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robustness when we consider the usual Gaussian assumption. In this note we introduce
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1 Introduction

Unlike the classical clustering approaches such as agglomerative hierarchical
clustering and K-means clustering, which are largely heuristic and not based
on formal statistical models, model-based clustering takes a likelihood based
approach thus permitting inference to be drawn on the clusters. These tech-
niques are based on the finite mixture model theory (Fraley & Raftery, 2002),
where each mixture component corresponds to a cluster. However, fundamen-
tal concerns remain about robustness and in particular the choice of distribu-
tion representing the within cluster density. The Gaussian mixture models are
historically the most popular tool for model-based clustering. However, if the
distribution of the observed variable is characterized by asymmetry and pres-
ence of outliers, a Gaussian distribution may not be an appropriate within clus-
ter density. The direct link that exists between univariate quantile regression
approach and the Asymmetric Laplace Distribution (ALD) forms our basis of
introducing a clustering model based on finite mixture of ALDs to group indi-
viduals subject to heterogeneity due to regressor variables.

2 Methodology

We start by considering a vector, y = (y1, . . . ,yT )
′ of responses yt and the as-

sociated design matrix X = (x1, . . . ,xT )
′ that collects the vectors xt of L co-

variates. Further, let Qp(yt |xt), for 0 < p < 1, be the pth quantile regression
function of yt given xt which can be modelled as Qp(yt |xt) = x′tβ, where β is
a vector of unknown parameters to be estimated. The regression coefficient
estimate is obtained by minimizing (Koenker & Bassett, 1978)

β̂ = argmin
β

T

∑
t=1

ρp(yt − x′tβ) (1)

where ρp(·) is the check loss function defined by ρp(x) = x(p − I(x < 0))
and I(·) denotes the usual indicator function. Koenker and Machado (1999)
showed that there is a direct relationship between minimizing (1) and the max-
imum likelihood theory using independently distributed asymmetric Laplace
variable with density

ald(yt |β,σ, p) =
p(1− p)

σ
exp

{
−ρp

(
yt − x′tβ

σ

)}
(2)

where σ > 0 and 0 < p < 1 represents the skewness parameter that can be used
directly to model any quantile of interest.

According to the finite mixture framework theory we define the likelihood
of our mixture model for a single vector y as

L(ααα,βββ,σσσ, p|y) =
K

∑
k=1

αk

T

∏
t=1

ald1(yt |βk,σk, p) =
K

∑
k=1

αkALD(y|βk,σk, p) (3)

where βββ = (β′
1, ....,β′

K)
′, σσσ = (σ1, ...,σK)

′ and ααα = (α1, ...,αK)
′ is the vector

of the mixing proportions for the K clusters which satisfy the conditions 0 <
αk < 1 and ∑K

k=1 αk = 1.
We now consider a set Y = {yi, i = 1, ...,n} of n vectors yi = (yi1, ...,yiT )

′

of independent observations. and we want to split the data set Y into K clus-
ters. According the mixture model (3) the cluster membership ci ∈ {1, ...,K},
where ci = k indicates that the ith vector yi belongs to cluster k is a multinomial
random variable with parameter ααα.

We adopt a Bayesian approach to make inference on the model parameters
ψψψ = (ααα′,βββ′,σσσ′)′. Moreover it is possible to get the posterior probability of
membership of a single vector, Pr(ci = ·|Y ). In doing this we first note that
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Kozumi and Kobayashi (2011) represent the density (2) as a location scale
mixture of Gaussian distributions i.e.

yt = x′tβ+θwt +ω
√

σwtνt (4)

where νt ∼ N(0,1), and w is an exponential random variable with E(w) = σ.
Here ν and w are mutually independent and θ = (1 − 2p)/{p(1 − p)} and
ω2 = 2/{p(1− p)}.

Equation (4) constitutes the first stage of a hierarchical Bayesian model
where the prior distribution on the cluster specific parameters and as well as
the mixing proportions are specified as conjugate priors to having closed form
conditional posterior densities which are easy to sample from in a MCMC
algorithm.

A conjugate prior for the mixing proportions ααα=(α1, ...,αK)
′ is the Dirich-

let distribution, ααα ∼ D(ζ1, ...,ζK). A straightforward prior for βk is the multi-
variate Gaussian distribution, N (b0,Σ0) where by setting b0 = 0 and Σ0 = aI,
for a � 0, leads to an improper prior. Finally we propose the inverse gamma
distribution, IG(s0,d0), as the prior for σk where the shape and scale parame-
ters, s0 and d0 respectively, are known.

Musau (2021) gives a complete account on how we can devise an MCMC
algortihm for sampling from the posterior distribution of ψψψ.

3 Numerical results

We exemplify our proposal with a clustering problem for functional data. We
consider the well-known Canadian temperature dataset available in the R pack-
age fda. The dataset consists of the daily measured temperatures from 35
Canadian weather stations across the country.

Under functional data framework (Ramsay & Silverman, 2005), daily tem-
perature data, yt , can be described by a linear combination of L = 65 cubic
spline basis functions, yt � ∑L

j=1 β jB j(t) = x′tβ, with knots which are equally
distributed over the range of time.

The funHDDC clustering algorithm (Bouveyron & Jacques, 2011) on this
data selects K = 4 as the optimal number of clusters. Figure 1 (left panel)
summarize the resulted clusters.

For each of the 35 stations we randomly introduce outliers (yt=0) at 10%
of the total observation points. This distorts the general trend of the data, as
shown in right panel of Figure 1, making reconstruction of the clusters difficult.

We apply our mixture model setting p = 0.5, i.e. we consider a robust
median regression and we compare its performance in reconstructing the 4

Figure 1. Clustering of the 35 temperature curves as obtained by funHDDC algorithm
(left panel) and results with curves contaminated by outliers (right panel).

clusters with the previous algorithm, leading to a perfect agreement. These
results generally indicate a good performance of our proposed algorithm when
clustering data characterized by outlying observations.
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