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Abstract: The characteristics of commercially available refined and bodied linseed and tung oils,
used as binders in the production of armour paints after historic recipes, are explored. Employed as
anticorrosive paints mainly from the 1920s to 1960s, armour paints are greener alternatives that can be
used for protection in industrial heritage conservation. Using a multi-analytical approach, chemical
and physical properties of the fresh oils and solid films before and after accelerated ageing (ISO
16474-2:2013) were investigated to better understand which features are beneficial for the technical
function of armour paints. Tests included measurements of density, the refractive index, insoluble
impurities, alkaline impurities, the water content, the iodine value, the saponification value, the free
fatty acid concentration, the acid value, the peroxide value and colour (Lovibond) and cold tests.
The characterisation of the fresh oils using molecular analysis with FTIR and GC-MS revealed the
complexity of the commercial formulations, for which additions of semi- and non-drying oils were
detected. The results show that organic paint binders follow complex chemical reactions (such as
oxidation and decrease of unsaturation being variable or swelling following water-immersion tests),
with implications for their suitability for use in protection.

Keywords: armour paints; bodied drying oils; anticorrosive coating; ferrous heritage; stand oil; tung
oil; air-blown varnish; modern linseed oil; drying oil oxidation; ageing; imbibition

1. Introduction

This work aims to investigate the ageing characteristics of binders alone in order to
reveal more information about their function as part of armour paints. Armour paints
are paint systems that have shown remarkable performance and have lasted outdoors for
over 85 years, as exemplified by the Oat Mill in Stockholm [1]. The concept and ageing
characteristics of aluminium-pigmented armour paint—a historical, anticorrosive paint
type from the early 20th century—entail excellent protection for weather-exposed ferrous
substrates [1,2]. Armour paints are of particular relevance for historical ferrous objects for
which there is a need for sustainable and greener paint systems and a desire to replicate
historical practices in applications. In its original concept, armour paint is applied to
ferrous surfaces and consists of two layers of a primer of red-lead linseed oil paint and two
layers of lamellar specularite and leafing aluminium pigments bound in bodied linseed
and a tung stand oil mixture (i.e., drying oil varnishes). With ageing, historical and replica
paints (based on historical recipes) become highly oxidised, but natural ageing for four
years in southern Sweden and accelerated ageing (according to ISO 16474-2:2013) were
found to result in approximately equal ageing characteristics, and a high proportion of
unsaturated fatty acids remained in the sub-surfaces of the replica paints [2].

The motivation for assessing binders in this work is that there has been a confusing
debate in Sweden among stakeholders, heritage agencies, producers and master painters
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about how to make and use linseed oil paints for the protection of outdoor heritage objects.
Oil varnishes have been used as binders for paint-making for centuries but, after the
Second World War, they were outcompeted by other paint types, such as alkyds and
paint with a petrochemical origin [3]. Until about 1890, linseed oxide varnishes were
commonly produced by adding driers of metal oxides (such as lead and/or manganese),
which were dissolved by high-temperature heat treatments of the purified oil [3,4]. This
method continued to be used until ca. 1920. In ca. 1890, a new procedure was introduced
where liquid driers (different lead, manganese and cobalt compounds) were dissolved in
resins, drying oils, fatty acids or naphthenes and added to the oils at a substantially lower
temperature, which also led to different characteristics in the solid films (compared to the
oxide varnishes). Later in the 20th century, other types of liquid driers were introduced.

For anticorrosive paints, fat oil varnishes—such as heat-bodied oxide varnishes, stand
oils and linseed oils added to tung oil mixtures—have been used as binders since they
improve the paint layers’ impermeability and hydrophilicity (these are important features
of weather-exposed paints in order to resist initiation of under-film corrosion) [4]. For
anticorrosive paints, cold-pressed and purified linseed oils are recommended as they are
believed to produce high-quality films [5,6]. Raw linseed oils, or boiled linseed without any
addition of driers, should never be used for the same reasons. In Sweden and elsewhere,
the production of linseed oils and paints was resumed in the 1990s but not on a scale
comparable to historical periods. Most contemporary linseed oil paints in Sweden use
cold-pressed linseed oils, heated to 120–150 ◦C and air-blown, with liquid driers, such as
Co-Zr ethyl hexane/octate/proprionates.

The characteristics and ageing of drying oil and varnishes are most often described
in terms of oxidation, polymerisation and hydrolysis [7,8]. Until the mid-20th century, it
was common for technical descriptions to also consider the colloidal state of the oils and
varnishes [4,9,10]. This is an aspect that has been recognized in conservation science, with
Dietemann stating that the colloidal aspects of the paint are often “forgotten, overlooked,
or ignored” [11]. The colloidal state of the oil or varnish is determined by factors such as
purification treatments, heat treatments and the type of drier [4]. The colloidal nature of the
solid film (or gel) affects its characteristics, such as its solubility in different solvents. This
is relevant for exterior paints since environmental water and moisture are polar solvents.

The investigation of binders in this work was based on an analysis of the different
chemical and physical characteristics of binders and films to reveal differences in compo-
sitions and responses to accelerated ageing conditions. FTIR spectroscopy and GC-MS
analysis were conducted on unaged liquid and solid varnishes and aged solid films to
probe the chemical modifications that occur with ageing of the paint binders. Different
laboratory methods were used for the assessment of chemical and physical bulk properties
to find out if any correlation could be identified between the chemical composition and the
performance of the oils as binders. The physical properties of oil films were tested using
a glass-plate method, used by varnish producers in the 1930s, specifically to assess the
resistance to water exposure for solid varnishes. For comparison, two other varnishes were
studied: a litharge varnish was added, as this type was used historically until the 1920s [3],
and pyrolusite and manganese borate varnishes were tested, since the oxide varnishes
were used for demanding applications and heat-bodied at higher temperatures than the
modern linseed oil varnishes.

