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Abstract
We consider the spectral problem for the Grushin Laplacian subject to homogeneous
Dirichlet boundary conditions on a bounded open subset of R

N . We prove that the
symmetric functions of the eigenvalues depend real analytically upon domain pertur-
bations andwe prove anHadamard-type formula for their shape differential. In the case
of perturbations depending on a single scalar parameter, we prove a Rellich–Nagy-
type theoremwhich describes the bifurcation phenomenon ofmultiple eigenvalues. As
corollaries, we characterize the critical shapes under isovolumetric and isoperimetric
perturbations in terms of overdetermined problems and we deduce a new proof of the
Rellich–Pohozaev identity for the Grushin eigenvalues.
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1 Introduction

In this paper, we consider the following degenerate elliptic operator in R
N :

ΔG := Δx + |x |2sΔy, s ∈ N.
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Here and throughout the paper N ∈ N, N ≥ 2, h, k ∈ N, h + k = N , x ∈ R
h ,

y ∈ R
k , where N denotes the set of positive integers. The vector x denotes the

first h components of a vector z ∈ R
N , and similarly y denotes the last k ones, i.e.

z = (x, y) ∈ R
h × R

k = R
N . By Δx and Δy we denote the standard Laplacians with

respect to the x and y variables, respectively. The operator ΔG is nowadays known as
the Grushin Laplacian, and has been introduced in a preliminary version by Baouendi
[5] and Grushin [27,28]. In [5], Baouendi has studied the regularity of the solutions of
a boundary value problem for an elliptic operator, whose coefficients may vanish on
the boundary of the open set where the problem is considered. In [27,28], Grushin has
considered a class of operators that degenerate on a submanifold. Later on, amore gen-
eral notion of the Grushin Laplacian has been introduced and studied by Franchi and
Lanconelli [19–21]. In recent years, these operators have been studied under several
points of view. Here, we mention just a few contributions, without the aim of com-
pleteness. For example, inequalities and estimates related to the Grushin operator have
been investigated by many authors. D’Ambrosio [11] has studied Hardy inequalities
related to Grushin-type operators. Garofalo and Shen [26] have obtained Carleman
estimates and unique continuation for the Grushin operator. Symmetry, existence and
uniqueness properties of extremal functions for the weighted Sobolev inequality are
obtained in Monti [45]. Monticelli et al. [48] have obtained Poincaré inequalities for
Sobolev spaces with matrix-valued weights with applications to the existence and
uniqueness of solutions to linear elliptic and parabolic degenerate partial differential
equations. Furthermore, several authors have investigated issues related to the solu-
tions to problems for degenerate equations. Kogoj and Lanconelli have proved in [33]
a Liouville theorem for a class of linear degenerate elliptic operators, whereas in [34]
they have obtained some existence, nonexistence and regularity results for boundary
value problems for semilinear degenerate equations. Monticelli [46] has obtained a
maximum principle for a class of linear degenerate elliptic differential operators of
the second order. Thuy and Tri [58,59] and Tri [60,62] have analyzed boundary value
problems for linear or semilinear degenerate elliptic differential equations. Other ref-
erences can be found in the survey of Kogoj and Lanconelli [35], where the authors
have discussed linear and semilinear problems involving the Δλ–Laplacians, which
contain, as a particular case, the operator introduced by Baouendi and Grushin.

In our work, we are interested in the eigenvalue problem

− ΔGu = λu, (1)

with zero Dirichlet boundary conditions on a variable bounded open subset Ω of R
N .

It is well-known that problem (1) admits a divergent sequence of domain dependent
eigenvalues of finite multiplicity:

0 < λ1[Ω] ≤ · · · ≤ λn[Ω] ≤ · · · → +∞.

Our main aim is to understand the dependence of the eigenvalues λn[Ω], both simple
and multiple, upon perturbation of the domain Ω . In particular, we plan to extend
the results of Lamberti and Lanza de Cristoforis [41] for the Laplacian and of Buoso
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and Lamberti [7,8] for polyharmonic operators and systems to the case of the Grushin
Laplacian ΔG .

Shape sensitivity analysis and shape optimization of quantities and functionals
related to partial differential equations are vast topics which have been investigated by
several authors with different techniques. We mention, for example, the monographs
by Bucur and Buttazzo [6], Daners [12], Delfour and Zolésio [14], Henrot [29], Henrot
and Pierre [30], Novotny and Sokołowski [51], Novotny et al. [52], Pironneau [53],
and Sokołowski and Zolésio [57]. One of the central problems concerns the analysis
of the dependence of the eigenvalues of partial differential operators upon domain
perturbations. Many authors studied the qualitative behavior of the eigenvalues of
various partial differential operators with respect to shape perturbations proving, for
example, continuity, smoothness or even analyticity results. In addition to the above
monographs, we mention in this direction the works of Arendt and Daners [1], Arrieta
[2], Arrieta and Carvalho [3], Buoso and Lamberti [7,8], Buoso and Provenzano [9],
El Soufi and Ilias [16], Fall andWeth [18], Lamberti and Lanza de Cristoforis [41], and
Prodi [54]. These issues are closely related to the shape optimization of eigenvalues.
Indeed, a first step towards the maximization or minimization of an eigenvalue under
suitable constraints (such as fixed volume or perimeter) is to study critical shapes.
Accordingly, a detailed analysis of the regularity upon shape perturbations and of the
shape differential is crucial for this kind of optimization problems. The problem of
minimizing the first eigenvalue of the Dirichlet Laplacian has been solved by Faber
[17] andKrahn [36], and later on other authors have generalized their result to different
operators (see, e.g., Ashbaugh and Benguria [4] and Nadirashvili [49]). However, in
general, finding the shapeswhich optimize a certain eigenvalue is a hard problemwhich
remains open for several well-studied operators, including the Grushin Laplacian.

Another point of view in spectral shape sensitivity analysis is proving quantitative
stability estimates for the eigenvalues in terms of some notion of vicinity of sets. For
this topic, which is outside the scope of the present work, we refer to the survey of
Burenkov, Lamberti and Lanza de Cristoforis [10].

This paper is in the spirit of studying the qualitative behavior of the eigenvalues
of the Grushin Laplacian upon shape perturbations. Namely, in contrast with other
approaches in the literature which address only continuity and differentiability issues,
in Theorem 5.1 we prove that the symmetric functions of the eigenvalues depend
real analytically upon shape perturbations. We note that considering the symmetric
functions of the eigenvalues, and not the eigenvalues themselves, is a natural choice.
Indeed, a perturbation of the domain can split a multiple eigenvalue into different
eigenvalues of lower multiplicity and thus the corresponding branches can have a cor-
ner at the splitting point. Furthermore, we obtain the Grushin analog of the Hadamard
formula for the shape differential (see formula (30) of Theorem 5.3). In the case of
perturbations depending real analytically on a single scalar parameter ε, we prove a
Rellich–Nagy-type theorem which describes the bifurcation phenomenon of multiple
eigenvalues that we mentioned before. More precisely, given an eigenvalue λ of multi-
plicitym onΩ and a family of perturbations {φε}ε∈R ofΩ depending real analytically
on ε and such that φ0 is the identity, our result guarantees that all the branches splitting
from λ at ε = 0 are described by m real analytic functions of ε. Moreover, the right
derivatives at ε = 0 of the branches splitting from λ coincide with the eigenvalues of
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the matrix
(

−
∫

∂Ω

(
d

dε
φε

∣∣∣
ε=0

nt
)

∂vi

∂n
∂v j

∂n
|nG |2 dσ

)
i, j=1,...,m

, (2)

where {vi }i=1,...,m is an orthonormal basis in L2(Ω)of the eigenspace corresponding to
λ,n is the outer unit normal field to ∂Ω , andnG := (nx , |x |sny) (see formula (32)).We
note that formula (2) and the analogous formulas of the paper based on surface integrals
are obtained by assuming that the eigenfunctions are of class W 1,2

0 (Ω) ∩W 2,2(Ω) or

at least of class W 1,2
0 (U ) ∩ W 2,2(U ) for some neighborhood U of the support of the

perturbation, here d
dε

φε

∣∣∣
ε=0

. This assumption is clearly automatically guaranteed by

classical regularity theory whenU does not intersect the set {x = 0} (see also Remark
5.8). In any case, our formulas are also presented in an alternative form involving only
volume integrals, inwhich case extra regularity assumptions are not required.Although
we do not enter in regularity issues for the solutions of Grushin-type equations, we
note that theW 1,2

0 (Ω)∩W 2,2(Ω) regularity assumption is satisfied for suitable classes
of domains (for instance, if the domain is smooth and has no characteristic points). In
this regard, we refer to Kohn and Nirenberg [37] and Jerison [32].

Finally, we show two consequences of our analysis. First, motivated by shape
optimization problems, we characterize the critical shapes under isovolumetric and
isoperimetric perturbations. In Theorem 6.1, we prove that if a domain Ω is a critical
set under the volume constraint Vol(Ω) = const. for the symmetric functions of the
eigenvalues bifurcating from an eigenvalue λ of multiplicity m, then

m∑
l=1

(
∂vl

∂n

)2

|nG |2 = c on ∂Ω \ {x = 0},

for some constant c. Next,we consider the sameproblemunder the perimeter constraint
Per(Ω) = const. and in Theorem 6.2 we obtain the additional condition

m∑
l=1

(
∂vl

∂n

)2

|nG |2 = cH on ∂Ω \ {x = 0},

where H is the mean curvature of ∂Ω . Under suitable regularity assumptions on the
eigenfunctions, the above extra conditions are also sufficient for Ω to be critical. As a
second consequence, we obtain a new simple proof of the Rellich–Pohozaev identity
for the Grushin eigenvalues, i.e.

λ = 1

2

∫
∂Ω

(
∂v

∂n

)2

|nG |2((x, (1 + s)y) · n) dσz,

where v is an eigenfunction normalized in L2(Ω).
The paper is organized as follows: In Sect. 2 we introduce some notation and pre-

liminaries. Section 3 is devoted to the eigenvalue problem for the Dirichlet Grushin
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Laplacian and to some well-known basic results about it. In Sect. 4 we define the set
of admissible domain perturbations φ’s and we prove that the φ-pullback is a linear
homeomorphism. Section 5 contains our main results, namely, we show that the sym-
metric functions of the eigenvalues depend real analytically upon shape perturbations
andwe prove theHadamard formula and the Rellich–Nagy-type theorem. In Sect. 6we
characterize the critical shapes under isovolumetric and isoperimetric perturbations
and we formulate the corresponding overdetermined problems. Finally, in Sect. 7 we
provide a new proof of the Rellich–Pohozaev formula for the Grushin eigenvalues.

2 Notation and Preliminaries

To deal with the Grushin Laplacian ΔG , we need to introduce a well-known class of
associatedweightedSobolev spaces. LetU be a boundedopen subset ofRN .Wedenote
by W 1,2

G (U ) the space of real-valued functions in L2(U ) such that ∂xi u ∈ L2(U ) for

all i ∈ {1, . . . , h} and |x |s∂y j u ∈ L2(U ) for all j ∈ {1, . . . , k}. The space W 1,2
G (U )

can be endowed with the following scalar product:

〈u, v〉W 1,2
G (U )

:= 〈u, v〉L2(U ) +
h∑

i=1

〈∂xi u, ∂xi v〉L2(U )

+
k∑
j=1

〈|x |s∂y j u, |x |s∂y j v〉L2(U ),

for all u, v ∈ W 1,2
G (U ). Here, 〈·, ·〉L2(U ) denotes the standard scalar product in L2(U ).

