLOS COMPUTATIONAL BIOLOGY Sensor-based localization of epidemic sources on human mobility networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008545 January 27, 2021 12 / 21

https://doi.org/10.1371/journal.pcbi.1008545


1. To monitor spreads of epidemics, placing resources onto transportation hubs, i.e. ‘high-

degree’ nodes is preferred.

2. There are 79.1% nodes having R0 > 1.8 or moderate population (log10 > 3.5). Thus

although we will not know the R0 and the population of the true source beforehand, there

are still large chances we can ensure good (> 0.7) coverage probabilities.

3. There are only about 5% nodes with large population (log10� 4.5) thus the chance that we

have small credible region (10’s of nodes) with reasonable coverage is small. However, if we

use 18 observers, in most cases we can ensure good coverage (as Item 5 in the conclusion

list describes) with credible regions less than 100 nodes, which are usually feasible.

4. If we use a prior proportional to R0, there is a large chance that the probability of the true

source being in the Top 10 to be at least 0.5, which is 41.5% (We only need the source to

have large(> 2.7) R0, compared to using the uniform prior—where there is only less than

5% chance that the source fulfills the requirements described in Item 7 in the conclusion

list.

Discussion

Tracking the source of an epidemic outbreak is of crucial importance in epidemiology. Indeed,

the identification of the area or the human community that sparked an outbreak is useful not

only for the short-term disease control, i.e. focusing interventions in the area in an effort to

stop the transmission, but also for the long-term management of the disease as such an area

could be the designated target of future interventions to curb the risk of new outbreaks. There-

fore, the source detection problem is relevant not only in real-time, but also retrospectively on

past data. However, the correct identification is often impaired by the lack of widespread and

efficient surveillance networks, especially in developing countries. Even in the cases where

such health infrastructures exist, the simple analysis of the data to identify the area where the

first cases where reported might lead to an incorrect identification of the true source. In fact,

the real beginning of an outbreak could go unreported because initial cases are misdiagnosed.

This is the case for instance with cholera, for which lab confirmation of suspected cases is typi-

cally performed routinely only when an ongoing outbreak is declared. In this context, thus,

mathematical models for source identification are of primary importance.

In this paper, we developed a framework that allows the probabilistic identification of the

source based on first-arrival times of the infection on a small subset of nodes (e.g. human com-

munities) used as observers, thus potentially reducing the cost to set up and maintain a surveil-

lance network. From a mathematical perspective, we recast the source detection problem as

identifying a relevant mixture component in a multivariate Gaussian mixture model. The

framework is complemented by a stochastic spatially-explicit epidemiological model that

embeds information about the human mobility network and is used to calibrate the parame-

ters characterizing the probability distributions of first arrival-times. With our approach we

address the major challenges stated by [5]. Building on the sensor-based Gaussian mixture

approach, our data needs are realistic for practical settings. Additionally, the implementation

is computationally feasible in large networks. Furthermore, we allow generic networks for the

underlying spreading pattern (in contrast to assuming a tree-like structure). Moreover, adopt-

ing a Bayesian perspective opens the possibility to seamlessly integrate available nontrivial

prior knowledge from previously observed spreading pattern or other data sources. While

there are many methods for source detection, it is comparatively more rare that they also

quantify the estimator accuracy, and none with an informed Bayesian prior probability
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distribution. Also note that our uncertainty quantification does not take into account uncer-

tainty in the model components including gravity model and human mobility, epidemiological

model for cholera spread, etc. These components are almost certainly idealized and only, at

best, useful rather than correct. Thus practitioners should interpret the resulting numbers as

guiding decision making rather than absolute truths. We define (a) statistically well-defined

region(s) of nodes that are likely to be the spreading origin of the observed process. Because

this region need not be contiguous, it also arguably provides some information on the prospect

for multiple sources (although we do not formally solve here the problem of detecting multiple

sources, which is notably more complex).

Among existing methods in the literature, our method can perhaps be viewed as closest to

the seminal work of Pinto et al. [12], which has been shown to be quite competitive with many

other methods under a variety of scenarios [5]. However, for the specific context of water-

borne diseases studied here, our method substantially outperforms that of Pinto et al. in simu-

lation (see S7 Fig). This advantage illustrates the value-added yielded by our use of highly

informative prior information, i.e., through (i) utilization of the full human mobility network,

(ii) encoding of prior information on quality of water and toilet facilities, and (iii) integration

of a stochastic spatially-explicit epidemiological model to calibrate the means and covariances

in our Gaussian mixtures.