2. Materials and Methods
2.1. Materials and Sample Overview

The following commercially available drying oils were investigated to compare the
influence of air blowing, heat bodying and the presence of stand oil in paints: (1) a modern,
air-blown linseed oil varnish (OH), (2) a heat-bodied manganese oxide varnish (WHT), (3) a
linseed stand oil with a viscosity of 50 dPa·s (WS) and (4) a mixture of (2) + 20 wt% bodied
tung oil (WT). Details of the binders can be found in supplement A in [2]. Additional
binders were also assessed using water immersion tests and included an oil boiled at
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high temperature with litharge addition (L), pyrolusite varnish (P) and a manganese
borate varnish (MB). The variants were analysed in liquid and solid form; i.e., as fresh
and (partially) dried paint mixtures. The solid state was investigated in unaged reference
samples and at two points during artificial ageing, as outlined in Table 1.

Table 1. Overview of the oil binders studied. Each oil was studied at equivalent exposures corresponding to four weeks
following application, with 64 kJ and 97 kJ exposure to filtered Xenon light as part of ISO 16474-2:2013 cyclical testing.

Typology (Drying Oil Used) Paint Name Description Exposure

OH
Air-blown linseed oil varnish (heated to

130–150 ◦C, drier: Co-Zr ethyl
hexane/octate/proprionate).

OH-L Liquid Fresh oil

OH-0 Solid film—unaged 4 weeks naturally aged

OH-A1 Solid film—aged 1 64 kJ

OH-A2 Solid film—aged 2 97 kJ

WHT
Heat-bodied manganese compound varnish

(boiled at high temperature, 280 ◦C).

WHT-L Liquid Fresh oil

WHT-0 Solid film—unaged

WHT-A1 Solid film—aged 1 64 kJ

WHT-A2 Solid film—aged 2 97 kJ

WS
Stand oil—linseed stand oil, 50 dPa·s

WS-L Liquid Fresh oil

WS-0 Solid film—unaged

WS-A1 Solid film—aged 1 64 kJ

WS-A2 Solid film—aged 2 97 kJ

WT
80 wt% WHT + 20 wt% bodied tung oil

WT-L Liquid Fresh oil

WT-0 Solid film—unaged

WT-A1 Solid film—aged 1 64 kJ

WT-A2 Solid film—aged 2 97 kJ

T
Bodied tung oil T Liquid For chemical and physical

quantification only

L L-0 Unaged Litharge varnish *

P P-0 Unaged Pyrolusite varnish *

MB MB-0 Unaged Manganese borate varnish *

OHT OHT-0 Unaged OH with 20 wt% tung oil *

* Water immersion test only.

Application of Liquid Oils and Varnishes to Steel Sheet Substrate

Mild steel sheets, commonly used for steel-sheet roofing (Dogal DC10 from SSAB),
with a size of 75 × 95 mm were coated with oil binders. The chemical composition of the
steel was C 0.12 wt%, Mn max 0.8 wt% and P and S max 0.045 wt%. The steel sheets were
degreased with ethanol, rubbed with fine steel wool and detergent to a surface profile of
Ra 6 ± 1 µm, washed in water and dried. Immediately before coating, the surfaces were
washed and wiped off in ethanol and air dried. The coating was applied with a drawdown
bar. The thickness of the solid film was 18–22 µm± 3 µm and was measured by a magnetic,
inductive, handheld Permascope device (25 measurements per sample). The films were
dried at room temperature, RH 37–40%, for four weeks prior to accelerated ageing. The
effects of autophobicity as described in [12] were observed mainly for OH, but films that
appeared to be satisfyingly smooth, dense and without apparent defects visible in daylight
and UV light were chosen for the accelerated ageing. The solid films were, despite this,
expected to contain some inhomogeneities. When the binder is mixed with pigment, the
effects of the autophobicity of the air-blown varnish (OH) are less pronounced, as described
in previous work [1,2].
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2.2. Ageing Conditions

Accelerated ageing was carried out in a climate chamber by using a standardised
cyclic test [13], the Xenotest 440 from Atlas Instruments. The samples were exposed to
controlled cyclic humidity and UV light (Xenon arc lamps with a wavelength distribution
similar to daylight). Three samples of each variant were placed in the climate chamber and
removed in intervals until the test was stopped after 27 h. The degradation of organic films
(without pigments) appeared to be very rapid. A preliminary test series revealed that the
solid varnish films were heavily deteriorated and had practically disappeared from the
substrate during the exposure of two weeks. Therefore, a much shorter regime was chosen
to examine the rapid changes that occur in the initial stages of oxidation: the first aged
sample (A1) of each variant was removed after 17 h and the second (A2) after 27 h (and
they were not put back into the chamber after the removals). All aged samples showed
rusty areas, indicating that moisture had already reached the steel/varnish interface. It
could also be observed that the films were partly absent, i.e., the ageing had eroded films
from the substrate.

2.3. Investigations and Analytical Methods
2.3.1. Testing Chemical and Physical Properties of the Oils

The following chemical and physical properties were assessed by a quality-certified oil
laboratory according to common procedures and standards: density, refractive index, cold
test, insoluble impurities, alkaline impurities, water content, iodine value, saponification
value, free fatty acids, acid value, peroxide value and colour (Lovibond).