It is well-known that the spaceW 1,2
G (U ) endowed with the scalar product 〈·, ·〉W 1,2

G (U )

is a Hilbert space. The norm induced by the scalar product 〈·, ·〉W 1,2
G (U )

is

‖u‖W 1,2
G (U )

:=
⎛
⎝‖u‖2L2(U )

+
h∑

i=1

‖∂xi u‖2L2(U )
+

k∑
j=1

‖|x |2s∂y j u‖2L2(U )

⎞
⎠

1/2

for all u ∈ W 1,2
G (U ). Throughout the paper we use the following notation:

IG(z) :=
(
Ih×h 0h×k

0k×h |x |s Ik×k

)
∀z = (x, y) ∈ R

N ,

where Ih×h and Ik×k denote the h×h and k×k identitymatrices, respectively, whereas
0h×k and 0k×h denote the h × k and k × h null matrices, respectively. Moreover, if
u ∈ W 1,2

G (U ) we set

∇Gu := (∂x1u, . . . , ∂xh u, |x |s∂y1u, . . . , |x |s∂ym u) = ∇u IG , (3)
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and we refer to ∇Gu as the Grushin gradient of u. We note that if u is in W 1,2
G (U ),

in general its gradient ∇u is a distribution. However, if by ∇u we mean the function
defined a.e. in U as the distributional gradient of u in U \ {x = 0}, then the last
equality of (3) is not only formal but holds almost everywhere. The norm ‖ · ‖W 1,2

G (U )

is equivalent to the norm ‖ · ‖′
W 1,2

G (U )
defined by

‖u‖′
W 1,2

G (U )
≡ ‖u‖L2(U ) + ‖|∇Gu|‖L2(U ) ∀u ∈ W 1,2

G (U ).

Remark 2.1 If U ∩ {x = 0} = ∅, then the norm in W 1,2
G (U ) is equivalent to the

standard Sobolev norm of W 1,2(U ).

We denote byW 1,2
G,0(U ) the closure of C∞

c (U ) inW 1,2
G (U ). In Theorem 2.1 below, we

present an analog of the Rellich–Kondrachov embedding theorem that holds for the
Sobolev space W 1,2

G,0(U ). For a proof we refer to the works of Franchi and Serapioni
[22, Theorem 4.6] and of Kogoj and Lanconelli [34, Proposition 3.2], which consider
a more general class of weighted Sobolev spaces.

Theorem 2.1 (Rellich–Kondrachov) Let U be a bounded open subset of RN . Then the
space W 1,2

G,0(U ) is compactly embedded in L2(U ).

It is alsoknown that an analogof thePoincaré inequality holds in the spaceW 1,2
G,0(U ).

Namely, the following theorem holds (for a proof, see, e.g., D’Ambrosio [11, Theorem
3.7], Monticelli and Payne [47, Theorem 2.1] and Monticelli et al. [48]).

Theorem 2.2 (Poincaré inequality) Let U be a bounded open subset of R
N . Then,

there exists C > 0 such that

‖u‖L2(U ) ≤ C‖|∇Gu|‖L2(U ) ∀u ∈ W 1,2
G,0(U ).

3 The Eigenvalue Problem

Here, we introduce the precise formulation of the eigenvalue problem. We fixU to be
a bounded open subset of R

N . The classical spectral problem is

{
−ΔGu = λu in U ,

u = 0 on ∂U ,
(4)

in the unknowns λ (the eigenvalues) and u (the eigenfunctions). Actually, to reduce the
regularity assumptions, we consider the weak formulation of problem (4). Namely,

∫
U

∇Gu · ∇Gϕ dz = λ

∫
U
uϕ dz ∀ϕ ∈ W 1,2

G,0(U ), (5)

in the unknowns λ ∈ R and u ∈ W 1,2
G,0(U ). We use a standard procedure which enables

us to reduce the study of the eigenvalues of (5) to an eigenvalue problem for a compact
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self-adjoint operator in a Hilbert space.With a slight abuse of notation, we consider the
Grushin Laplacian ΔG as the operator from W 1,2

G,0(U ) to its dual (W 1,2
G,0(U ))′ defined

by

ΔG[u][ϕ] := −
∫
U

∇Gu · ∇Gϕ dz ∀u, ϕ ∈ W 1,2
G,0(U ). (6)

Next, we define the following bilinear form

QG[u, v] := −ΔG[u][v] ∀u, v ∈ W 1,2
G,0(U ).

It is easily seen that the bilinear form QG is continuous. Moreover, by the Poincaré
inequality of Theorem 2.2, we have that

QG[u, u] =
∫
U

|∇Gu|2 dz ≥ c2‖u‖2
W 1,2

G (U )
∀u ∈ W 1,2

G,0(U ),

for some c2 > 0 and thus the bilinear form QG is coercive. In other words, QG is
a scalar product on W 1,2

G,0(U ) which induces a norm equivalent to the standard one.
Thus, we can apply the Riesz representation theorem to deduce that ΔG is a linear
homeomorphism from W 1,2

G,0(U ) onto (W 1,2
G,0(U ))′. We denote by J the map from

L2(U ) to (W 1,2
G,0(U ))′ defined by

J [u][ψ] := 〈u, ψ〉L2(U ) =
∫
U
uψ dz ∀u ∈ L2(U ), ∀ψ ∈ W 1,2

G,0(U ). (7)

Clearly J is continuous and injective. Equation (5) can be rewritten as

− Δ
(−1)
G ◦ J ◦ i[u] = μu, (8)

where μ = λ−1 and i is the embedding of W 1,2
G,0(U ) in L2(U ). Accordingly, it is

natural to consider the operator TG from W 1,2
G,0(U ) to itself defined by

TG[u] := −Δ
(−1)
G ◦ J ◦ i[u] ∀u ∈ W 1,2

G,0(U ).

Since the embedding i is compact by Theorem 2.1, TG is compact inW 1,2
G,0(U ). More-

over, TG is self-adjoint in W 1,2
G,0(U ) endowed with the scalar product QG . Indeed,

QG[TGu, v] = − ΔG[TGu][v] = ΔG

[
Δ

(−1)
G ◦ J ◦ i[u]

]
[v] =

∫
U
uv dz

∀u, v ∈ W 1,2
G,0(U ).

Since QG is symmetric, we have that QG[TGu, v] = QG[u, TGv]. In addition, TG is
injective because it is the composition of injective maps. It follows that the spectrum
of TG is discrete and consists of a sequence of positive eigenvalues μ j [U ] of finite
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multiplicity converging to zero. More precisely, by classical spectral theory, by the
min-max principle (see, e.g., Davies [13, Sect. 4.5]), and by the equivalence of the
formulations (5) and (8) we have the following.

Theorem 3.1 The eigenvalues of equation (5) have finite multiplicity and can be rep-
resented by means of a divergent sequence

0 < λ1[U ] ≤ λ2[U ] ≤ . . . ≤ λ j [U ] ≤ . . . → +∞.

Moreover, they coincide with the inverse of the eigenvalues μ j [U ] of TG, and

λ j [U ] = min
E⊆W 1,2

G,0(U )

dimE= j

max
u∈E
u �=0

∫
U |∇Gu|2 dz∫

U u2 dz
∀ j ∈ N.

4 Admissible Domain Perturbations

Since we plan to consider the eigenvalue problem (5) on a variable domain, the first
step is to define what we mean by variable domain. Our point of view is to consider
a fixed domain and a family of open sets parametrized by a suitable homeomorphism
defined on the fixed domain. Accordingly, we fix

a bounded open subset Ω of R
N and a bounded open subset O of R

N

such that ∅ �= Ω ∩ {x = 0} ⊆ O.
(9)

From now on if φ is a map with values in R
N , we denote by φx = (φx1, . . . , φxh )

and by φy = (φy1, . . . , φyk ) the first h and the last k components of φ, respectively.
Moreover, we denote by πx and by πy the projections of R

N to R
h and R

k which take
z = (x, y) to x and y, respectively. We set

LΩ,O :=
{
φ ∈ Lip(Ω)N : ∃ φ̃x ∈ Lip(πx (Ω ∩ O))h, φ̃y ∈ Lip(πy(Ω ∩ O))k

s.t. φ = (φ̃x ◦ πx , φ̃y ◦ πy) in Ω ∩ O, φ̃x (0) = 0
}
.

It is easily seen that LΩ,O is a closed linear subspace of the Banach space Lip(Ω)N ,
where Lip(Ω) denotes the Banach space of Lipschitz functions inΩ endowedwith the
norm supΩ | f | + supz1,z2∈Ω

z1 �=z2

| f (z1)− f (z2)|
|z1−z2| . Therefore, LΩ,O is a Banach space itself.

We define the space of admissible shape perturbations as

AΩ,O :=
{
φ ∈ LΩ,O : inf

z1,z2∈Ω
z1 �=z2

|φ(z1) − φ(z2)|
|z1 − z2| > 0

}
.

see Fig. 1.
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O′

x

y

φ(Ω)
Ω

O

φ

y

x

Fig. 1 An example, in dimension N = 2, of a homeomorphism φ ∈ AΩ,O for a possible choice of fixed
Ω and O . In the intersection between Ω and O , the homeomorphism φ deforms separately the x and y
directions

By Lamberti and Lanza de Cristoforis [41, Lemma 3.11], if φ ∈ AΩ,O then φ

is injective and infΩ | det Dφ| > 0. Moreover, φ(Ω) is a bounded open set and the
inverse map φ(−1) belongs toAφ(Ω),O ′ for some open set O ′ containing φ(Ω)∩{x =
0}.
Remark 4.1 If φ ∈ AΩ,O , then φ is a bi-Lipschitz homeomorphism from Ω into his
image that near the degenerate set, i.e. insideΩ∩O , deforms separately the x-direction
and the y-direction. Moreover, if a point belongs to the degenerate set {x = 0}, then its
image throughφ has to remain on the degenerate set. Sinceφ is bi-Lipschitz, it is easily
seen that there exists C > 0 such that 1

C |x | ≤ φx (z) ≤ C |x | for all z ∈ Ω . Finally,
it is worth noting that our setting includes both the case in which the degenerate set
{x = 0} intersects Ω and the case in which part of the boundary of Ω lies on the
degenerate set.

For a transformation φ ∈ AΩ,O , we are able to prove that the φ-pushforward (or
equivalently the φ-pullback), that we will use to transplant the problem to the fixed
domain Ω , is a linear homeomorphism.

Lemma 4.1 Let Ω and O be as in (9). Let φ ∈ AΩ,O. Then, the operator Cφ(−1)

defined by

Cφ(−1) [u] := u ◦ φ(−1) ∀u ∈ L2(Ω),

is a linear homeomorphism from L2(Ω) to L2(φ(Ω)) which restricts a linear home-
omorphism from W 1,2

G (Ω) onto W 1,2
G (φ(Ω)) and from W 1,2

G,0(Ω) onto W 1,2
G,0(φ(Ω)).

Moreover C (−1)
φ(−1) = Cφ .

Proof Let u ∈ L2(Ω). There exists c1 > 0 such that

‖Cφ(−1) [u]‖2L2(φ(Ω))
=

∫
φ(Ω)

(u ◦ φ(−1)(z))2 dz =
∫

Ω

(u(z))2| det Dφ| dz

≤ c1

∫
Ω

(u(z))2 dz = c1‖u‖2L2(Ω)
.