The capability of the proposed method is demonstrated in the context of the 2000-2002

cholera outbreak in the KwaZulu-Natal province, through analyses of both actual data from

the outbreak and a corresponding collection of synthetic experiments. In the experiments, we

showed that the proposed method performs well if the source has moderate or larger R0 and

population. Examination of experimental output suggests that the decay in performance in the

case of small R0 or population may be due to a lack of fit with the assumed multivariate Gauss-

ian in the mixture model at the core of our framework. While simulation suggests that the

Gaussian can be quite reasonable otherwise (see S8 and S9 Figs), the use of more general mix-

ture models may help (e.g., nonparametric Bayesian mixtures [31]). However, it is not imme-

diately apparent how best to integrate such models with an underlying epidemiological model.

Alternatively, one might instead specify a mixture of epidemiological models, each defined

conditional on a different node being the source. However, posterior-based inference of the

source under this approach is likely to be nontrivial to implement, since even just parameter

estimation in a single such version of our underlying epidemiological model has been found to

require the use of sophisticated Markov chain Monte Carlo algorithms [20]. Accordingly, our

proposed approach—detecting sources through posterior-based inference in Gaussian mixture

models, with mean and covariance parameters informed by epidemiological models—may be

viewed as a compromise that allows for increased interpretability and computational effi-

ciency, arguably blending statistical and mathematical modeling in the spirit of data assimila-

tion techniques.

We note that our analysis of the KwaZulu-Natal data is a retrospective study in nature—we

effectively work from those nodes with sufficiently high prevalence and infer ‘backwards’

through the human mobility network to putative sources. Importantly, those nodes with insuf-

ficient prevalence do not contribute to the analysis (i.e., the difference in observer times with

these nodes is right-censored and hence effectively infinity). A prospective study would poten-

tially yield different results, depending on the choice of observer set. For example, if the

observer set is chosen to contain the union of the two sets we have used in this paper (i.e., for

Waves 1 and 2, respectively), then the results will be unchanged. On the other hand, to the

extent that a common observer set contains only part or none of the two wave-specific sets we

used, the results will change, and can be expected to degrade.
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Finally, the framework and the results presented herein allow preliminary delineation of a

road-map to set up a surveillance network based on the proposed method in a country. The

first step should consist of retrieving data on the spatial distribution of population. Available

global sources are, e.g., WorldPop (www.worldpop.org), LandScan (landscan.ornl.gov)

or the Global Human Settlement Layer (ghsl.jrc.ec.europa.eu). Then, possible cen-

sus data on WASH (Water, Sanitation and Hygiene) conditions, e.g. access to tap water or toi-

let facilities, should be sought in order to possibly characterize the spatial heterogeneity of the

Basic Reproductive number R0. Once such information is collected, the spatially-explicit sto-

chastic epidemiological model can be set up. If data on past outbreaks are available, critical

epidemiological parameters can be estimated using such information. Otherwise, reference lit-

erature values for such parameters can be assumed. As previously described, simulations of the

epidemiological model are used to calibrate the parameters of the probability distributions of

first-arrival times. An analysis like the one reported in section Synthetic experiments is also rec-

ommended to select the best strategy to allocate the observer nodes. Once the number and the

location of the observer nodes are decided, an epidemiological surveillance system instructed

to routinely perform lab testing for each suspect case of the selected disease is to be established.

If an outbreak occurs, data on first arrival times at the selected nodes should readily allow the

inference of the possible region of the source of the outbreak, thus enabling fast and effective

interventions.

Methods

Gaussian source estimation with prior information

Following [12], we cast the source detection problem as identifying the relevant mixture com-

ponent in a multivariate Gaussian mixture model. However, from the Bayesian perspective we

adopt here, whereas the authors in [12] use a uniform prior over sources in their formulation,

here we incorporate substantially more structured prior information. This structure arises

both through the use of potentially nonuniform priors over sources (i.e., informed by local val-

ues of R0) and through calibration of the multivariate Gaussian parameters using a human

mobility network and a stochastic epidemiological model.

Let πs be the prior probability of node s 2 V being the source and let t be the K-dimensional

vector of observed first-arrival times. Conditional on s being the true source, t is assumed to

follow a multivariate Gaussian distribution, with mean vector μs and covariance matrix Λs.

Denote the corresponding density function by ϕ(t; μs, Λs). Then t has density

XN

j¼1

pj�ðt;μj;ΛjÞ : ð3Þ

A point estimate ŝ of the true source, say s�, can be obtained by maximizing the posterior

probability computed by Bayes theorem, i.e.