Appendix A lists the specific methodologies/standards adopted for each measured
property/characteristic. The measurements were assessed with a relative Sd of a maximum
of 0.5%, and blank and control references are used.

2.3.2. Fourier-Transform Infrared Spectroscopy

Analysis of liquid and (unaged and aged) solid films was carried out by Fourier-
transform infrared spectroscopy (FTIR). A Bruker Optics Alpha FTIR spectrometer was
used in attenuated (ATR) mode with a diamond cell. The spectrometer was equipped with
a Pt/SiC globar source, a RockSolid interferometer (with gold mirrors) and a deuterated
triglycine sulphate (DLaTGS) detector, operating at room temperature and giving a linear
response in the spectral range between 7500 and 375 cm−1. Measurements in ATR mode of
liquids and micro-samples from the surface were analysed with a resolution of 4 cm−1 and
128 scans.

2.3.3. Gas Chromatography–Mass Spectrometry

To fully characterise the organic lipidic fraction and better understand the effect of
the ageing conditions on the paint mixtures, GC-MS was applied on both liquid oils and
(unaged and aged) solid films. Following a GC-MS procedure already tested on modern
lipidic mixtures [14–21], small samples of oil films (weights ranging from 0.10 to 0.20 mg)
were treated with 50 µL of m(trifluoromethylphenyl)trimethylammonium hydroxide with
2.5% methanol in an overnight reaction at room temperature. One microlitre of the obtained
derivatised solution was automatically injected by an AS1310 autosampler (Thermosci-
entific, Waltham, MA, USA) in a Trace GC 1300 system-equipped ISQ 7000 MS with a
quadrupole analyser (Thermoscientific). The chromatographic separation was performed
on a chemically bonded, fused silica capillary DB–5MS Column (30 m length, 0.25 mm,
0.25 µm—5% phenyl methyl polysiloxane), using helium as the carrier gas (1 mL/min
flow rate). The inlet temperature was 280 ◦C, and the MS interface was at 280 ◦C. The
transfer line was at 280 ◦C and the MS source temperature was 300 ◦C. The temperature
was programmed from 50 ◦C (held for 3 min) to 320 ◦C (held for 5 min), with a ramp of
10 C/min. The MS scans were performed in full-scan mode, considering the range from
40 to 650 m/z, with 1.9 scans/s. The electron ionisation energy was 70 eV. The compounds
were identified as methyl ester (following a transesterification reaction) by comparison
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with the NIST and MS Search 1.7 libraries of mass spectra and a library created by the
authors. Quantitative analysis was undertaken using nonadecanoic acid as the internal
standard and a standard solution containing saturated (myristic, palmitic, stearic, azelaic,
suberic and sebacic) and unsaturated (oleic, linoleic, linolenic and palmitoleic) fatty acids
and glycerol.

The most significant molar ratios among the fatty acids considered in this study
were: P/S (palmitic to stearic acid ratio), which is commonly used to suggest the type of
drying oil; A/P (azelaic to palmitic acid ratio), D/P (ratio of the sum of the dicarboxylic
acids—azelaic, suberic, sebacic and pimelic—to palmitic acid) and D% (total percentage of
dicarboxylic acids − azelaic + suberic + sebacic + pimelic ), used to provide information on
the degree of oxidation of oil; and, finally, the O/S ratio (oleic to stearic acid ratio), which
can indicate the maturity of oils [14].

2.3.4. Water Immersion Test

The test used for the water absorption and imbibition of the varnish films was a
rapid test and it was applied to the largest selection of oil paints. Testing was carried out
using a modified method historically used by varnish makers [4]. A solid varnish film
immersed in water absorbs water and swells heavily (with a simultaneous decrease in
firmness and increase in elasticity); this is a phase differentiation phenomenon that is called
imbibition [4]. The swelling decreases when the liquid evaporates, but since the original
state is not achieved (hysteresis), this leads to gradual deterioration of the solid film. The
time taken for the film to turn opalescent or milky is used as an indicator of its water
resistance, an important feature for anticorrosive paints. The test is carried out as follows:
drops of liquid oil or varnish are spread on clean glass plates (microscope objective glasses)
and dried for at least seven days. When the glass plates are submerged in distilled water,
the time required to turn the film milky is measured. Typically, a duration of 60 h is used
for the test, but in this study 24 h was used, as all films became milky in less than this
time. The exposed glass plate was observed over black paper to achieve high contrast. The
results are stated as sums of four replicates on solid unaged films.