Thus,Cφ(−1) is continuous from L2(Ω) to L2(φ(Ω)). SinceCφ(−1) is clearly surjective,
the Open Mapping Theorem implies that it is a linear homeomorphism from L2(Ω)

to L2(φ(Ω)).
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Next, we fix u ∈ C1(Ω) ∩ W 1,2
G (Ω). Since φ is invertible, we have that φ(Ω ∩

O) ∩ φ(Ω \ O) = ∅ and that φ(Ω ∩ O) ∪ φ(Ω \ O) = φ(Ω) and thus

‖|∇GCφ(−1) [u]|‖2L2(φ(Ω))
=

∫
φ(Ω)

|∇G(u ◦ φ(−1))(z)|2 dz

=
∫

φ(Ω∩O)

|∇G(u ◦ φ(−1))(z)|2 dz

+
∫

φ(Ω\O)

|∇G(u ◦ φ(−1))(z)|2 dz.

(10)

We now consider the first summand
∫
φ(Ω∩O)

|∇G(u ◦ φ(−1))(z)|2 dz in the right hand
side of (10). We have

∫
φ(Ω∩O)

|∇G(u ◦ φ(−1))(z)|2 dz

=
∫

φ(Ω∩O)

|∇u(φ(−1)(z))(Dφ(−1)(z))IG(z)|2 dz

=
∫

Ω∩O
|∇u(z)(Dφ(z))−1 IG(φ(z))|2| det Dφ(z)| dz.

We now observe that for almost every z ∈ Ω ∩ O we have

(Dφ(z))−1 IG(φ(z)) =
(
Dxφx (z) 0h×k

0k×h Dyφy(z)

)−1 (
Ih×h 0h×k

0k×h |φx (z)|s Ik×k

)

=
(

(Dxφx (z))−1 0h×k

0k×h (Dyφy(z))−1

)(
Ih×h 0h×k

0k×h |φx (z)|s Ik×k

)

=
(
Ih×h 0h×k

0k×h |φx (z)|s Ik×k

)(
(Dxφx (z))−1 0h×k

0k×h (Dyφy(z))−1

)

= IG(φ(z))(Dφ(z))−1 .

Thus,

∫
Ω∩O

|∇u(z)(Dφ(z))−1 IG(φ(z))|2| det Dφ(z)| dz

=
∫

Ω∩O
|∇u(z)IG(φ(z))(Dφ(z))−1|2| det Dφ(z)| dz .

Then, we note that

∇u(z)IG(φ(z)) = (∇xu(z), |φx (z)|s∇yu(z)) for almost every z ∈ Ω,
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and that there exists a constant C > 0 such that 1
C |x | ≤ |φx (z)| ≤ C |x | for all z ∈ Ω .

As a consequence, since φ ∈ Lip(Ω)N , we deduce the existence of c2 > 0 such that

∫
Ω∩O

|∇u(z)IG(φ(z))(Dφ(z))−1|2| det Dφ(z)| dz ≤ c2

∫
Ω∩O

|∇Gu(z)|2 dz ,

and accordingly that

∫
φ(Ω∩O)

|∇G(u ◦ φ(−1))(z)|2 dz ≤ c2

∫
Ω∩O

|∇Gu(z)|2 dz . (11)

We now turn to the second summand
∫
φ(Ω\O)

|∇G(u ◦φ(−1))(z)|2 dz in the right hand
side of (10). By Remark 2.1, the W 1,2

G -norm is equivalent to the standard Sobolev
norm of W 1,2 if we are far from the degenerate set {x = 0} and thus there exist
c3, c4, c5 > 0 such that

∫
φ(Ω\O)

|∇G(u ◦ φ(−1))(z)|2 dz ≤ c3

∫
φ(Ω\O)

|∇(u ◦ φ(−1))(z)|2 dz

= c3

∫
Ω\O

|∇u(z)(Dφ(z))−1|2| det Dφ(z)| dz

≤ c4

∫
Ω\O

|∇u(z)|2 dz

≤ c5

∫
Ω\O

|∇Gu(z)|2 dz .

(12)

Thus by (10) and by summing up the inequalities in (11) and (12), there exists
c6 > 0 such that

‖|∇GCφ(−1) [u]|‖2L2(φ(Ω))
≤ c6‖|∇Gu|‖2L2(Ω)

.

Since Cφ(−1) is continuous from L2(Ω) to L2(φ(Ω)), since W 1,2
G (Ω) is continuously

embedded in L2(Ω), and sinceC1(Ω)∩W 1,2
G (Ω) is dense inW 1,2

G (Ω) (see Franchi et

al. [23]), one can realize that Cφ(−1) is continuous from W 1,2
G (Ω) to W 1,2

G (φ(Ω)). To

show the surjectivity,we take v ∈ W 1,2
G (φ(Ω)). Following the same argument as above

together with the inequality 1
C |x | ≤ |φx (z)| one can realize that v ◦ φ ∈ W 1,2

G (Ω)

and, clearly, Cφ(−1) [v ◦ φ] = v. By the Open Mapping Theorem Cφ(−1) is a linear

homeomorphism from W 1,2
G (Ω) to W 1,2

G (φ(Ω)).

Finally, by a standard mollification argument Cφ(−1) [u] ∈ W 1,2
G,0(φ(Ω)) for all

u ∈ C∞
c (φ(Ω)). Therefore, since W 1,2

G,0(φ(Ω)) is a closed subspace of W 1,2
G (φ(Ω)),

we have that Cφ(−1) [u] ∈ W 1,2
G,0(φ(Ω)) for all u ∈ W 1,2

G,0(Ω) and thus Cφ(−1) restricts

a linear homeomorphism fromW 1,2
G,0(Ω) ontoW 1,2

G,0(φ(Ω)). The last part of the state-
ment is obvious. ��
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5 Analyticity Results and Hadamard Formula

In this section, we perform the shape sensitivity analysis of the Grushin eigenvalue
problem. As in the previous section, we fix Ω and O as in (9) and φ ∈ AΩ,O . We
consider

∫
φ(Ω)

∇Gv · ∇Gψ dz = λ

∫
φ(Ω)

vψ dz ∀ψ ∈ W 1,2
G,0(φ(Ω)), (13)

in the unknowns v ∈ W 1,2
G,0(φ(Ω)) and λ ∈ R. By the results of Sect. 3, the eigenvalues

of equation (13) have finitemultiplicity and can be represented bymeans of a divergent
sequence

0 < λ1[φ] ≤ λ2[φ] ≤ . . . ≤ λ j [φ] ≤ . . . → +∞,

where we have set

λ j [φ] := λ j [φ(Ω)] ∀ j ∈ N.

In general, if we want to study the regularity of an eigenvalue upon a parameter, which
in our case is φ, we face a first problem. Namely, we cannot expect to prove smooth
dependence of the eigenvalues themselves upon the parameter, when the eigenvalues
are not simple. This is due to bifurcation phenomena of splitting from a multiple
eigenvalue to different eigenvalues of lower multiplicity (cf. Rellich [56, p. 37]).
Hence, to circumvent this problem, we consider the elementary symmetric functions
of the eigenvalues. This is the point of view introduced by Lamberti and Lanza de
Cristoforis [41] and later adopted in many other works (see, e.g., [7,8,40,43]). Clearly,
when a certain eigenvalue is simple, for example in the case of the first Grushin
eigenvalue under the assumption that Ω \ {x = 0} is connected (see Monticelli and
Payne [47, Theorem 6.4]), our regularity result for the symmetric functions of the
eigenvalues implies that the same regularity is valid for the eigenvalue.

To perform this strategy, we need to introduce two subspaces ofAΩ,O . Let F ⊆ N

be a finite set of indexes and we consider the subset ofAΩ,O of those maps for which
the eigenvalueswith index in F do not coincidewith the eigenvalueswith index outside
F . That is

AF
Ω,O := {

φ ∈ AΩ,O : λn[φ] �= λm[φ], ∀n ∈ F, ∀m ∈ N \ F
}
.

We find also convenient to consider the set ΘF
Ω,O of those maps inAF

Ω,O such that all
the eigenvalues with index in F coincide. Namely,

ΘF
Ω,O := {

φ ∈ AF
Ω,O : λn[φ] = λm[φ], ∀n,m ∈ F

}
.

For φ ∈ AΩ,O we introduce the following two operators.
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(i) Jφ is the map from L2(Ω) to (W 1,2
G,0(Ω))′ defined by

Jφ[u][v] :=
∫

Ω

uv| det Dφ| dz ∀u ∈ L2(Ω), ∀v ∈ W 1,2
G,0(Ω).

(ii) ΔG,φ is the map from W 1,2
G,0(Ω) to (W 1,2

G,0(Ω))′ defined by

ΔG,φ[u][v] := −
∫

Ω

∇u(Dφ)−1 IG(φ)(∇v(Dφ)−1 IG(φ))t | det Dφ| dz
∀u, v ∈ W 1,2

G,0(Ω).

Remark 5.1 Let φ ∈ AΩ,O . By performing a change of variable, one can readily verify
that

Jφ = Ct
φ(−1) ◦ J ◦ Cφ(−1) ΔG,φ = Ct

φ(−1) ◦ ΔG ◦ Cφ(−1) ,

being J and ΔG the operators defined in (7) and (6) with U = φ(Ω), respectively,
and Cφ(−1) the φ-pushforward operator introduced in Lemma 4.1.

Since ΔG is a linear homeomorphism from W 1,2
G,0(φ(Ω)) onto (W 1,2

G,0(φ(Ω)))′ and
since J is a linear and continuous injection from L2(φ(Ω)) to (W 1,2

G,0(φ(Ω)))′, Lemma
4.1 immediately implies the following.

Corollary 5.1 Let Ω and O be as in (9) and φ ∈ AΩ,O. Then the operator ΔG,φ is

a linear homeomorphism W 1,2
G,0(Ω) onto (W 1,2

G,0(Ω))′ and the operator Jφ is a linear

and continuous injection from L2(Ω) to (W 1,2
G,0(Ω))′.

Next, in order to reformulate problem (13) into a spectral problem for a compact
self-adjoint operator, we set TG,φ to be the map from W 1,2

G,0(Ω) to itself defined by

TG,φ[u] := −Δ
(−1)
G,φ ◦ Jφ ◦ i[u] ∀u ∈ W 1,2

G,0(Ω). (14)

Here, i denotes the embedding ofW 1,2
G,0(Ω) in L2(Ω). Clearly, equation (13) is equiv-

alent to

TG,φ[u] = μu

with u = v ◦ φ and μ = λ−1. Furthermore, we set

QG,φ[u, v] := −ΔG,φ[u][v] ∀u, v ∈ W 1,2
G,0(Ω). (15)

Adapting the same computations of the proof of Lemma 4.1, it is easily seen that QG,φ

is a scalar product on W 1,2
G,0(Ω) which induces a norm equivalent to the standard one

in W 1,2
G,0(Ω).
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We now consider the operator TG,φ acting on
(
W 1,2

G,0(Ω), QG,φ

)
and we prove that

it is a compact self-adjoint operator and that it depends real analytically on φ. Before
doing this, we need some notation. If X , Y are two Banach spaces, we denote by
L(X ,Y) the space of linear and continuous operators from X to Y , we set L(X ) :=
L(X ,X ) and we denote by Bs(X ) the space of bilinear symmetric forms onX . These
spaces are endowed with their standard norms.

Proposition 5.1 Let Ω and O be as in (9) and φ ∈ AΩ,O. Then

(i) TG,φ is a compact self-adjoint operator in
(
W 1,2

G,0(Ω), QG,φ

)
.