ŝ ¼ arg max
s2V

PðS ¼ sjtÞ ¼ arg max
s2V

ps�ðt; μs;ΛsÞ
PN

j¼1
pj�ðt;μj;ΛjÞ

:

The formula above can be written as:

ŝ ¼ arg max
s2V

(

�
1

2
ðt � μsÞ

>Λ� 1

s ðt � μsÞ þ log ps

)

: ð4Þ

Hence, this approach is equivalent to standard linear discriminant analysis for K-dimensional
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classification, with pre-defined class weights [32]. The Gaussian source estimator by [12] is a

special case, assuming a uniform prior, i.e., π1 = � � � = πK = 1/K.

A set estimate Ĉ for s� may be obtained in the form of a highest posterior density (HPD)

region, by applying the largest threshold τα corresponding to choice of a pre-specified α so that

Ĉ ¼ fs : PðsjT ¼ tÞ > tag; so that
X

s2C

PðsjT ¼ tÞ � 1 � a: ð5Þ

The HPD region fulfills the condition that PðsjT ¼ tÞ > Pð~sjT ¼ tÞ for all s 2 Ĉ and ~s =2 Ĉ;
and consequently minimizes the volume of the area covered, among all sets with at least 1 − α
posterior mass [33]. Note that this definition does not consider distance with respect to the

network connectivity. Furthermore the HPD region does not necessarily need to be a con-

nected subgraph of the network.

Parameter calibration using a human mobility network and the stochastic

epidemiological model

In order to produce the point and/or set estimates ŝ and Ĉ, values must be available for the

mean and covariance parameters μs and Λs of each Gaussian component. There are determin-

istic estimates available for these parameters, which can be derived easily from network

topology information only, using shortest path lengths between potential source candidates

and sensors [12]. But μs and Λs—representing first and second order information on the

behavior of the first arrival times t—are reflective of what in the current setting is typically

a highly complex stochastic phenomenon. Accordingly, we instead calibrate these values in

our model using a stochastic epidemiological model that integrates human mobility network

information.

A stochastic, spatially-explicit epidemiological model for the transmission of cholera, a

prototypical waterborne disease, has been introduced in [22]. This model considers a set of

human communities interconnected by a mobility network and describes the temporal evolu-

tion of the integer number of susceptible (Si), infected (I i), and recovered (Ri) individuals

hosted in the nodes i of the network. Additionally, the model incorporates the evolution of the

environmental concentration of bacteria (Bi). Events that involve human individuals (i.e.,

births and deaths, as well as changes in epidemiological status) are treated as stochastic events,

each occurring at a rate that depends on the state of the system. The possible events and their

corresponding rates are shown in Table 1.

Table 1 shows transitions and rates of occurrence for all possible events indexed by a given

node i. The generic event k occurs in node i at rate nki . Each node has a population that is

Table 1. Transitions and rates of occurrence of all possible events in a node i. Based on [22, Table 1].

Event Transition Rate

Birth ðSi; I i;RiÞ ! ðSi þ 1; I i;RiÞ n1
i ¼ mHi

Death of a susceptible ðSi; I i;RiÞ ! ðSi � 1; I i;RiÞ n2
i ¼ mSi

Symptomatic infection ðSi;I i;RiÞ ! ðSi � 1; I i þ 1;RiÞ n3
i ¼ sF iSi

Death of an infected ðSi; I i;RiÞ ! ðSi;I i � 1;RiÞ n4
i ¼ mI i

Cholera-induced death ðSi; I i;RiÞ ! ðSi;I i � 1;RiÞ n5
i ¼ aI i

Recovery of an infected ðSi;I i;RiÞ ! ðSi; I i � 1;Ri þ 1Þ n6
i ¼ gI i

Asymptomatic infection ðSi;I i;RiÞ ! ðSi � 1; I i;Ri þ 1Þ n7
i ¼ ð1 � sÞF iSi

Death of a recovered ðSi; I i;RiÞ ! ðSi;I i;Ri � 1Þ n8
i ¼ mRi

Immunity loss ðSi;I i;RiÞ ! ðSi þ 1; I i;Ri � 1Þ n9
i ¼ rRi

https://doi.org/10.1371/journal.pcbi.1008545.t001

PLOS COMPUTATIONAL BIOLOGY Sensor-based localization of epidemic sources on human mobility networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008545 January 27, 2021 16 / 21

https://doi.org/10.1371/journal.pcbi.1008545.t001
https://doi.org/10.1371/journal.pcbi.1008545


assumed to be at demographic equilibrium. We use μ to represent the human mortality rate,

and μHi, a constant recruitment rate. The force of infection is defined as

F i ¼ bi ð1 � mÞ
Bi

K þ Bi
þm

Xn

j¼1

Qij

Bj

K þ Bj

" #

;

and captures the rate at which susceptible individuals become infected due to contact with

contaminated water. The parameter βi represents the exposure rate. The fraction Bi=ðK þ BiÞ

is the probability of becoming infected due to the exposure to a concentration Bi of V. cholerae,