3. Results and Discussion
3.1. Liquid Samples
3.1.1. Chemical and Physical Properties of Liquid Oils and Varnishes

First, as shown in Appendix A, the density or body differed for the varnishes, with
the modern OH-L being the least bodied. Nevertheless, OH-L fell within the ISO 150:2006
and ISO 150:2018 standards for “boiled linseed oil” [22,23]. The refractive index was higher
for the heat-bodied varnishes and highest for the tung oil T-L. The results from the cold
test (and the insoluble impurities) confirmed that the turbidity was low in all samples,
indicating high purity and low water content. The saponification value was about equal for
all samples, and this also indicated that the purity was high for all the commercial oils. The
alkaline impurities were slightly higher in OH-L but, on the other hand, its acid value was
low. The low acid value is beneficial for use as a binder in aluminium-pigmented paints,
since it does not react adversely with the amphoteric metallic pigments [24]. The highest
acid value was observed for the stand oil WS-L, which was a result of the refinement
process. In fact, it was observed that stand oil was able to etch the mild steel, since marks
were seen visually in the application where the oil was applied with a pipette to the sheet
before it was distributed over the surface. The water content was slightly higher for WHT-L,
which is relevant because aluminium pigments are sensitive to water (risk of hydrogen
formation) [24]. The iodine value indicates the proportion of unsaturated fatty acids and
is often used for an estimation of the drying power. However, the iodine value alone
does not reflect the influence of the catalysts or driers and their influence on the drying
power [6]. For instance, the iodine value of a raw linseed oil could be the same as for a
heat-treated oil with added driers (i.e., a varnish), as is also stated in the abovementioned
standards. The presence of impurities, such as antioxidants, also influences the drying
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power [25]. Also, the iodine value does not indicate the influence of the conjugated double
bonds of tung oil [6]. The iodine value was significantly lower for the stand oils since a
majority of the double bonds are consumed for conjugation and cyclic compound formation.
The free fatty acid values and the peroxide values indicate the initiated decomposition
and rancidification of the varnishes, and they were highest for the stand oils and the
tung oil mixture. The peroxide value, in particular, measures the oxidation present (as
hydroperoxides), suggesting that the degree of oxidation of the selected fresh oils differed.
We expected the highest peroxide value for stand oil (WS-L) due to the processing methods
and partial pre-polymerisation. Nevertheless, the heat-bodied varnish (WHT) had a value
of 6: this may have been associated with the catalytic action of the manganese oxide present
in the formulation, which accelerates the curing of oil.

3.1.2. FTIR

The FTIR spectra depicted in Figure 1 are characterised by the typical absorption
peaks of fresh drying oils, and a summary of relevant bands in the FTIR spectra for each
oil is provided in Table 2. Fresh oils show typical absorption spectra, with sharp and
narrow bands ascribed to ν C=O and only weak signal ascribed to ν(O-H), suggesting that
oxidation had not occurred. Moreover, well-defined bands in the ν C-H region are visible
for all oils. WT and WS can be clearly differentiated from the other oils on account of the
strong absorption at 990 cm−1 and 964 cm−1.
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and offset for clarity. Well-defined bands can be seen in the C-H stretching region. Stand oil and tung
oil show strong bands at 990 cm−1 and 964 cm−1.

3.1.3. GC-MS

The GC-MS analysis of fresh oils provided a full characterisation of the fatty acids
contained in the selected commercial binders. This is important for manufactured binders
since it is known that 20th and 21st century artists’ oils and varnishes may contain different
kinds of oils (drying, semi-drying and/or non-drying), a variety of additives (such as
stabilisers, dispersion agents, etc.) and adulterations [15,27].

Appendix B lists all the compounds identified by GC-MS in the analysed samples.
As expected for fresh oils, the mono-, doubly and triply unsaturated fatty acids (oleic,

linoleic and linolenic acids, respectively) were the most abundant compounds detected
in the chromatograms in the case of linseed oils (OH-L, WHT-L and WS-L), together
with glycerol (and glycerol derivatives). For the mixture containing tung oil (WT-L),
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α-eleostearic acid (a conjugated linolenic acid the mass spectrum of which is shown in
Figure 2a) was identified as the major compound. This triply unsaturated fatty acid is,
indeed, the marker for tung oil [26].

Table 2. Summary of FTIR bands for liquid oils prior to ageing, with assignments based on [26]. ν = stretching, δ = deforma-
tion,ω = wagging,
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ν (C-O) in C-O-C in esters 1099 1099 1098 1099 1100 1099

1069 1069

1028 1029

992 990

987 987 975

ω (CH) in CH=CH wagging
isolated trans -/971 969 970 967 965 964

914 914

872

852

807

866 867

791 792

δ/CH2) rocking -/720 721 721 722 728 726
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Figure 2. (a) Mass spectrum of α-eleostearic acid (methyl ester), detected in WT-L; (b) mass spectrum of 9-(o-propylphenyl)-
nonanoic acid methyl ester, identified in WS-L, WHT-L and WT-L; (c) mass spectrum of ricinoleic acid (methyl ester),
identified in WHT-L; (d) mass spectrum of erucic acid (methyl ester), detected in WS-L.

In the stand oil varnish (WS-L), bicyclic compounds were detected (as methyl esters),
such as 7-(o-pentylphenyl)-heptanoic acid and 9-(o-propylphenyl)-nonanoic acid (the mass
spectrum of which is depicted in Figure 2b). These are cyclisation products due to the
high temperature and anaerobic conditions of the oil processing method, which induce
a partial pre-polymerisation, and they are considered specific markers for stand oils [28].
Nevertheless, these compounds were also identified in WHT-L (and then in WT-L, where
80% of the mixture was composed of WHT-L), meaning that the temperature reached in the
oil processing (280 ◦C, as declared by the manufacturer) and the heating condition were
enough to promote their formation. This finding actually explains the measurement of the
highest peroxide value for WHT-L.

