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ABSTRACT
Craps is a simple dice game that is popular in casinos around
the world. While the rules for Craps, and its mathematical
analysis, are reasonably straightforward, this paper instead
focuses on the best ways to cheat at Craps, by using loaded
(biased) dice. We use both analytical modeling and simula-
tion modeling to study this intriguing dice game. Our mod-
eling results show that biasing a die away from the value 1
or towards the value 5 lead to the best (and least detectable)
cheating strategies, and that modest bias on two loaded dice
can increase the winning probability above 50%. Our Monte
Carlo simulation results provide validation for our analyti-
cal model, and also facilitate the quantitative evaluation of
other scenarios, such as heterogeneous or correlated dice.

1. INTRODUCTION
Dice have played a pivotal role in gambling games for over

a thousand years [3]. Craps is a dice game that dates back
to ancient times well over 500 years ago. It uses two six-
sided dice, which are rolled one or more times in succession
to determine the outcome of the game (win or lose) based
on the sum of the dice values rolled. The name of the game
is believed to come from the French word crapaud (toad), in
reference to the frog-like squatting position of participants
when playing the game in the streets.

The rules for Craps are extremely simple. If the opening
roll by a player is 7 or 11, then the player wins immediately.
If the opening roll is 2, 3, or 12, then the player immediately
loses. If any other value occurs during the opening roll, then
this value is recorded as the target value, called “point”, for
subsequent rolls. The goal of the player is then to roll the
target point value again, before rolling a 7. If they roll
the point value, then they win, but if they roll a 7, they
lose. If any other value is rolled, it is ignored, and the game
continues with successive rolls until either the point value
(win) or a 7 (lose) occurs.

There are several aspects of the Craps game that make
it appealing for players and for casinos. First, it is an ex-
tremely simple game of chance that is easy to learn and
understand, with minimal or no strategy involved. Second,
it is well-suited for wagering, both by players themselves
(i.e., betting against the “house” that they will win) and
by spectators (i.e., betting against the house whether the
player will win or lose on the next roll). Third, and perhaps
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most important, is that the winning probability is approx-
imately 0.493. These odds are much better than for some
other casino games, and tantalizingly close to the 50% level
at which a player could expect to break even (or win) in the
long run. In short, the odds are still in favour of the casino,
but not by much.

The latter observation is the primary motivation for our
paper. In essence, we are asking how much cheating is re-
quired in order to tip the odds in favour of the Craps player,
rather than the casino. More specifically, we consider the
possibility of loaded dice, which are biased to produce cer-
tain roll outcomes slightly more frequently than expected
with fair dice. In this work, we ignore how the cheating is
achieved (see, e.g., [1, 6] for works on the analysis of ran-
domness in fair dice), and just assume that the outcome
probabilities of some faces can be altered, either by the skills
of the player or by the manufacturing of the die.

The specific cheating questions that we address are:

• If biased dice are used, which outcomes are preferable?

• Should both dice be biased, or only one?

• If two biased dice are used, should they have homoge-
neous bias to the same preferred outcome, or should
they be different?

• What is the minimal level of cheating (i.e., bias) re-
quired in order to achieve a 50% winning probability?

We use analytical and simulation modeling to answer these
questions. The analytical model starts with a precise math-
ematical model of the original Craps game, and then ex-
tends this model to include a bias parameter that affects
the outcome on the loaded dice. The basic model assumes
homogeneous bias levels across the two dice, but possibly
heterogeneous preferred values for the dice outcomes (e.g.,
3 and 6). Our simulation model uses Monte Carlo simulation
to estimate the winning probability for the Craps game in
different configurations. We use this model initially to val-
idate the analytical model, and then to explore additional
scenarios with heterogeneous bias levels and correlated dice.

The main insight that emerges from our modeling efforts
is that a biased dice with a preferred value of 5 is often the
best in any of the scenarios considered. This result makes
sense since an outcome of 5 on one die increases the odds
of winning in the opening roll, while completely eliminating
the chance of losing on the opening roll. The effect on sub-
sequent rolls is more complicated, but also analyzable. Our
modeling results show that using two biased dice is better
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than having just one biased die, and that biasing the dice
either towards 5 or away from 1 are both good cheating
strategies. Bias levels of about 5% on each die suffice to
increase the winning probability to 50% or more.

Similar to our approach, the authors in [8] studied the
best strategies for dice rolling in Craps. However, in con-
trast with that work, we assume that the die can be ar-
bitrarily loaded, and we seek the optimal way of doing so.
The analysis of gambling games has also been used for ped-
agogy. For instance, the authors in [7] studied the optimal
strategy for the dice game known as Pig. Despite the differ-
ences from Craps, their work shares several methodological
aspects with our own. Specifically, the notions of proba-
bilistic modeling, simulation, constraint optimization, and
Monte Carlo simulation are used in elegant ways to solve
an easily understandable problem. The analysis of optimal
strategies in dice or other games has always attracted the in-
terest of researchers working in applied probability [2, 4, 5].
However, in our case, we study the optimal way of cheating
with loaded dice, which makes our contribution novel.