(ii) The map from AΩ,O to L
(
W 1,2

G,0(Ω)
)

× Bs

(
W 1,2

G,0(Ω)
)

which takes φ to

(TG,φ, QG,φ) is real analytic.

Proof First we consider statement (i). The compactness of TG,φ is a consequence of
the compactness of the embedding of W 1,2

G,0(Ω) in L2(Ω). For the self-adjointess we
note that

QG,φ[TG,φu, v] = − ΔG,φ[TG,φu][v] = −ΔG,φ

[
−Δ

(−1)
G,φ ◦ Jφ ◦ i[u]

]
[v]

= Jφ[i[u]][v] ∀u, v ∈ W 1,2
G,0(Ω).

Next, we prove statement (ii). It is easily seen that the maps which take φ to ΔG,φ ,
Jφ and QG,φ from AΩ,O to L(W 1,2

G,0(Ω), (W 1,2
G,0(Ω))′), L(L2(Ω), (W 1,2

G,0(Ω))′) and
Bs(W

1,2
G,0(Ω)), respectively, are real analytic. Then, since the map which takes an

invertible operator to its inverse is real analytic we can conclude that TG,φ depends
real analytically on φ. ��
We are ready to prove that the elementary symmetric functions of the eigenvalues
depend real analytically upon the domain’s shape φ.

Theorem 5.1 Let Ω and O be as in (9). Let F be a finite nonempty subset of N. Let
τ ∈ {1, . . . , |F |}. Then AF

Ω,O is open in LΩ,O and the map ΛF,τ from AF
Ω,O to R

defined by

ΛF,τ [φ] :=
∑

j1,..., jτ ∈F
j1<···< jτ

λ j1[φ] · · · λ jτ [φ] ∀φ ∈ AF
Ω,O

is real analytic.

Proof We denote by {μ j [φ]} j∈N\{0} the set of eigenvalues of TG,φ . As we have already
pointed out μ j [φ] = (λ j [φ])−1. Hence, the set AF

Ω,O coincides with the set

{
φ ∈ AΩ,O : μn[φ] �= μm[φ], ∀n ∈ F, ∀m ∈ N \ F

}
.

By Proposition 5.1, TG,φ is self-adjoint with respect to the scalar product QG,φ and,
moreover, both TG,φ and QG,φ depend analytically on φ ∈ AF

Ω,O . Thus, Lamberti
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and Lanza de Cristoforis [41, Theorem 2.30] implies that AF
Ω,O is open in LΩ,O and

the map MF,τ from AF
Ω,O to R defined by

MF,τ [φ] :=
∑

j1,..., jτ ∈F
j1<···< jτ

μ j1 [φ] · · · μ jτ [φ] ∀φ ∈ AF
Ω,O (16)

is real analytic. If we set MF,0[φ] := 1 for all φ ∈ AF
Ω,O , one can readily verify that

ΛF,τ [φ] = MF,|F |−τ [φ]
MF,|F |[φ] ∀φ ∈ AF

Ω,O . (17)

Accordingly the statement follows. ��

In view of the applications, once we have considered the regularity of the elemen-
tary symmetric functions, it is important to have an explicit formula for their shape
differential. Thus, our next step is to prove an Hadamard-type formula for the shape
differential of the elementary symmetric functions.

Theorem 5.2 Let Ω and O be as in (9). Let F be a finite nonempty subset of N.
Let τ ∈ {1, . . . , |F |}. Let φ̃ ∈ ΘF

Ω,O and let λF [φ̃] be the common value of all the

eigenvalues {λ j [φ̃]} j∈F . Let {vl}l∈F be an orthonormal basis in (W 1,2
G,0(φ̃(Ω)), QG)

of the eigenspace associated with λF [φ̃]. Then the Frechét differential of the mapΛF,τ

at the point φ̃ is delivered by the formula

d|φ=φ̃(ΛF,τ )[ψ]

= −λτ
F [φ̃]

(|F | − 1

τ − 1

)∑
l∈F

{ ∫
φ̃(Ω)

(λF [φ̃]v2l − |∇Gvl |2)div
(
ψ ◦ φ̃(−1)

)
dz

+
∫

φ̃(Ω)

(∇vl)(D(ψ ◦ φ̃(−1))I 2G + I 2GD(ψ ◦ φ̃(−1))t )(∇vl)
t dz

−
∫

φ̃(Ω)

2s|x |2s−2|∇yvl |2x · (ψ ◦ φ̃(−1))x dz

}
∀ψ ∈ LΩ,O . (18)

Proof We set ul := vl ◦ φ̃ for all l ∈ F and we note that {ul}l∈F is an orthonormal

basis in
(
W 1,2

G,0(Ω), QG,φ̃

)
for the eigenspace corresponding to the eigenvalue λ−1

F [φ̃]
of the operator TG,φ̃ . We recall that MF,τ is the operator defined in (16). By Lamberti
and Lanza de Cristoforis [41, Theorem 2.30] it follows that

d|φ=φ̃ (MF,τ )[ψ] = λ1−τ
F [φ̃]

(|F | − 1

τ − 1

) ∑
l∈F

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][ul ], ul

]

∀ψ ∈ LΩ,O .
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Thus, exploiting formula (17), we have that

d|φ=φ̃ (ΛF,τ )[ψ]
=

{
d|φ=φ̃MF,|F |−τ [ψ]MF,|F |[φ̃] − MF,|F |−τ [φ̃]d|φ=φ̃MF,|F |[ψ]

}
λ
2|F |
F [φ̃]

=
{
λ
1−2|F |+τ
F [φ̃]

( |F | − 1

|F | − τ − 1

)
− λ

1−2|F |+τ
F [φ̃]

(|F |
τ

)}

× λ
2|F |
F [φ̃]

∑
l∈F

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][ul ], ul

]

= −λ1+τ
F [φ̃]

(|F | − 1

τ − 1

) ∑
l∈F

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][ul ], ul

]
∀ψ ∈ LΩ,O .

(19)

Thus, we have to compute the term QG,φ̃[d|φ=φ̃TG,φ[ψ][ul ], ul ]. By standard rules
of calculus in Banach spaces, by the definition (15) of QG,φ , and since every ul is an
eigenfunction corresponding to the eigenvalue λ−1

F [φ̃], we have that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][ul ], ul

]

= QG,φ̃

[
d|φ=φ̃(−Δ

(−1)
G,φ ◦ Jφ ◦ i)[ψ][ul ], ul

]

= QG,φ̃

[
−Δ

(−1)
G,φ̃

◦
(
d|φ=φ̃ (Jφ ◦ i)[ψ]

)
[ul ], ul

]

+ QG,φ̃

[(
d|φ=φ̃(−Δ

(−1)
G,φ )[ψ]

)
◦ Jφ̃ ◦ i[ul ], ul

]

=
(
d|φ=φ̃ (Jφ ◦ i)[ψ][ul ]

)
[ul ]

− ΔG,φ̃

[
Δ

(−1)
G,φ̃

◦
(
d|φ=φ̃(ΔG,φ)[ψ]

)
◦ Δ

(−1)
G,φ̃

◦ Jφ̃ ◦ i[ul ]
]
[ul ]

=
(
d|φ=φ̃ (Jφ ◦ i)[ψ][ul ]

)
[ul ] + λ−1

F [φ̃]
(
d|φ=φ̃ (ΔG,φ)[ψ]

)
[ul ][ul ]

∀ψ ∈ LΩ,O

(cf. Lamberti and Lanza de Cristoforis [41, Lemma 3.26]). Hence, in order to have an
explicit representation of the differential, we need to compute the terms

(
d|φ=φ̃ (Jφ ◦ i)[ψ][ul ]

)
[ul ] and

(
d|φ=φ̃ (ΔG,φ)[ψ]

)
[ul ][ul ].

Standard rules of calculus in Banach spaces yield

[(
d|φ=φ̃(det Dφ)[ψ]

)
◦ φ̃(−1)

]
det Dφ̃(−1) = div

(
ψ ◦ φ̃(−1)

)
∀ψ ∈ LΩ,O .

(20)

We note that the map from { f ∈ L∞(Ω) : essinfΩ | f | > 0} to L∞(Ω) which takes f
to | f | is differentiable and its differential at f is the map from L∞(Ω) to itself which
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maps h to sgn( f )h. By the above equality (20) and by a change of variable we obtain

(
d|φ=φ̃(Jφ ◦ i)[ψ][ul ]

)
[ul ]

=
∫

Ω

u2l d|φ=φ̃(| det Dφ|)[ψ] dz

=
∫

φ̃(Ω)

v2l d|φ=φ̃ ((| det Dφ|)[ψ]) ◦ φ̃(−1)| det Dφ̃(−1)| dz

=
∫

φ̃(Ω)

v2l div
(
ψ ◦ φ̃(−1)

)
dz ∀ψ ∈ LΩ,O .

Next, we turn to consider the shape differential of the term ((ΔG,φ)[ψ])[ul ][ul ]. By
standard rules of calculus we have

d|φ=φ̃(Dφ)−1[ψ] = −(Dφ̃)−1Dψ(Dφ̃)−1 ∀ψ ∈ LΩ,O ,

and

d|φ=φ̃ IG(φ)[ψ] =
(
0h×h 0h×k

0k×h s|φ̃x |s−2φ̃x · ψx Ik×k

)
∀ψ ∈ LΩ,O .

Hence,

(
d|φ=φ̃(ΔG,φ)[ψ])[ul ][ul ]
=

∫
Ω

∇ul(Dφ̃)−1Dψ(Dφ̃)−1 IG(φ̃)(∇ul(Dφ̃)−1 IG(φ̃))t | det Dφ̃| dz

+
∫

Ω

∇ul(Dφ̃)−1 IG(φ̃)(∇ul(Dφ̃)−1Dψ(Dφ̃)−1 IG(φ̃))t | det Dφ̃| dz

−
∫

Ω

∇ul(Dφ̃)−1 IG(φ̃)(∇ul(Dφ̃)−1 IG(φ̃))t (d|φ=φ̃ | det Dφ|)[ψ] dz

−
∫

Ω

∇ul(Dφ̃)−1(d|φ=φ̃ IG(φ)[ψ])(∇ul(Dφ̃)−1 IG(φ̃))t | det Dφ̃| dz

−
∫

Ω

∇ul(Dφ̃)−1 IG(φ)(∇ul(Dφ̃)−1(d|φ=φ̃ IG(φ)[ψ])(φ̃))t | det Dφ̃| dz

=
∫

φ̃(Ω)

(∇vl)(D(ψ ◦ φ̃(−1))IG)(∇Gvl)
t dz

+
∫

φ̃(Ω)

(∇Gvl)(D(ψ ◦ φ̃(−1))IG)t (∇vl)
t dz

−
∫

φ̃(Ω)

|∇Gvl |2div
(
ψ ◦ φ̃(−1)

)
dz

− 2s
∫

φ̃(Ω)

|x |2s−2|∇yvl |2x · (ψ ◦ φ̃(−1))x dz
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=
∫

φ̃(Ω)

(∇vl)
(
D(ψ ◦ φ̃(−1))I 2G + I 2GD(ψ ◦ φ̃(−1))t

)
(∇vl)

t dz

−
∫

φ̃(Ω)

|∇Gvl |2div
(
ψ ◦ φ̃(−1)

)
dz

−
∫

φ̃(Ω)

2s|x |2s−2|∇yvl |2x · (ψ ◦ φ̃(−1))x dz ∀ψ ∈ LΩ,O .