Comparing the GC-MS results obtained from the different fresh oils—and, in particular,
the P/S (palmitic to stearic acid) ratios and the presence of uncommon fatty acids—it was
possible to observe that:

- OH-L shows the typical fatty acid profile of linseed oil, corroborated by a P/S ratio of
1.7; all special fatty acids were found in this formulation;

- WHT-L, which, similarly to stand oil, was found to contain cyclic compounds, also
contained castor oil, as indicated by the identification of its marker (i.e., ricinoleic
acid—mass spectrum in Figure 2c). This non-drying oil can be found in modern
commercial artist oil formulations as an adulterant in linseed oil or added for rheo-
logical purposes [29]. Castor oil is made into a drying oil by dehydration through
the formation of an unsaturated hydroxy fatty acid [6]. In raw and blown form it
serves as a plasticiser in coatings. In hydrated form, castor oil improves the elasticity,
water resistance, alkali resistance and colour retention of paint, similar to tung oil. Its
presence likely influenced the final P/S ratio of the mixture, which was 1.2. Indeed,
castor oil’s P/S ratio is generally around 1, while linseed oil has a P/S ratio ranging
from 1.3 to 1.8 [30];

- WS-L contains a special monounsaturated fatty acid, namely erucic acid (mass spec-
trum in Figure 2d), which is considered as the biomarker for seeds of the Brassicaceae
family, such as rapeseed. Rapeseed oil is a semi-drying oil that was introduced in
the 20th century as a lubricant and/or as an adulterant in linseed oils [29,31]. Again,
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the presence of a mixture of different oils could have slightly modified the P/S ratio,
which was 1.2;

- The mixture containing WHT-L and tung oil did not contain any additional oils and
presented a P/S ratio of 1.2.

3.2. Solid Samples
3.2.1. Artificial Ageing

Artificial ageing occurred over a total of 27 h. The first aged sample (A1) of each
variant was removed after 17 h and the second (A2) after 27 h. All samples showed rust-
coloured areas, most probably indicating inhomogeneities in the solid films (Figure 3). The
relative degree of rusty surfaces was used as an indicator of moisture penetration and
ageing, and this was assessed visually. Incident daylight and UV light was also used to
estimate if there were areas without film. The samples for further analysis were removed
from areas with no or very little rust colour, and the degree of rust colour was determined.
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Solid films (dried for four weeks in lab conditions) were tested to evaluate their ca-

pacity to absorb water. The results are reported in Figure 4 and Table 3 and show that the 
modern linseed oil varnish (OH-0), as well as both the manganese oxide varnishes (WHT-
0, P-0), became milky after a very short time when immersed in distilled water; indeed, 
the appearance of the solid films began to change after only 1.5 h. In contrast, when 20 
wt% tung oil was added to these varnishes (WT-0), the water absorption decreased sig-
nificantly and was comparable to the stand oil (WS-0) and litharge varnish: their appear-
ance was almost unaffected after more than 24 h. The results indicated that fresh films 
based on stand oils, any varnish with the addition of 20 wt% tung oil, and litharge varnish 
had high resistance to water exposure in immersion tests. They also indicated that the 
good performance of OH as binder in aged replica armour paint, as previously reported 
[2], is a result of the lamellar pigments’ ability to delay the deterioration of the organic 
binder. 
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resulting in corrosion in localised areas and spots.

3.2.2. Water Immersion Test

Solid films (dried for four weeks in lab conditions) were tested to evaluate their
capacity to absorb water. The results are reported in Figure 4 and Table 3 and show that the
modern linseed oil varnish (OH-0), as well as both the manganese oxide varnishes (WHT-0,
P-0), became milky after a very short time when immersed in distilled water; indeed, the
appearance of the solid films began to change after only 1.5 h. In contrast, when 20 wt%
tung oil was added to these varnishes (WT-0), the water absorption decreased significantly
and was comparable to the stand oil (WS-0) and litharge varnish: their appearance was
almost unaffected after more than 24 h. The results indicated that fresh films based on
stand oils, any varnish with the addition of 20 wt% tung oil, and litharge varnish had
high resistance to water exposure in immersion tests. They also indicated that the good
performance of OH as binder in aged replica armour paint, as previously reported [2], is a
result of the lamellar pigments’ ability to delay the deterioration of the organic binder.
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the solid oil films, suggesting partial oxidation of unsaturated bonds. In addition, the nar-
row band at approximately 1742 cm−1 in liquids broadens and there is a loss in the defini-
tion of bands in the fingerprint region— all indications of the formation of new molecules 
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64 kJ exposure, confirming the rapid chemical changes following the oxidation of the oils. 
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ing of the carbonyl absorption is centred at approximately 1740 cm−1 and changes in the 
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tions can be observed in the WHT, which are associated with a broadening of the C=O 
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Figure 4. An example of low and high performance at the water immersion tests. On left: the WHT
turns milky within 1.5 h, while the L-S is almost unaffected after 24 h. There is remaining water on
the glass plates.

Table 3. The effect of water immersion on the appearance of solid varnish films applied on glass plates.

OH-0 WHT-0 WS-0 WT-0 OHT-0 L-0 P-0 MB-0

Milky time 1.5 h 1.5 h >24 h >24 h >24 h >24 h 1.5 h ~16 h

Comments White White * * * * White Somewhat frosty
appearance

* Almost unaffected.

3.2.3. FTIR

The FTIR spectra of reference solid oil films prior to artificial aging revealed differences
between the oils in the shapes of the C-H stretching bands and the shapes and positions
of the ν C=O, as well as the bands mentioned above for undried oils. Spectra recorded
at all stages of accelerated ageing from the solid films (cured and aged) can be seen in
Figures 5 and 6. The curing time (4 weeks) was sufficient to observe small changes in the
FTIR spectra in comparison to the fresh liquid oils, as also reported in the literature [32,33].
The band at approximately 3010 cm−1 related to v(C-H) in C=C-H is not visible for the
solid oil films, suggesting partial oxidation of unsaturated bonds. In addition, the narrow
band at approximately 1742 cm−1 in liquids broadens and there is a loss in the definition
of bands in the fingerprint region—all indications of the formation of new molecules with
the onset of oxidation reactions prior to artificial ageing.

