
Space-time extreme rainfall simulation under a
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Simulazione spazio-temporale di precipitazioni estreme
tramite un approccio geo-statistico
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Abstract In this work we illustrate an approach to simulate extreme events with
high resolution in space. First we model spatio-temporal variability in the marginal
distributions with a flexible semi-parametric specification. Then the Gaussian cop-
ula is used to model locally in time and space the extremal dependence. The meth-
ods are showcased with an application to daily precipitations in the Venice lagoon
catchment.
Abstract In questo lavoro illustriamo un approccio per simulare eventi con alta
risoluzione nello spazio. Per prima cosa modelliamo la variabilità spazio-temporale
delle distribuzioni marginali con un approccio semi-parametrico. Quindi la cop-
ula gaussiana viene utilizzata per modellare localmente la dipendenza estrema nel
tempo e nello spazio. Come esempio mostriamo un’applicazione alle precipitazioni
nella laguna di Venezia.
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1 Introduction

Observational studies have found that extreme precipitation can have heavy-tailed
behaviour, i.e. the tail of the distribution of the magnitude of extreme events decays
slower than an exponential. In the literature, we can find examples in which climate
models of sufficiently high resolution may be capable of simulating precipitation
extremes of comparable intensity to observed extremes. However it is not clear that
they simulate daily intensities that are as heavy-tailed as observed, nor is it clear
that they do so given the different scales in the observations at distinct points and
simulated grid-box values. Moreover averaging in space and time smooths the tail
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behaviour recorded at weather stations, reducing the usefulness of simulated outputs
for impact studies.

In this note we present a two-stage framework in which we couple models for
extreme values and geostatistical space-time models. In the first stage, described in
Section 2, we focus on the tail of the distribution of the rainfall amount by means
of the the so-called peaks-over-threshold (POT) approach and we capture marginal
spatio-temporal variation using regression splines (Youngman, 2019). Moreover, we
use a Gaussian copula model to capture the short-range spatial and time dependence
of the observed data (Section 3). This will allow to simulate extreme events which
are consistent with the observed local variability in space and in time.

As a motivating example we consider daily rainfall records from long-term gaug-
ing stations in the Venice lagoon catchment from 1956 to 2018. The 28 locations of
the stations are plotted in Figure 1-(a).
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Fig. 1 (a) Locations of the stations in Venice lagoon catchment. Empirical estimates of χ(p) for
pairs of observations at increasing temporal lags in (b) and spatial distances (in kilometers) in (c).

2 Extreme value model for a single site and time

We denote with X(s, t) the daily rainfall accumulation at location s and time t. We
consider a fixed high threshold u(s, t), and we look at the distribution of the ex-
ceedances (X(s, t)−u(s, t)), conditional on X(s, t) being larger than u(s, t). Extreme
value theory argues that it is possible to approximate this conditional distribution by
a Generalized Pareto (GP) distribution. More precisely the distribution of threshold
exceedances Y (s, t) = (X(s, t)− u(s, t)), given that X(s, t) > u(s, t) has cumulative
distribution function (cdf)

GPD(x;ξ ,σ ,u) = 1−
(

1+ξ x−u
σ

)−1/ξ
, (1)
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where σ > 0 and ξ ∈ R are the scale and shape parameter of the distribution for
{x > u :

(
1+ξ x−u

σ
)
> 0}. The threshold can either be chosen or estimated, but must

be sufficiently high that the GPD assumption is valid.
For simulations to represent rainfall at given locations and time periods, the rate,

i.e. the probability of exceeding the threshold must be taken into account: we de-
note this probability as ζ (s, t) = Pr(Y (s, t) > u(s, t)). For now, we assume that the
threshold is known and we further simplify the modeling procedure by making the
assumption that we are interested in a rate of exceedances that is constant at every
site and at every time step, i.e. ζ (s, t) = ζ .

Then the unconditional distribution for X(s, t) is defined as

F(x;ξ (s, t),σ(s, t),u(s, t)) =

⎧
⎪⎨

⎪⎩

1−ζ +ζ
(

1+ξ (s, t) x−u(s,t)
σ(s,t)

)−1/ξ (s,t)

x > u(s, t),
1−ζ x ≤ u(s, t)

(2)
For the scale parameter σ(s, t) we adopt an additive form of the log-link function

logσ(s, t) = β σ + f σ
1 (lon(s), lat(s))+ f σ

2 (t) (3)

Here f σ
1 is thin plate regression spline where lon(s) and lat(s) represent longitude

and latitude and f σ
2 is a cyclic cubic regression spline of period 365.25 to account

for the leap years. Under this setup (3) can be written as

logσ(s, t) = β σ +
b1

∑
k=1

β1,kB0,k(lon(s), lat(s))+
b2

∑
k=1

β2,kB1,k(t)

where Bk,i(·) are basis functions and βi,k the coefficient multiplying the spline basis.
A similar specification is adopted for the shape parameter, namely

ξ (s, t) = β ξ + f ξ
1 (lon(s), lat(s))+ f ξ

2 (t) (4)

The model (2), (3) and (4) with parameters in the spline forms can be fitted using
an approach that maximizes an independence likelihood (Chandler and Bate, 2007).
More precisely, let x(s j, t) be realizations of X(s j, t) for s j, j = 1, . . . ,n sites and t =
. . . ,T times. By pretending that the observations are independent, the independence
likelihood of the model (1) takes the form