K being the half-saturation constant [34]. Because of human mobility, an individual residing at

node i—if susceptible—can be exposed to pathogens in the destination community j. This is

modeled in the following way: the force of infection in a given node is assumed to depend on

the local concentration Bi for a fraction (1 −m) of the susceptible hosts, and for the remaining

fraction m, on the concentration Bj of the surrounding communities. The parameter m thus

represents the probability, at a community-level, that individuals travel outside their node

(assumed here to be node-independent). The concentrations Bj are weighted by values Qij,

representing the probability an individual living in node i reaches the destination j. Matrix Q
thus epitomizes information about human mobility. Formally, human mobility patterns are

defined according to a gravity model in this approach. Qij is defined as:

Qij ¼
Hje

� dij=D

Pn
k6¼i Hke� dik=D

; ð8Þ

where the population size serves as an attractive force, and the distance dij between two com-

munities (represented using an exponential kernel, with shape-factor D), as a deterrent force.

Concentration BiðtÞ is modeled as a stochastic variable in continuous time, based on the

expectation of a large number of bacteria. Its evolution is described by:

dBi

dt
¼ � mBBi þ

pi

Wi
I i

where μB is the mortality rate of the bacteria in the environment, pi is the rate at which bacteria

produced by one infected person reach and contaminate water in the local reservoir of volume

Wi, and I i is the number of infected.

Assuming a single node s as the source of the epidemic, the stochastic model just described

allows for the generation of multiple Monte Carlo realizations of the outbreak. From these

realizations we may obtain estimates of the mean and covariance parameters μs and Λs for the

first-arrival times t at the observers. (Methods of numerical integration or similar might be

used here instead). This procedure is repeated assuming each node in turn as a potential

source. To estimate μs accurately we rely on large-sample properties of simple averaging.

However, our estimation of Λs was found to benefit from the use of shrinkage methods. We

adopted the approach of [35], which assumes zero covariance among off-diagonal elements

(supported by our data, most likely due to the sparse and distributed nature of our observer

nodes), but heterogeneous variances, which are estimated using a distribution-free shrinkage

towards the median.

Additional implementation details may be found in S1 File. In particular, information on

how we set the various rate parameters in our stochastic model may be found therein, with

corresponding pointers to the supporting literature.
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Supporting information

S1 Fig. The 2000-2002 cholera outbreak, the first wave. Node 431: uMhlathuze Local Munic-

ipality, South Africa, 143km north of Durban.

(TIF)

S2 Fig. The 2000-2002 cholera outbreak, the second wave. Node 450: South west of town

Ezakheni A, not far (17km) from Ladysmith to the south east.

(TIF)

S3 Fig. Sensitivity analysis. Shows that our results (i.e., the top-ten ranked nodes) remain

robust when the choice of threshold is decreased to 0.09% and even 0.05%, but deteriorates at

0.01%.

(TIF)

S4 Fig. The performance of the proposed method. (A) empirical coverage probability of the

95% credibility region and (B) the size of the 95% credibility region. Different simulation set-

ting are shown: 9 or 18 observers, random and high-degree observer placement, and incorpo-

ration of informative R0 prior and non-informative uniform prior knowledge.

(TIF)

S5 Fig. The performance of the proposed method. The probability that the posterior of the

true Source is ranked in the Top 10.

(TIF)

S6 Fig. The performance of the proposed method. Distance Between the True Source and

the Estimation.

(TIF)

S7 Fig. Comparison between the proposed method and Pinto’s method.

(TIF)

S8 Fig. Visualizations illustrate that the quality of the Gaussian approximation is quite

reasonable, under model assumptions. To illustrate, we used the 1st-ranked inferred source

in the second wave as a source and simulated outcomes according to our model. The marginal

distributions for arrival times at the various 2nd wave observers are shown above. We can see

that a normal approximation agrees well with the histograms of arrival times.

(TIF)

S9 Fig. Bivariate plots illustrate the quality of the Gaussian approximation for distribu-

tions across pairs of observer nodes. The bivariate scatterplots agree with the contour of nor-

mal distributions with same mean and covariance structure.

(TIF)

S1 File. Additional details. [36, 37].

(PDF)
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15. Colizza V, Barrat A, Barthélemy M, Vespignani A. The role of the airline transportation network in the

prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences.

2006; 103(7):2015–2020. https://doi.org/10.1073/pnas.0510525103 PMID: 16461461
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