Accordingly, we have proved that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][ul ], ul

]

=
∫

φ̃(Ω)

v2l div
(
ψ ◦ φ̃(−1)

)
dz

+ λ−1
F [φ̃]

∫
φ̃(Ω)

(∇vl)
(
D(ψ ◦ φ̃(−1))I 2G + I 2GD(ψ ◦ φ̃(−1))t

)
(∇vl)

t dz

− λ−1
F [φ̃]

∫
φ̃(Ω)

|∇Gvl |2div
(
ψ ◦ φ̃(−1)

)
dz

− λ−1
F [φ̃]

∫
φ̃(Ω)

2s|x |2s−2|∇yvl |2x · (ψ ◦ φ̃(−1))x dz ∀ψ ∈ LΩ,O .

Putting together all the above equalities one verifies that formula (18) holds. ��
Now, our aim is to rewrite formula (18) in a simpler form and obtain a Grushin

analog of the classical Hadamard formula. To achieve this goal, we prove an inter-
mediate technical lemma where we provide a suitable representation formula for

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]
, where u1, u2 are two eigenfunctions associated with

the same eigenvalue. The following lemma is the analog in the Grushin setting of
Lamberti and Lanza de Cristoforis [41, Lemma 3.26] for the standard Laplacian. We
note that, although the idea behind the proof is the same, the Grushin case requires a
careful and not straightforward analysis of several terms which do not appear in the
standard case. For this reason we include a detailed proof.

Lemma 5.1 Let Ω and O be as in (9). Let φ̃ ∈ AΩ,O. Suppose that φ̃(Ω) is of class
C1. Let v1, v2 ∈ W 1,2

G,0(φ̃(Ω)) be two eigenfunctions corresponding to an eigenvalue

λ[φ̃] of (5). Suppose that v1, v2 ∈ W 1,2
0 (φ̃(Ω)) ∩ W 2,2(φ̃(Ω)). Let u1 := v1 ◦ φ̃,

u2 := v2 ◦ φ̃. Then

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]
= λ[φ̃]−1

∫
∂φ̃(Ω)

(ψ ◦ φ̃(−1)nt )
∂v1

∂n
∂v2

∂n
|nG |2 dσ

∀ψ ∈ LΩ,O , (21)

where n denotes the outward unit normal field to ∂φ̃(Ω) and

nG := n IG = (nx , |x |sny) on ∂φ̃(Ω). (22)
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Proof We fix ψ ∈ LΩ,O and for the sake of simplicity we set ω := ψ ◦ φ̃(−1). A
minor modification of the proof of Theorem 5.2 shows that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]

=
∫

φ̃(Ω)

v1v2div (ω) dz

+ λ−1[φ̃]
∫

φ̃(Ω)

(∇v1)
(
(Dω)I 2G + I 2G(Dω)t

)
(∇v2)

t dz

− λ−1[φ̃]
∫

φ̃(Ω)

(∇Gv1)(∇Gv2)
tdiv (ω) dz

− λ−1[φ̃]
∫

φ̃(Ω)

2s|x |2s−2(∇yv1)(∇yv2)
t x · ωx dz

∀ψ ∈ LΩ,O . (23)

We start by considering the second term in the right hand side of formula (23). A
simple computation shows that

∫
φ̃(Ω)

∇v1

(
(Dω)I 2G + I 2G(Dω)t

)
(∇v2)

t dz

=
∫

φ̃(Ω)

∇xv1

(
Dxωx + (Dxωx )

t
)

(∇xv2)
t dz

+
∫

φ̃(Ω)

|x |2s∇yv1

(
Dyωy + (Dyωy)

t
) (∇yv2

)t
dz

+
∫

φ̃(Ω)

∇yv1

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv2)
t dz

+
∫

φ̃(Ω)

∇yv2

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv1)
t dz. (24)

We consider the second term in the right hand side of equation (24). By the Divergence
Theorem we have that

∫
φ̃(Ω)

|x |2s∇yv1

(
Dyωy + (Dyωy)

t
) (∇yv2

)t
dz

=
k∑

i, j=1

∫
φ̃(Ω)

(
|x |2s ∂ωyi

∂ y j

∂v1

∂ yi

∂v2

∂ y j
+ |x |2s ∂ωy j

∂ yi

∂v1

∂ yi

∂v2

∂ y j

)
dz

= −
k∑

i, j=1

∫
φ̃(Ω)

(
|x |2sωyi

∂2v1

∂ y j∂ yi

∂v2

∂ y j
+ |x |2sωyi

∂v1

∂ yi

∂2v2

∂ y2j

)
dz

−
k∑

i, j=1

∫
φ̃(Ω)

(
|x |2sωy j

∂2v1

∂ y2i

∂v2

∂ y j
+ |x |2sωy j

∂v1

∂ yi

∂2v2

∂ yi∂ y j

)
dz
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+
k∑

i, j=1

∫
∂φ̃(Ω)

(
|x |2sωyiny j

∂v1

∂ yi

∂v2

∂ y j
+ |x |2sωy jnyi

∂v1

∂ yi

∂v2

∂ y j

)
dσz .

We note that

k∑
i, j=1

∫
φ̃(Ω)

|x |2sωyi
∂2v1

∂ y j∂ yi

∂v2

∂ y j
dz +

k∑
i, j=1

∫
φ̃(Ω)

|x |2sωy j
∂v1

∂ yi

∂2v2

∂ yi∂ y j
dz

=
k∑

i, j=1

∫
φ̃(Ω)

|x |2sωyi
∂

∂ yi

(
∂v1

∂ y j

∂v2

∂ y j

)
dz

= −
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivyωy dz

+
∫

∂φ̃(Ω)

|x |2s(ωynty)((∇yv1)(∇yv2)
t ) dσz,

and

k∑
i, j=1

∫
∂φ̃(Ω)

(
|x |2sωyiny j

∂v1

∂ yi

∂v2

∂ y j
+ |x |2sωy jnyi

∂v1

∂ yi

∂v2

∂ y j

)
dσz

=
∫

∂φ̃(Ω)

(
|x |2s(ωy∇yv

t
1)(ny∇yv

t
2) + |x |2s(ωy∇yv

t
2)(ny∇yv

t
1)

)
dσz .

Accordingly, the second term in the right hand side of equation (24) equals

∫
φ̃(Ω)

|x |2s∇yv1

(
Dyωy + (Dyωy)

t
) (∇yv2

)t
dz

= −
∫

φ̃(Ω)

|x |2sΔyv2(∇yv1)ω
t
y dz

−
∫

φ̃(Ω)

|x |2sΔyv1(∇yv2)ω
t
y dz

+
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivyωy dz

−
∫

∂φ̃(Ω)

|x |2s(ωynty)((∇yv1)(∇yv2)
t ) dσz

+
∫

∂φ̃(Ω)

(
|x |2s(ωy∇yv

t
1)(ny∇yv

t
2) + |x |2s(ωy∇yv

t
2)(ny∇yv

t
1)

)
dσz .

Similarly, the first term in the right hand side of equation (24) equals

∫
φ̃(Ω)

∇xv1

(
Dxωx + (Dxωx )

t
)

(∇xv2)
t dz
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= −
∫

φ̃(Ω)

Δxv2(∇xv1)ω
t
x dz

−
∫

φ̃(Ω)

Δxv1(∇xv2)ω
t
x dz

+
∫

φ̃(Ω)

(∇xv1)(∇xv2)
tdivxωx dz

−
∫

∂φ̃(Ω)

(ωxntx )((∇xv1)(∇xv2)
t ) dσz

+
∫

∂φ̃(Ω)

(
(ωx∇xv

t
1)(nx∇xv

t
2) + (ωx∇xv

t
2)(nx∇xv

t
1)

)
dσz .

Since v1, v2 are eigenfunctions we have

−
∫

φ̃(Ω)

Δxv1(∇xv2)ω
t
x dz −

∫
φ̃(Ω)

|x |2sΔyv1(∇yv2)ω
t
y dz

= −
∫

φ̃(Ω)

ΔGv1(∇v2)ω
t dz +

∫
φ̃(Ω)

Δxv1(∇yv2)ω
t
y dz

+
∫

φ̃(Ω)

|x |2sΔyv1(∇xv2)ω
t
x dz

= λ[φ̃]
∫

φ̃(Ω)

v1(∇v2)ω
t dz +

∫
φ̃(Ω)

Δxv1(∇yv2)ω
t
y dz

+
∫

φ̃(Ω)

|x |2sΔyv1(∇xv2)ω
t
x dz,

and the same holds interchanging the role of v1 and v2. Accordingly,

−
∫

φ̃(Ω)

Δxv1(∇xv2)ω
t
x dz −

∫
φ̃(Ω)

|x |2sΔyv1(∇yv2)ω
t
y dz

−
∫

φ̃(Ω)

Δxv2(∇xv1)ω
t
x dz −

∫
φ̃(Ω)

|x |2sΔyv2(∇yv1)ω
t
y dz

= −λ[φ̃]
∫

φ̃(Ω)

v1v2div(ω) dz +
∫

φ̃(Ω)

Δxv1(∇yv2)ω
t
y dz

+
∫

φ̃(Ω)

|x |2sΔyv1(∇xv2)ω
t
x dz +

∫
φ̃(Ω)

Δxv2(∇yv1)ω
t
y dz

+
∫

φ̃(Ω)

|x |2sΔyv2(∇xv1)ω
t
x dz.

Thus, by substituting all the above relations into equality (23), one can verify that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]

= λ−1[φ̃]
∫

φ̃(Ω)

Δxv1(∇yv2)ω
t
y dz
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+ λ−1[φ̃]
∫

φ̃(Ω)

Δxv2(∇yv1)ω
t
y dz

− λ−1[φ̃]
∫

φ̃(Ω)

(∇xv1)(∇xv2)
tdivyωy dz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωxntx )(∇xv1)(∇xv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(
(ωx∇xv

t
1)(nx∇xv

t
2) + (ωx∇xv

t
2)(nx∇xv

t
1)

)
dσz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv1(∇xv2)ω
t
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv2(∇xv1)ω
t
x dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivxωx dz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωynty)(∇yv1)(∇yv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(
|x |2s(ωy∇yv

t
1)(ny∇yv

t
2) + |x |2s(ωy∇yv

t
2)(ny∇yv

t
1)

)
dσz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇yv1

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv2)
t dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇yv2

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv1)
t dz

− λ−1[φ̃]
∫

φ̃(Ω)

2s|x |2s−2(∇yv1)(∇yv2)
t x · ωx dz. (25)

We now set

I1 := λ−1[φ̃]
∫

φ̃(Ω)

Δxv1(∇yv2)ω
t
y dz

+ λ−1[φ̃]
∫

φ̃(Ω)

Δxv2(∇yv1)ω
t
y dz

− λ−1[φ̃]
∫

φ̃(Ω)

(∇xv1)(∇xv2)
tdivyωy dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv1(∇xv2)ω
t
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv2(∇xv1)ω
t
x dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivxωx dz
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+ λ−1[φ̃]
∫

φ̃(Ω)

∇yv1

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv2)
t dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇yv2

(
Dxωy + |x |2s(Dyωx )

t
)

(∇xv1)
t dz

− λ−1[φ̃]
∫

φ̃(Ω)

2s|x |2s−2(∇yv1)(∇yv2)
t xωt

x dz ,

I2 := −λ−1[φ̃]
∫

∂φ̃(Ω)

(ωxntx )(∇xv1)(∇xv2)
t dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωynty)(∇yv1)(∇yv2)
t dσz ,

I3 := λ−1[φ̃]
∫

∂φ̃(Ω)

(
(ωx∇xv

t
1)(nx∇xv

t
2) + (ωx∇xv

t
2)(nx∇xv

t
1)

)
dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(
|x |2s(ωy∇yv

t
1)(ny∇yv

t
2) + |x |2s(ωy∇yv

t
2)(ny∇yv

t
1)

)
dσz .