L(θ) =
n

∏
j=1

T

∏
t=1

1
σ(s j, t)

(
1+ξ (s j, t)

x(s j, t)−u(s j, t)
σ(s j, t)

)−1/ξ (s j ,t)−1
(5)

where θ contains the unknown parameters in (3) and (4).
Maximization of (5) requires the knowledge of the space-time varying threshold

u(s). We follow Northrop and Jonathan (2011) and we estimate it by quantile regres-
sion (Koenker and Bassett, 1978) assuming that the threshold u(s, t) = u1(s)+u2(t)
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can be splitted in two components: one (u1(s)) which depends on the geographical
coordinates and the other (u2(t)) on the season. The effect of the season is modelled
by a harmonic regression term. We have

u(s, t) = u1(s)+u2(t)

= δ0 +
d0

∑
i=1

δ0,iB1i(lon(s), lat(s))+
d1

∑
k=1

δ1,k cos(ωkt)+
d1

∑
k=1

δ2,k sin(ωkt)

where ωk = 2πk/365.25.

3 Copula and extremal dependence

In the previous section we have described how to specify a model for the distri-
bution of the extreme rainfall in one site s and at time t. However, this model can
only reproduce the variability of the data at a low resolution (i.e at the point scale),
and we need a model for efficient simulations of high-resolution extreme events.
For this reason we couple the marginal model with a model for the local varia-
tion on space and time under a copula approach (Joe, 2014). It can be shown that
every continuous multivariate distribution can be represented in terms of a copula
which couples the univariate marginal distributions. More precisely, for a n-variate
cdf F(x1, . . . ,xn) := Pr(X1 ≤ x1, . . . ,Xn ≤ xn) with i-th univariate margin Fi(xi) :=
Pr(Xi ≤ xi), the copula associated with F is a cdf function Cn : [0,1]n → [0,1] with
U (0,1) margins that satisfies Fn(x1, . . . ,xn) =Cn(F1(x1), . . . ,Fn(xn)). Note that the
copula does not depend on the marginal distributions. For this reason, it is possible
to characterize the extremal dependence through the copula function and distinguish
between asymptotic independence and asymptotic dependence (Coles et al, 1999).
Formally, let X1 and X2 be continuous random variables with distribution functions
F1 and F2, respectively, and let

χ(p) = Pr(F2(X2)> p|F1(X1)> p) =
1−2p−C2(p, p)

1− p
, 0 ≤ p < 1. (6)

X1 and X2 are then said to be asymptotically independent if the limit χ := limp→1− χ(p)
is zero and asymptotically dependent if χ > 0. Broadly speaking, under asymptotic
independence the conditional probability of observing an exceedance in one vari-
able given that the other variable has produced an exceedance converges to 0 as the
threshold increases.

Copula based on Gaussian process can represent pairs of random variable which
are asymptotically independent (Bortot et al, 2000). They play an important role
since they can accommodate a variety of spatio-temporal dependence.

Assuming that the estimated marginal model (2,3,4) is the ”true” generating
model, we calculate uniformly distributed residuals on [1−ζ ,1]:
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R∗(s, t) = 1−ζ
[

1+ξ (s, t)X(s, t)−u(s, t)
σ(s, t)

]−1/ξ (s,t)
, if X(s, t)> u(s, t)

Figure 1 displays estimates of χ(p) for probabilities p = 0.96,0.97,0.98,0.99 for
pairs R∗(s, t),R∗(s, t+h) with only temporal lag, and for pairs R∗(s, t),R∗(s′, t) with
only spatial lag. The curves for spatial lags are the result of a smoothing proce-
dure. These plots support the assumption of asymptotic independence at all positive
distances and at all positive temporal lags.

Finally, the R∗(s, t) random variable is transformed on a Gaussian scale by
R(s, t) = Φ−1(V (s, t)) where Φ−1(u) is the inverse of the cumulative distribution
function of a standardized Gaussian random variable. We model R(s, t) as a space-
time zero mean Gaussian process with ρ(s,s′, t, t ′,φ) = cor(R(s, t),R(s′, t ′)), a cor-
relation function that depends on an unknown parameter φ . Since for large data sets
the evaluation of the censored likelihood becomes unfeasible the correlation can be
estimated by maximizing the censored composite log-likelihood (see Bacro et al,
2020, for an example).

4 Results

Simulations are based on a stationary isotropic separable covariance function. The
limited size of the area under analysis and daily temporal lags suggest that they will
not have any impact on the recorded values. We consider an exponential-exponential
separable correlation function, ρ(s,s′, t, t ′,φ1,φ2) = exp(−∥s− s′∥/φ1)×exp(−|t−
t ′∥/φ2), φ1,φ2 > 0. The resulting estimates are φ̂1 = 127.41 and φ̂2 = 1.04, respec-
tively. The low value of φ̂2 indicate weak temporal dependence in the rainfall phe-
nomena. As expected, an high spatial dependence is estimated. A fifty-years simu-
lation is performed over a 700 evenly-spaced points grid. This results in a distance
of ≃ 2.43 Km between two neighbouring locations. Figure 2 shows three different
randomly selected events. In each row we report the spatial pattern of the day d,
over an year, during which we simulated the maximum-precipitation in one site day,
with the previous (d − 1) and following d + 1 days. Extreme events can occur in
different seasons, but their magnitude is strongly time-dependent by construction.
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Fig. 2 Three examples of extreme precipitations simulations in three different period of the year.
The central plot represents the day with highest precipitations
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