Artificial ageing causes significant changes in absorption that reflect bulk molecular
changes. Generally, loss of definition of bands in the fingerprint region occurred following
64 kJ exposure, confirming the rapid chemical changes following the oxidation of the oils.
The spectra from WT and OH are similar, as are those from WHT and WS films. Broadening
of the carbonyl absorption is centred at approximately 1740 cm−1 and changes in the shape
of the band with a shoulder at 1710 cm−1 reflect oxidation reactions and the formation
of secondary oxidation products, including aldehydes [32]. Only slight modifications
can be observed in the WHT, which are associated with a broadening of the C=O band,
and there is a loss of absorption at 968 cm−1, ascribed to ω (CH) in CH=CH wagging,
which is in agreement with the findings from [26] for tung oils and indicated with a + in
Figures 5 and 6. For the WS and OH, there is a significant increase in the absorption at
1550 cm−1 ascribed to νas and νa of COO-, which can be attributed to the formation of
metal carboxylates (resulting from the presence of metal oxide driers in the formulation).
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Additional changes in the shape of the ν OH can be seen with the growth of bands at
1550 cm−1, as has been reported in metal carboxylate formation. An increase in absorption
at 1425 cm−1 can be attributed to the oxidation of double bonds and the formation of
v(C-O) [34].
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weaker formation of carboxylates at 1550 cm−1 (*) in WT in comparison to OH (Figure 5). Spectra are shown normalized to
the ν C=O at 1740 cm−1.

3.2.4. GC-MS

GC-MS analysis allowed us to determine the fatty acid profiles of the unaged/aged
solid samples. The obtained results are summarised in the graph in Figure 7, which reports
the percentages of fatty acids (in weight), and in Table 4, which lists the most significant
molar ratios among the selected fatty acids, together with fresh oils.
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related to glycerol derivatives were detected as well. The numerous and abundant oxi-
dised octadecanoic (oxo-, hydroxy- and methoxy-octadecanoic) acids were produced by 
the oxidative scission of unsaturated fatty acids.  

Dicarboxylic acids, such as azelaic, suberic and sebacic acids, are typical tertiary oxi-
dation compounds from unsaturated fatty acids: they are the main oxidative degradation 
products and are formed as a consequence of fragmentations of triglycerides occurring in 
the cross-linked network. The D%, A/P and D/P molar ratios can provide an important 
overview of how different oils behave after 4 weeks of auto-oxidation. WT-S had the larg-
est values (A/P = 1.82, D/P = 2.63, %D = 44.26), followed by OH-S (A/P = 1.64, D/P = 2.18, 
%D = 42.86).  

The proportion of dicarboxylic acids in the unaged solid films was lower for WHT-S 
and WS-S (possibly also because of the presence of semi-drying and non-drying portions 
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Table 4. The molar ratios for the samples were calculated using GC-MS. Samples were from films prior to exposure (S) and
following 64 kJ (A1) and 97 kJ (A2).

Molar
Ratios

OH WHT WS WT

OH-0 OH-A1 OH-A2 WHT-0 WHT-A1 WHT-A2 WS-0 WS-A1 WS-A2 WT-0 WT-A1 WT-A2

P/S 1.73 1.70 1.73 1.24 1.24 1.20 1.17 1.19 1.18 1.15 1.26 1.24

A/P 1.64 1.90 1.97 0.76 2.03 1.50 0.60 0.70 0.54 1.82 1.60 1.62

D/P 2.18 2.47 2.52 1.21 2.67 1.92 0.97 1.18 0.87 2.63 2.30 2.26

O/S 0.17 0.12 0.08 0.12 0.09 0.05 0.30 0.10 0.52 0.09 0.08 0.07

%D 42.86 47.03 47.30 28.85 48.63 47.33 23.82 27.46 21.09 44.26 43.74 43.05

Generally, the chromatograms exhibit all the characteristic fatty acids (as methyl
esters) occurring in cured drying oils: short-chain fatty acids, dicarboxylic acids (pimelic,
suberic, azelaic and sebacic acids), saturated long-chain fatty acids (myristic, palmitic,
stearic, arachidic and behenic acids) and (traces of) unsaturated fatty acids. Several peaks
related to glycerol derivatives were detected as well. The numerous and abundant oxidised
octadecanoic (oxo-, hydroxy- and methoxy-octadecanoic) acids were produced by the
oxidative scission of unsaturated fatty acids.

Dicarboxylic acids, such as azelaic, suberic and sebacic acids, are typical tertiary oxi-
dation compounds from unsaturated fatty acids: they are the main oxidative degradation
products and are formed as a consequence of fragmentations of triglycerides occurring in
the cross-linked network. The D%, A/P and D/P molar ratios can provide an important
overview of how different oils behave after 4 weeks of auto-oxidation. WT-S had the largest
values (A/P = 1.82, D/P = 2.63, %D = 44.26), followed by OH-S (A/P = 1.64, D/P = 2.18,
%D = 42.86).

The proportion of dicarboxylic acids in the unaged solid films was lower for WHT-S
and WS-S (possibly also because of the presence of semi-drying and non-drying portions
of the lipidic binders).