As a consequence, equality (25) reads as

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]
= I1 + I2 + I3 . (26)

Now, we rewrite the terms I2 and I3. We first consider I2.

I2 = − λ−1[φ̃]
∫

∂φ̃(Ω)

(ωxntx )(∇Gv1)(∇Gv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωxntx )(∇yv1)(∇yv2)
t dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωynty)(∇Gv1)(∇Gv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(ωynty)(∇xv1)(∇xv2)
t dσz

= − λ−1[φ̃]
∫

∂φ̃(Ω)

(ωnt )(∇Gv1)(∇Gv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωxntx )(∇yv1)(∇yv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(ωynty)(∇xv1)(∇xv2)
t dσz .

We now consider the last two summands of the right hand side of the previous equality.
We have:

λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωxntx )(∇yv1)(∇yv2)
t dσz

123



P. D. Lamberti et al.

= λ−1[φ̃]
∫

φ̃(Ω)

divx
(|x |2s(∇yv1)(∇yv2)

tωx
)
dz

= λ−1[φ̃]
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivxωx dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇yv1

(
Dx∇yv2

)
ωt
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇yv2

(
Dx∇yv1

)
ωt
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

2s|x |2s−2x · ωx (∇yv1)(∇yv2)
t dz,

and, similarly,

λ−1[φ̃]
∫

∂φ̃(Ω)

(ωynty)(∇xv1)(∇xv2)
t dσz

= λ−1[φ̃]
∫

φ̃(Ω)

(∇xv1)(∇xv2)
tdivyωy dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇xv1

(
Dy∇xv2

)
ωt
y dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇xv2

(
Dy∇xv1

)
ωt
y dz.

Therefore, we deduce the following expression for I2

I2 = − λ−1[φ̃]
∫

∂φ̃(Ω)

(ωnt )(∇Gv1)(∇Gv2)
t dσz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2s(∇yv1)(∇yv2)
tdivxωx dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇yv1

(
Dx∇yv2

)
ωt
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇yv2

(
Dx∇yv1

)
ωt
x dz

+ λ−1[φ̃]
∫

φ̃(Ω)

2s|x |2s−2xωt
x (∇yv1)(∇yv2)

t dz

+ λ−1[φ̃]
∫

φ̃(Ω)

(∇xv1)(∇xv2)
tdivyωy dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇xv1

(
Dy∇xv2

)
ωt
y dz

+ λ−1[φ̃]
∫

φ̃(Ω)

∇xv2

(
Dy∇xv1

)
ωt
y dz. (27)
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Next, we turn to consider I3. We recall that nG is the outward field to ∂Ω defined in
(22). Therefore

I3 = λ−1[φ̃]
∫

∂φ̃(Ω)

(
(ωx∇xv

t
1)(nx∇xv

t
2) + (ωx∇xv

t
2)(nx∇xv

t
1)

)
dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(
|x |2s(ωy∇yv

t
1)(ny∇yv

t
2) + |x |2s(ωy∇yv

t
2)(ny∇yv

t
1)

)
dσz

= λ−1[φ̃]
∫

∂φ̃(Ω)

(
(ωx∇xv

t
1)(nG∇Gvt2) + (ωx∇xv

t
2)(nG∇Gvt1)

)
dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
1)(ny∇yv

t
2) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
2)(ny∇yv

t
1) dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(
(ωy∇yv

t
1)(nG∇Gvt2) + (ωy∇yv

t
2)(nG∇Gvt1)

)
dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωy∇yv
t
1)(nx∇xv

t
2) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωy∇yv
t
2)(nx∇xv

t
1) dσz

= λ−1[φ̃]
∫

∂φ̃(Ω)

(ω∇vt1)(nG∇Gvt2) + (ω∇vt2)(nG∇Gvt1) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
1)(ny∇yv

t
2) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
2)(ny∇yv

t
1) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωy∇yv
t
1)(nx∇xv

t
2) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωy∇yv
t
2)(nx∇xv

t
1) dσz . (28)

We consider the last four terms in the right hand side of the previous equation:

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
1)(ny∇yv

t
2) dσz

− λ−1[φ̃]
∫

∂φ̃(Ω)

|x |2s(ωx∇xv
t
2)(ny∇yv

t
1) dσz

= −λ−1[φ̃]
∫

φ̃(Ω)

divy
(
|x |2s(ωx∇xv

t
1)∇yv2 + |x |2s(ωx∇xv

t
2)∇yv1

)
dz

= −λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv2(ωx∇xv
t
1) dz
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− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv1(ωx∇xv
t
2) dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sωx (Dy∇xv1)∇yv
t
2 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sωx (Dy∇xv2)∇yv
t
1 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇xv1(Dyωx )∇yv
t
2 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇xv2(Dyωx )∇yv
t
1 dz,

and similarly

− λ−1[φ̃]
∫

∂φ̃(Ω)

(ωy∇yv
t
1)(nx∇xv

t
2) dσz − λ−1[φ̃]

∫
∂φ̃(Ω)

(ωy∇yv
t
2)(nx∇xv

t
1) dσz

= −λ−1[φ̃]
∫

φ̃(Ω)

Δxv2(ωy∇yv
t
1) dz − λ−1[φ̃]

∫
φ̃(Ω)

Δxv1(ωy∇yv
t
2) dz

− λ−1[φ̃]
∫

φ̃(Ω)

ωy(Dx∇yv1)∇xv
t
2 dz − λ−1[φ̃]

∫
φ̃(Ω)

ωy(Dx∇yv2)∇xv
t
1 dz

− λ−1[φ̃]
∫

φ̃(Ω)

∇yv1(Dxωy)∇xv
t
2 dz − λ−1[φ̃]

∫
φ̃(Ω)

∇yv2(Dxωy)∇xv
t
1 dz.

We can now rewrite the right hand side of equation (28) and deduce that

I3 = λ−1[φ̃]
∫

∂φ̃(Ω)

(ω∇vt1)(nG∇Gvt2) + (ω∇vt2)(nG∇Gvt1) dσz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv2(ωx∇xv
t
1) dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sΔyv1(ωx∇xv
t
2) dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sωx (Dy∇xv1)∇yv
t
2 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2sωx (Dy∇xv2)∇yv
t
1 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇xv1(Dyωx )∇yv
t
2 dz

− λ−1[φ̃]
∫

φ̃(Ω)

|x |2s∇xv2(Dyωx )∇yv
t
1 dz

− λ−1[φ̃]
∫

φ̃(Ω)

Δxv2(ωy∇yv
t
1) dz − λ−1[φ̃]

∫
φ̃(Ω)

Δxv1(ωy∇yv
t
2) dz
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− λ−1[φ̃]
∫

φ̃(Ω)

ωy(Dx∇yv1)∇xv
t
2 dz − λ−1[φ̃]

∫
φ̃(Ω)

ωy(Dx∇yv2)∇xv
t
1 dz

− λ−1[φ̃]
∫

φ̃(Ω)

∇yv1(Dxωy)∇xv
t
2 dz − λ−1[φ̃]

∫
φ̃(Ω)

∇yv2(Dxωy)∇xv
t
1 dz.

(29)

By equalities (25), (26), (27), and (29) and by noting that (Dx∇yvl)
t = Dy∇xvl , we

deduce that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]

= −λ−1[φ̃]
∫

∂φ̃(Ω)

(ωnt )(∇Gv1)(∇Gv2)
t dσz

+ λ−1[φ̃]
∫

∂φ̃(Ω)

(ω∇vt1)(nG∇Gvt2) + (ω∇vt2)(nG∇Gvt1) dσz .

We note that, since v1, v2 ∈ W 1,2
0 (φ̃(Ω)) ∩ W 2,2(φ̃(Ω)), the gradients ∇v1,∇v2

are parallel to n on ∂φ̃(Ω) and∇Gv1,∇Gv2 are parallel to nG on ∂φ̃(Ω). Accordingly,

∇Gvi = ∇vi IG = (∇vi nt )n IG = ∂vi

∂n
nG , a.e. on ∂φ̃(Ω) for i ∈ {1, 2}.

Then
∫

∂φ̃(Ω)

(ωnt )(∇Gv1)(∇Gv2)
t dσz =

∫
∂φ̃(Ω)

(ωnt )
∂v1

∂n
∂v2

∂n
|nG |2 dσz ,

and
∫

∂φ̃(Ω)

(ω∇vt1)(nG∇Gvt2) + (ω∇vt2)(nG∇Gvt1) dσz

= 2
∫

∂φ̃(Ω)

(ωnt )
∂v1

∂n
∂v2

∂n
|nG |2 dσz .

We can finally conclude that

QG,φ̃

[
d|φ=φ̃TG,φ[ψ][u1], u2

]
= λ−1[φ̃]

∫
∂φ̃(Ω)

(ωnt )
∂v1

∂n
∂v2

∂n
|nG |2 dσz .

��
Now, combining Theorem 5.2, formula (19), and Lemma 5.1 we are able to deduce
our main result regarding the Hadamard-type formula for the shape differential of the
symmetric functions of the eigenvalues.

Theorem 5.3 Let Ω and O be as in (9). Let F be a finite nonempty subset of N.
Let τ ∈ {1, . . . , |F |}. Let φ̃ ∈ ΘF

Ω,O and let λF [φ̃] be the common value of all the
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eigenvalues {λ j [φ̃]} j∈F . Let {vl}l∈F be an orthonormal basis in (W 1,2
G,0(φ̃(Ω)), QG) of

the eigenspace associated with λF [φ̃]. Suppose that φ̃(Ω) is of class C1 and {vl}l∈F ⊆
W 1,2

0 (φ̃(Ω))∩W 2,2(φ̃(Ω)). Then the Frechét differential of the mapΛF,τ at the point
φ̃ is delivered by the formula

d|φ=φ̃(ΛF,τ )[ψ] = −λτ
F [φ̃]

(|F | − 1

τ − 1

) ∑
l∈F

∫
∂φ̃(Ω)

(ψ ◦ φ̃(−1)nt )
(

∂vl

∂n

)2

|nG |2 dσ

∀ψ ∈ LΩ,O . (30)

Remark 5.2 In order to prove formula (21) and subsequently the Hadamard formula
(30) we had to assume some extra regularity for the eigenfunctions to avoid regularity
problems near ∂φ̃(Ω) ∩ {x = 0}. However, if ψ ∈ LΩ,O is such that ψ|Ω∩O = 0,
then, since any problem around the degenerate set is canceled byψ , formulas (21) and
(30) hold without requiring that the eigenfunctions are of class W 1,2

0 ∩ W 2,2.

Next, we consider the case of a family of domain perturbations depending real analyti-
cally upon one scalar parameter. In this case it is possible to prove a Rellich–Nagy-type
theorem and describe all the branches splitting from a multiple eigenvalue of multi-
plicity m by means of m real analytic functions of the scalar parameter. Namely, we
have the following.