For the unaged solid films, since they were relatively young (4 weeks) and did not
contain any pigment, the doubly and triply unsaturated fatty acids were still detectable
(see Figures 5 and 6); nevertheless, their concentrations were much lower compared to the
liquid binder (on average, more than 50–60% of the total fatty acids) after autoxidation
took place (as evidenced by FTIR spectra). The high amount of oleic acid (see the O/S
ratios in Table 4) can be explainable by the relatively young age of the films and by the
minor autoxidation reaction compared to doubly and triply unsaturated acids [35,36]. In
the case of the tung oil mixture WT-S, it was not possible to detect α-eleostearic acid: this
triply unsaturated fatty acid is very rapidly subjected to oxidation, as stated in [26].
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For the paint films subjected to 97 kJ, the GC/MS results highlighted the effect of
photo-oxidation. Thus, as expected, a general decrease in unsaturations, (oleic, linoleic and
linolenic acids for linseed-based oils and α-eleostearic acid in the case of tung oil) and a
general increase in dicarboxylic acids (D/P ratios and D%), in particular azelaic acid (A/P
ratios), was registered. An example of changes in the chromatograms for the OH film series
is illustrated in Figure 8.
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Figure 8. Total ion current (TIC) chromatograms after derivatisation and GC-MS analysis of OH: L, liquid; 0, solid reference;
A1, aged 1 (64 kJ); A2, aged 2 (97 kJ). It is possible to observe the decrease in unsaturated fatty acids (oleic, linoleic and
linolenic) with ageing and the increase in azelaic acid as the main oxidation product during ageing. Despite the incomplete
separation of the peaks at the chromatographic level, the identification of the different unsaturated fatty acids (oleic, linoleic
and linolenic) was possible thanks to the detection of the typical m/z spectra though the mass spectrometer. For further
details, see the table in Appendix B.

This study used relatively short accelerated ageing conditions, following ISO 16474:2013,
to test the performances of refined and bodied linseed oils and tung oil as binders in armour
paints. The considered ageing conditions represented a heavily simplified model of natural
conditions and conditions usually employed for the study of fine art materials. In nature, the
response to atmospheric exposure is dependent on geographical conditions as well as how the
paint is applied and used on the substrate. It is recognized and confirmed by the results above
that organic paint binders follow very complex chemical reactions, leading to different physical
and mechanical characteristics, depending on how the binders are produced and used and how
they age. The search for tools to understand and control these patterns is an extensive task. It is
complicated by additions of other (semi- and non-drying) vegetable oils to commercially sold
binders, as well as different paint ingredients and formulations. Chemical and physical data
(such as the iodine value, refractive index, colour, etc.) represent important properties, which
are used in industry to control the reproducibility of different refining processes and outcomes
and to recommend the oils and varnishes for different possible uses. However, the complex
chemistry leading to film formation and oxidation cannot be explained simply with reference
to these standard data. Indeed, the behaviour of the oils, their reactions with pigments and
other paint ingredients, and the ageing characteristics of the oils, varnishes and paints are
highly complex and require more sophisticated molecular analysis, as shown with GC-MS.

The water immersion test is an example of a simple and useful quality assessment
method, originally from the varnish and paint-making industry, that can be used in the
search for suitable and high-quality fat varnishes for new paint formulations based on
older knowledge. For investigations of anticorrosive coating, electrochemical impedance
spectroscopy (EIS) has often been cited for its use in the examination of the influence of
pigments and binders on barrier properties [37,38]. EIS is suitable for industrial coatings
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(such as powder spraying), and the method involves the use of different (often quite
aggressive) electrolytes—conditions that are hard to correlate to the in situ anticorrosive
painting of ferrous heritage, which has different environmental conditions. The same is
valid for methods that measure the levels of macro- and micro-defects that determine the
water vapour transmission rate, such as ellipsometric porosimetry (EP).

4. Conclusions

Analysis of binders used in armour paints revealed important differences between
commercial oils, many of which contained additives that were only detectable with GC-MS.
FTIR analysis of films revealed changes in the chemical groups at the surface and was
complemented by GC-MS bulk analysis. GC-MS provided other detailed information
about the lipidic composition of the binders. Still, it was difficult to univocally correlate the
fatty acid profiles and the different fatty acid ratios to the environmental responses of films
to ageing. These methods in combination revealed similarities between the four organic
binders tested, such as the presence of saturated and unsaturated mono/dicarboxylic acids
and oxidative scission reactions. Differences could also be observed, such as the presence
of cyclic compounds in stand oil and the high-temperature-treated varnish, biomarkers for
additions of other types of vegetable oils in two of the samples and varying fatty acid ratios.

Although FTIR and GC-MS did not reveal any direct information about the colloidal
state of the binders, the presence and the amount of unsaturated fatty acids (oleic, linoleic
and linolenic in linseed oil and α-eleostearic in tung oil) detected by GC-MS and the obser-
vations of the O/S ratios in fresh oils and solid films may provide important indications
about the reactivity (and “maturity”) of the oil or varnish. The water immersion test easily
reveals phase differentiation in solid films. This occurred quite rapidly, after only 1.5 h for
the modern linseed oil varnish as well as for the pyrolusite high-temperature varnishes.
In fact, the same type of relationship could also be observed for these varnishes in the
accelerated ageing (OH and WHT behaved in similar ways). Higher or equal resistance to
polar solvent absorption and imbibition was reached for the litharge varnish, the stand oil
and all varnishes with tung oil additions. During accelerated ageing, this tendency enabled
the moisture to reach the steel surface, which started to corrode. If this process had been
left to proceed, the films would most probably have been ruined by the volume expansion
of the corrosion products and not by the deterioration of the films through the impact of
oxidation, hydrolysis and other degenerative processes.