Theorem 5.4 Let Ω and O be as in (9). Let φ̃ ∈ AΩ,O and {φε}ε∈R ⊆ AΩ,O be a
family depending real analytically on ε and such that φ0 = φ̃. Let λ be a Dirichlet
Grushin eigenvalue on φ̃(Ω) of multiplicity m. Let λ = λn[φ̃] = · · · = λn+m−1[φ̃]
for some n ∈ N. Let v1, . . . , vm be an orthonormal basis in (W 1,2

G,0(φ̃(Ω)), QG) of the

eigenspace associated with λ. Suppose that φ̃(Ω) is of class C1 and that v1, . . . , vm ∈
W 1,2

0 (φ̃(Ω)) ∩ W 2,2(φ̃(Ω)).
Then there exist an open interval I ⊆ R containing zero and m real ana-

lytic functions g1, . . . , gm from I to R such that {λn[φε], . . . , λn+m−1[φε]} =
{g1(ε), . . . , gm(ε)} for all ε ∈ I . Moreover, the derivatives g′

1(0), . . . , g
′
m(0) of the

functions g1, . . . , gm at zero coincide with the eigenvalues of the matrix

(
−λ

∫
∂φ̃(Ω)

(φ̇0 ◦ φ̃(−1)nt )
∂vi

∂n
∂v j

∂n
|nG |2 dσ

)
i, j=1,...,m

, (31)

where φ̇0 denotes the derivative at ε = 0 of the map ε �→ φε. The same conclusion
holds dropping the regularity assumption on the eigenfunctions and requiring that
φε |Ω∩O is the identity map for all ε ∈ R.

Proof The proof follows by the abstract Rellich–Nagy-type theorem of Lamberti and
Lanza de Cristoforis [41, Theorem 2.27, Corollary 2.28] applied to the family of
operators (TG,φε )ε∈R defined in (14), which guarantees that there exist an open interval
I containing zero and m real analytic functions f1, . . . , fm from I to R such that
{λn[φ̃]−1, . . . , λn+m−1[φ̃]−1} = { f1(ε), . . . , fm(ε)} for all ε ∈ I and that, if we set

123



Shape Perturbation of Grushin Eigenvalues

ui = vi ◦ φ̃ for all i = 1, . . . ,m, the set { f ′
1(0), . . . , f ′

m(0)} coincides with the set of
eigenvalues of the matrix

(
QG,φ̃

[
d|φ=φ̃TG,φ[φ̇0][ui ], u j

])
i, j=1,...,m

.

Then we can conclude by setting gi = f −1
i for all i = 1 . . . ,m and exploiting Lemma

5.1. The last part of the statement follows by the same arguments together with Remark
5.2. ��
We conclude this section with the following remark on the scalar product used.

Remark 5.3 The above formulas are obtained assuming that the orthogonality of the
eigenfunctions is taken in (W 1,2

G,0(φ̃(Ω)), QG). If instead one prefers to consider

{vl}l∈F to be an orthonormal basis in L2(φ̃(Ω)) endowed with its standard scalar
product, then formula (30) of Theorem 5.3 can be rewritten as

d|φ=φ̃ (ΛF,τ )[ψ] = −λτ−1
F [φ̃]

(|F | − 1

τ − 1

) ∑
l∈F

∫
∂φ̃(Ω)

(ψ ◦ φ̃(−1)nt )
(

∂vl

∂n

)2

|nG |2 dσ

∀ψ ∈ LΩ,O .

Similarly, in Theorem 5.4 we can choose v1, . . . , vm to be an orthonormal basis in
L2(φ̃(Ω)) and in this case the matrix (31) becomes

(
−

∫
∂φ̃(Ω)

(φ̇0 ◦ φ̃(−1)nt )
∂vi

∂n
∂v j

∂n
|nG |2 dσ

)
i, j=1,...,m

. (32)

6 Critical Shapes and Overdetermined Problems

In this section we consider the problem of studying the critical shapes for the sym-
metric functions of the Grushin eigenvalues under isovolumetric and isoperimetric
perturbations. Let Ω be a bounded open subset of R

N . Let F be a finite nonempty
subset of N. We set

AF
Ω := {

φ ∈ Lip(Ω)N : ∃ O as in (9) such that φ ∈ AF
Ω,O

}
,

ΘF
Ω := {

φ ∈ AF
Ω : λn[φ] = λm[φ], ∀n,m ∈ F

}
.

If φ ∈ AF
Ω , we denote byV[φ] andP[φ] the volume and the perimeter of the set φ(Ω),

respectively. Let τ ∈ {1, . . . , |F |}. Our interest in critical shapes mainly comes from
possible applications to shape optimization problems. To the best of our knowledge,
the problem of finding optimal shapes for the Grushin eigenvalues under isovolumetric
or isoperimetric constraint is a difficult problem which is open at the moment, even
in the case of the first eigenvalue. A question related to the minimization of the first
Grushin eigenvalue is of course the search for optimal constants for the appropriate

123



P. D. Lamberti et al.

Poincaré inequality, for which only bounds are currently known (cf., e.g., D’Ambrosio
[11, Theorem 3.7] for the Poincaré inequality, Garofalo and Nhieu [25, Corollary 1.6]
andMilman [44, Theorem1.1] for analogous inequalities of Poincaré–Wirtinger-type).
However, we note that a partial step towards the solution of shape optimization prob-
lems is typically represented by the identification of the condition that characterizes
the critical shapes under volume and perimeter constraint, respectively. This allows to
state the corresponding overdetermined problems.

6.1 The Isovolumetric Problem

First, we consider the problem of finding critical shapes under isovolumetric pertur-
bations. Let Ω and O be as in (9). The volume functional V[·] is the map fromAF

Ω to
R defined by

V[φ] :=
∫

φ(Ω)

1 dz =
∫

Ω

| det Dφ| dz ∀φ ∈ AF
Ω.

It is easily seen that V|AF
Ω,O

is real analytic and that, by standard rules of calculus in

Banach spaces, its differential at the point φ̃ ∈ AF
Ω,O is delivered by

d|φ=φ̃V|AF
Ω,O

[ψ] =
∫

φ̃(Ω)

div
(
ψ ◦ φ̃(−1)

)
dz ∀ψ ∈ LΩ,O .

Under the assumption that φ̃(Ω) is of class C1, the above differential can be rewritten
as

d|φ=φ̃V|AF
Ω,O

[ψ] =
∫

∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· n dσ ∀ψ ∈ LΩ,O . (33)

For M ∈ ]0,+∞[ we set

V [M] :=
{
φ ∈ AF

Ω : V[φ] = M
}

.

Suppose now that a shape φ̃ ∈ AF
Ω,O is amaximizer (or aminimizer) for the symmetric

function ΛF,τ [φ] under the volume constraint φ ∈ V [M] among all the shapes φ in
AF

Ω . Then, for all open sets O ′ ⊆ R
N such that

O ′ ⊆ O and Ω ∩ {x = 0} ⊆ O ′, (34)

φ̃ is a maximizer (or a minimizer) under the volume constraint φ ∈ V [M] for all the
shapes φ in AF

Ω,O ′ . Accordingly, for all O ′ ⊆ O such that Ω ∩ {x = 0} ⊆ O ′, φ̃ is a
critical point for ΛF,τ |AF

Ω,O′ under the volume constraint φ ∈ V [M], in other words:

ker dφ=φ̃V|AF
Ω,O′ ⊆ ker dφ=φ̃ΛF,τ |AF

Ω,O′ ∀O ′ ⊆ R
N as in (34).
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By the Lagrange multipliers theorem, the above condition is equivalent to the fact that
for all open sets O ′ ⊆ R

N as in (34), there exists a constant cO ′ ∈ R (a Lagrange
multiplier) such that

dφ=φ̃ΛF,τ |AF
Ω,O′ [ψ] + cO ′dφ=φ̃V|AF

Ω,O′ [ψ] = 0 ∀ψ ∈ LΩ,O ′ . (35)

Inspired by the above discussion, we introduce the following definition.

Definition 6.1 Let Ω be a bounded open subset of R
N . Let M ∈ ]0,+∞[. Let F be a

finite nonempty subset of N. Let τ ∈ {1, . . . , |F |}. Let φ̃ ∈ AF
Ω ∩ V [M]. We say that

φ̃ is critical for ΛF,τ under the volume constraint φ ∈ V [M] if there exists a bounded
open subset O of R

N with Ω ∩ {x = 0} ⊆ O such that φ̃ ∈ AF
Ω,O and such that for

all open sets O ′ ⊆ R
N as in (34) there exists cO ′ ∈ R such that (35) holds.

In the following propositionwe prove a necessary condition for the criticality of shapes
under isovolumetric perturbations. We point out that an analogous condition has been
obtained in [38,42] for the standard Laplacian in the Euclidean setting and in El Soufi
and Ilias [16] for the Laplace–Beltrami operator on a Riemannianmanifold.Moreover,
for a similar condition in a different context (the eigenvalues of the Laplacian on a
compact smooth surface with a one-parametric family of Riemannian metrics) we
mention Nadirashvili [50].

Theorem 6.1 Let Ω be a bounded open subset of R
N . Let F be a finite nonempty

subset of N and τ ∈ {1, . . . , |F |}. Let M ∈ ]0,+∞[. Let φ̃ ∈ ΘF
Ω ∩ V [M] and let

λF [φ̃] be the common value of all the eigenvalues {λ j [φ̃]} j∈F . Assume that φ̃(Ω) is of

class C1. Let {vl}l∈F be an orthonormal basis in (W 1,2
G,0(φ̃(Ω)), QG) of the eigenspace

associated with λF [φ̃]. If φ̃ is a critical shape for ΛF,τ under the volume constraint
φ ∈ V [M], then there exists a constant c1 ∈ R such that

∑
l∈F

(
∂vl

∂n

)2

|nG |2 = c1 a.e. on ∂φ̃(Ω) \ {x = 0}. (36)

Proof Let φ̃ be a critical shape for ΛF,τ under the volume constraint φ̃ ∈ V [M] and
let O ⊆ R

N be as in Definition 6.1. For O ′ ⊆ R
N as in (34) we set

L0
Ω,O ′ := {ψ ∈ LΩ,O ′ : ψ|Ω∩O ′ = 0}.

Then, by Theorem 5.3 and Remark 5.2, we have that

d|φ=φ̃(ΛF,τ )[ψ] = −λτ
F [φ̃]

(|F | − 1

τ − 1

) ∑
l∈F

∫
∂φ̃(Ω)

(ψ ◦ φ̃(−1)nt )
(

∂vl

∂n

)2

|nG |2 dσ

∀ψ ∈ L0
Ω,O ′ . (37)

Thus, formula (37), formula (33) for the differential of the volume functional, and
Definition 6.1 imply that for all open sets O ′ ⊆ R

N as in (34) there exists a constant
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cO ′ ∈ R such that

∑
l∈F

∫
∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· n

(
∂vl

∂n

)2

|nG |2 dσ + cO ′
∫

∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· n dσ = 0

∀ψ ∈ L0
Ω,O ′ .

On the other hand, if O ′ ⊆ R
N is as in (34), then L0

Ω,O ⊆ L0
Ω,O ′ . Hence, cO ′ = cO .

That is

∑
l∈F

∫
∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· n

(
∂vl

∂n

)2

|nG |2 dσ + cO

∫
∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· n dσ = 0

∀ψ ∈ L0
Ω,O ′ . (38)

By the Fundamental Lemma of Calculus of Variations one can realize that (38) implies
that there exists a constant c1 ∈ R such that (36) holds. ��

Remark 6.1 If one assumes that the eigenfunctions are of class W 1,2
0 (φ̃(Ω)) ∩

W 2,2(φ̃(Ω)), then it is easily seen that condition (36) becomes also sufficient for
the criticality of shapes under isovolumetric perturbations. Moreover, if the (N − 1)-

dimensional measure of ∂φ̃(Ω) ∩ {x = 0} is zero, i.e.
∣∣∣∂φ̃(Ω) ∩ {x = 0}

∣∣∣
N−1

= 0,

then (36) can be rewritten as

∑
l∈F

(
∂vl

∂n

)2

|nG |2 = c1 a.e. on ∂φ̃(Ω).

We note that
∣∣∣∂φ̃(Ω) ∩ {x = 0}

∣∣∣
N−1

= 0 is always verified when dim{x = 0} = k <

N − 1.

The previous theorem suggests considering the overdetermined system

⎧⎪⎪⎨
⎪⎪⎩

−ΔGul = λ j ul in Ω, ∀l ∈ {1, . . . ,m},
ul = 0 on ∂Ω, ∀l ∈ {1, . . . ,m},∑m

l=1

(
∂ul
∂n

)2 |nG |2 = const. on ∂Ω.

(39)

Here, λ j is the j-th eigenvalue which has multiplicity m ∈ N and u1, . . . , um is a cor-
responding orthonormal basis of eigenvalues in W 1,2

G,0(Ω) such that the last condition

of system (39) makes sense (for example {ul}l=1,...,m ⊆ W 1,2
0 (Ω)∩W 2,2(Ω)whenΩ

is of class C1). System (39) is the Grushin analog of the well-known overdetermined
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system for the Laplace operator:

⎧⎪⎪⎨
⎪⎪⎩

−Δul = λ j ul in Ω, ∀l ∈ {1, . . . ,m},
ul = 0 on ∂Ω, ∀l ∈ {1, . . . ,m},∑m

l=1

(
∂ul
∂n

)2 = const. on ∂Ω.

(40)

It is known that system (40) is satisfied when Ω is a ball (see Lamberti and Lanza de
Cristoforis [42]). Moreover, if Ω is connected and j = 1 (and then m = 1), problem
(40) is satisfied if and only if Ω is a ball (see Henry [31]).

It would be of great interest characterizing those bounded domains such that system
(39) is satisfied or, at least, find some shapes for which it is satisfied. These problems,
to the best of the authors’ knowledge, are open.

6.2 The Isoperimetric Problem

Next, we switch to consider the isoperimetric problem. In this section we assume that
Ω is a bounded open subset of R

N of class C2. Let O be as in (9). We set

L∗
Ω,O := LΩ,O ∩ C2

(
Ω, R

N
)

A∗F
Ω,O := AF

Ω,O ∩ C2
(
Ω, R

N
)

A∗F
Ω := AF

Ω ∩ C2
(
Ω, R

N
)

Θ∗F
Ω := ΘF

Ω ∩ C2
(
Ω, R

N
)

.

The set L∗
Ω,O is a Banach subspace of C2

(
Ω, R

N
)
andA∗F

Ω,O is open in L∗
Ω,O . The

perimeter functional P[·] is the map from A∗F
Ω to R defined by

P[φ] :=
∫

∂φ(Ω)

1 dσ =
∫

∂Ω

∣∣∣n(Dφ)−1
∣∣∣ | det Dφ| dσ ∀φ ∈ A∗F

Ω.

The mapP|A∗F
Ω,O

is real analytic and its differential at a point φ̃ ∈ A∗F
Ω,O is delivered

by

d|φ=φ̃P|A∗F
Ω,O

[ψ] =
∫

∂φ̃(Ω)

(
ψ ◦ φ̃(−1)

)
· nH dσ ∀ψ ∈ L∗

Ω,O ,

whereH = div n denotes the mean curvature of ∂φ̃(Ω) (see [39]). For M ∈ ]0,+∞[
we set

P[M] :=
{
φ ∈ A∗F

Ω : P[φ] = M
}

.

Following the lines of the previous section andmotivated by isoperimetric optimization
problems, we introduce the following definition.

Definition 6.2 Let Ω be a bounded open subset of R
N of class C2. Let M ∈ ]0,+∞[.

Let F be a finite nonempty subset of N. Let τ ∈ {1, . . . , |F |}. Let φ̃ ∈ A∗F
Ω ∩ P[M].
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We say that φ is critical for ΛF,τ under the perimeter constraint φ ∈ P[M] if there
exists a bounded open subset O of R

N with Ω ∩ {x = 0} ⊆ O such that φ̃ ∈ A∗F
Ω,O

and such that for all open sets O ′ ⊆ R
N as in (34) there exists cO ′ ∈ R such that

dφ=φ̃ΛF,τ |A∗F
Ω,O′ [ψ] + cO ′dφ=φ̃P|A∗F

Ω,O′ [ψ] = 0 ∀ψ ∈ L∗
Ω,O ′ .

Following the lines of the previous section,we are able to prove the followingnecessary
condition for critical shapes under isoperimetric perturbations.

Theorem 6.2 Let Ω be a bounded open subset of R
N of class C2. Let F be a finite

nonempty subset of N and τ ∈ {1, . . . , |F |}. Let M ∈ ]0,+∞[. Let φ̃ ∈ Θ∗F
Ω ∩ P[M]

and let λF [φ̃] be the common value of all the eigenvalues {λ j [φ̃]} j∈F . Let {vl}l∈F be

an orthonormal basis in (W 1,2
G,0(φ̃(Ω)), QG) of the eigenspace associated with λF [φ̃].

If φ̃ is a critical shape for ΛF,τ under the perimeter constraint φ ∈ P[M], then there
exists a constant c2 ∈ R such that

∑
l∈F

(
∂vl

∂n

)2

|nG |2 = c2H a.e. on ∂φ̃(Ω) \ {x = 0}. (41)

Remark 6.2 As in Remark 6.1, if the eigenfunctions are of class W 1,2
0 (φ̃(Ω)) ∩

W 2,2(φ̃(Ω)), then condition (41) becomes also sufficient for the criticality of shapes

under isoperimetric perturbations. Also, when
∣∣∣∂φ̃(Ω) ∩ {x = 0}

∣∣∣
N−1

= 0, the same

considerations as in Remark 6.1 can be done.

Asbefore, Theorem6.2 suggests that itwould beof interest to study the overdetermined
system

⎧⎪⎪⎨
⎪⎪⎩

−ΔGul = λ j ul in Ω, ∀l ∈ {1, . . . ,m},
ul = 0 on ∂Ω, ∀l ∈ {1, . . . ,m},∑m

l=1

(
∂ul
∂n

)2 |nG |2 = c2H on ∂Ω,

for some constant c2 ∈ R.

7 The Rellich–Pohozaev Identity for the Grushin Laplacian

The aim of this section is to collect a new proof of the Rellich–Pohozaev identity for
the Grushin Laplacian. Let Ω be a bounded open subset of R

N of class C1. Let λ

be an eigenvalue of the Dirichlet Grushin Laplacian, i.e. an eigenvalue of (5). Let u
be an eigenfunction in W 1,2

G,0(Ω) corresponding to λ normalized with ‖u‖L2(Ω) = 1.

Suppose that u ∈ W 1,2
0 (Ω) ∩ W 2,2(Ω). Then the Rellich-Pohozaev identity reads

λ = 1

2

∫
∂Ω

(
∂u

∂n

)2

|nG |2((x, (1 + s)y) · n) dσz . (42)
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This identity is a consequence of a more general class of Pohozev-type identities (see,
e.g., Tri [60,61] for N = 2,Kogoj andLanconelli [34, Sect. 2] for arbitrary N ).We also
mention Garofalo and Lanconelli [24] for a Pohozaev-type identity for the Heisenberg
Laplacian. A proof of (42) can be done following the classical argument that Rellich
used for the standard Laplacian in [55]. This argument is rather elementary being
based only on integration by parts, but requires some lengthy computations. Instead,
our proof is a straightforward application of the Hadamard-type formula that we have
proved. More precisely, our strategy is first to differentiate the eigenvalue with respect
to the natural dilation in the Grushin setting, and then to match this derivative with the
one computed by (30). The same strategy was exploited by di Blasio and Lamberti
[15, Theorem 5.1] for the Finsler p-Laplacian.

The natural dilation in the Grushin setting is:

δt (z) := (t x, t1+s y) ∀z = (x, y) ∈ R
N ,∀t > 0.

We fix Ω to be a bounded open subset of R
N of class C1. We set

Ωt := δt (Ω) ∀t > 0.

Let λ = λn[Ω] = · · · = λn+m−1[Ω] be a Dirichlet Grushin eigenvalue on Ω of
multiplicity m. It is easily seen that

t2λn+l [Ωt ] = λ ∀t > 0, ∀l = 0, . . . ,m − 1 . (43)

This can be deduced from the fact that if l = 0, . . . ,m − 1 and u is an eigenfunction
in W 1,2

G,0(Ωt ) corresponding to λn+l [Ωt ], then we have

∫
Ω

∇G(u(δt )) · ∇G(ϕ(δt )) dz

=
∫

Ω

(∇(u(δt ))IG(z)) · (∇(ϕ(δt ))IG(z)) dz

=
∫

Ω

∇x (u(δt )) · ∇x (ϕ(δt )) dz +
∫

Ω

|x |2s∇y(u(δt )) · ∇y(ϕ(δt )) dz

=
∫

Ω

t2∇xu(δt ) · ∇xϕ(δt ) dz +
∫

Ω

|x |2s t2+2s∇yu(δt ) · ∇yϕ(δt ) dz

=
∫

Ωt

t2∇xu · ∇xϕt
−h−(1+s)k dz +

∫
Ωt

|x |2s t2∇yu · ∇yϕt
−h−(1+s)k dz

=
∫

Ωt

t2∇Gu · ∇Gϕt−h−(1+s)k dz

= t2λn+l [Ωt ]
∫

Ωt

uϕt−h−(1+s)k dz

= t2λn+l [Ωt ]
∫

Ω

u(δt )ϕ(δt ) dz ∀ϕ ∈ W 1,2
G,0(Ωt ).
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Accordingly, by (43) with t = 1 + ε, we have

λn+l [Ω1+ε] = (1 + ε)−2λ ∀ε > −1, ∀l = 0, . . . ,m − 1 .

Therefore, ε �→ λn[Ω1+ε] is differentiable in ]−1,+∞[ and we have

d

dε
λn[Ω1+ε]

∣∣∣∣
ε=0

= −2λ.

On the other side, we can also compute the derivative d
dε

λn[Ω1+ε]
∣∣∣
ε=0

exploiting our

results. Let u be an eigenfunction corresponding to λ normalized such that ‖u‖L2(Ω) =
1, and assume that u ∈ W 1,2

0 (Ω) ∩ W 2,2(Ω). We note that if O is any bounded open
subset ofR

N containingΩ∩{x = 0}, then δ1+ε ∈ AΩ,O for all ε > −1.We can apply
Theorem 5.4 and Remark 5.3 to the family {δ1+ε} and obtain that the eigenvalues of
the matrix (32) are the derivatives at ε = 0 of the branches splitting from λ. As we
have already seen above, the domain perturbation δ1+ε preserves the multiplicity of
the eigenvalue λ and accordingly the matrix (32) is actually a scalar matrix. Thus

d

dε
λn[Ω1+ε]

∣∣∣∣
ε=0

= −
∫

∂Ω

(
∂u

∂n

)2

|nG |2((x, (1 + s)y) · n) dσz .

By the above two expressions of the derivative of the the eigenvalue we get the Rellich-
Pohozaev identity:

λ = 1

2

∫
∂Ω

(
∂u

∂n

)2

|nG |2((x, (1 + s)y) · n) dσz .
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