Future research should consider the longer-term reactions of binders mixed with
different pigments in natural and controlled aging conditions, using physical as well as
chemical testing. Additional monitoring of the water-soluble components of the different
films would likely reveal some of the chemical reactions that occur with ageing.
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Appendix A. Chemical and Physical Properties of the Paint Binders

Measured Property/Characteristic Results on Commercial Binders

Methodological Details OH-L WHT-L WS-L T-L

Method Unit/at At Uncert., %

Density Electronic g/cm3 20 ◦C - 0.9339 0.9370 0.9575 0.9391

Refractive index Automatic - 20 ◦C ±0.01 1.4826 1.4823 1.4907 1.5194

60 ◦C ±0.01 1.4682 1.4679 1.4763 >1.5000

Cold test AAK method - 6 h - 2 2 2 2

Insoluble impurities AOCS
Ca 3a-46 % 20 <0.01 0.01 <0.01 <0.01

Alkaline impurities EP 2.4.19 Ml - 0.15 <0.10 <0.10 <0.10

Water content AOCS
CA 2E-84 % ±15 0.06 0.1 0.03 0.04

Iodine value
AOCS Cd

1c-85 +
ISO 3961

mg iodine/100 g - 196 177 112 161

Saponification value IUPAC
2.202 mg KOH/g ±2 188 191 192 192

Free fatty acids IUPAC
2.201 (m) - 282 ±3 0.94 1.7 3.1 1.7

Acid value IUPAC
2.201 (m) mg KOH/g ±3 1.87 3.41 6.24 3.3

Peroxide value AOCS
Cd 8-53 meq/kg ±15 2.6 6 3.3 5.6

Colour (Lovibond)
AOCS

Cc 13j-97

Yellow ±25 130.0 140.0 40.0 60.0

Red 20.0 14.0 3.0 7.0

Blue 0.0 0.0 0.0 0.0

Total 330.0 280.0 70.0 130.0
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Appendix B. GC-MS Results

Table A1. List of compounds identified by GC-MS in the analysed samples. RT stands for retention time, expressed in minutes. For each oil, liquid (L) and solid films are shown prior to
exposure (S0) and following 64 kJ (A1) and 97 kJ (A2).

RT (min) Identified Compound
OH WHT WS WT

OH-L OH-0 OH-1 OH-2 WHT-L WHT-0 WHT-1 WHT-2 WS-L WS-0 WS-1 WS-2 WT-L WT-0 WT-1 WT-2

9.412 Pimelic acid, dimethyl ester
√ √ √ √ √ √ √ √ √ √ √ √

9.784 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

10.165 Octanoic acid, 8-hydroxy-, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

10.342 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

10.580 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

10.652 Nonanoic acid, 9-oxo-, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

10.767 Suberic acid, dimethyl ester
√ √ √ √ √ √ √ √ √ √ √ √

11.053 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

11.692 Decanoic acid, 9-oxo-, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

12.063 Azelaic acid, dimethyl ester
√ √ √ √ √ √ √ √ √ √ √ √

13.196 Sebacic acid, dimethyl ester
√ √ √ √ √ √ √ √ √ √ √ √

14.005 Myristic acid methyl ester
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

15.573 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

16.131 Palmitic acid, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

16.172 Glycerol derivative
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

16.934 Undecanedioic acid, 4-oxo-, dimethyl ester
√ √ √ √ √ √ √ √ √ √ √ √

17.801 Oleic acid methyl ester
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

18.036 Stearic acid methyl ester
√ √ √ √ √ √ √ √ √ √

18.206 Linoleic acid methyl ester
√ √ √ √ √

18.399 Linolenic acid methyl ester
√ √ √

18.920 Nonadecanoic acid, methyl ester (internal
standard)

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
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Table A1. Cont.

RT (min) Identified Compound
OH WHT WS WT

OH-L OH-0 OH-1 OH-2 WHT-L WHT-0 WHT-1 WHT-2 WS-L WS-0 WS-1 WS-2 WT-L WT-0 WT-1 WT-2

19.210 Alpha-eleostearic acid methyl ester
√

19.570 Ricinoleic acid methyl ester
√ √ √ √

19.624 Octadecanoic acid, 10-oxo-, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

19.767 Arachidic acid methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

19.803 7-(o-pentylphenyl)-heptanoic acid methyl ester
√ √ √

19.883 9-(o-propylphenyl)-nonanoic acid methyl ester
√ √ √

19.944 Glycerol (main)
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

21.196 Erucid acid methyl ester
√ √ √ √

21.386 Behenic acid, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

22.712 Octadecanoic acid, 9,10-epoxy
√ √ √ √ √ √ √ √ √ √ √ √

22.885 Tetracosanoic acid, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

24.287 Hexacosanoic acid, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

24.817 β-Monolinolein
√ √ √

24.875 Octadecanoic acid, 9,10-oxo-, methyl ester
√ √ √ √ √ √ √ √ √ √ √ √

24.889 Linolenic acid 1,3-dimethoxypropan-2-yl ester
√ √ √

24.930
Linolenic acid,

2-hydroxy-1-(hydroxymethyl)ethyl ester
(Z,Z,Z)-

√ √ √

25.561 Sitosterol
√
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