The rest of the paper is organized as follows. Section 2
presents our analytical model, and its numerical results.
Section 3 presents our simulation model, along with sim-
ulation results. Finally, Section 4 concludes the paper.

2. ANALYTICAL MODEL
In this section, we define and develop a probabilistic model

for the game of Craps. While the probability of winning
has been known for a long time, we will use our model to
determine the least cheating required to raise the winning
probability above 50%.

We consider two slightly different cheating scenarios:

• We can arbitrarily change the probability of one face
on the die, while the other faces all have the same equal
(renormalized) probability of being selected.

• We can arbitrarily change the probabilities for multiple
faces on the die. This is the case when the game is
implemented computationally as an online game.

2.1 Model Overview and Assumptions
Let N be the random variable (RV) denoting the number

of dice rolls, and let X
(i)
1 and X

(i)
2 be two independent ran-

dom variables denoting the outcomes of the i-th dice roll,

for i = 1, . . . , N . The RVs X
(i)
d are independent and have

support {1, . . . , 6}. The density function for dice 1 and 2
are described by:

q1 = (q11, . . . , q16) , q2 = (q21, . . . , q26) .

For a fair game, qdj = 1/6 for d ∈ {1, 2} and j ∈ {1, . . . , 6}.
By independence, the probability of obtaining an outcome
s from a single dice roll is:

os(q1,q2) =

min(6,s−1)∑
j=max(1,s−6)

q1jq2(s−j) , for s = 2, . . . , 12 .

In what follows, we simplify our notation to os unless we
wish to emphasize the dependence on vectors q1 and q2.

2.2 Analytical results
In this section, we formally derive the distribution of N ,

which is the number of dice rolls required to win or lose a
game, as well as the probability of winning.

We start by considering the case in which s = X
(1)
1 +X

(1)
2 ∈

{4, 5, 6, 8, 9, 10}, so that the game does not end on the very

first roll. For brevity, denote Y (i) = X
(i)
1 +X

(i)
2 , and let us

compute

Pr{N = n|Y (1) = s} .

Each dice roll is an independent Bernoulli experiment whose
probability of success is o7 + os, i.e.:

Pr{N = n|Y (1) = s} = (o7 + os)(1− o7 − os)
(n−2) .

for n = 2, 3, . . . (recall that, given the conditioning, we have
at least 2 dice rolls). The probability of winning is os/(os +
o7). Therefore, the complete distribution of N is:

Pr{N = n} =




∑
s∈{2,3,7,11,12} Pr{Y (1) = s} if n = 1∑
s∈{4,5,6,8,9,10} Pr{N = n|Y (1) = s}
·Pr{Y (1) = s} if n ≥ 2

From the distribution of N , we can derive the expected
number of dice rolls for each game:

∞∑
n=1

nPr{N = n} =
557

165
= 3.37576 .

The probability of winning can be easily derived by the
law of total probabilities, and is expressed by:

p(q1,q2) = o7(q1,q2) + o11(q1,q2)+

∑
j∈{4,5,6,8,9,10}

oj(q1,q2)
2

oj(q1,q2) + o7(q1,q2)
.

Analogously to what we have done for os(q1,q2), we write
only p instead of p(q1,q2) when there is no ambiguity. For
the fair game case,

p =
244

495
≈ 0.492929 .

2.3 Cheating Strategies
We propose two cheating strategies:

Strategy 1: Single-Face Optimization. We assume that
we can increase or decrease the outcome probability of
one die face, and the remaining faces are all equally
likely. That is, if face f on die d has probability x,
then the vector qf

d(x) is defined as follows:

qfdj(x) =

{
x if j = f ,

(1− x)/5 otherwise.

Strategy 2: Multi-Face Optimization. We assume that
the outcome probability for each die face can be set in-
dependently of the other faces. That is, the vectors q1

and q2 can have arbitrary components in [0, 1] that
sum to unity.

Our goal is to make the winning probability p > 0.5 with
minimal modifications to the dice. For both cheating strate-
gies, let us measure the bias of a die d = 1, 2 using a sum of
squared deviations from a fair die as follows:

Ψ(qd) =

6∑
j=1

(
qdj −

1

6

)2

.
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2.4 Solution for Single-Face Strategy 1
In Strategy 1, we can change the outcome probability for

just one face on each die. All of the remaining faces on each
die are equally likely.

Initially, we allow bias levels that are as large as necessary
to overcome the house advantage. Denoting by x and y the
chosen face probabilities for each die, we solve the following
optimization problem:

argmin
x,y

(
x− 1

6

)2

+

(
y − 1

6

)2

s.t.

p(qf1
1 (x),qf2

2 (y)) ≥ 1

2
.

Table 1 shows the results from solving this optimization
problem. These results provide several high-level insights
into cheating at Craps. First, winning is possible for any
combination of die face values, if the bias levels are large
enough. Second, some dice combinations, such as (1,1),
(1,5), (1,6), (2,5), and (5,5), seem more promising than oth-
ers, since less bias is required. Third, the solution landscape
is not always symmetric. That is, the level of bias is not al-
ways the same magnitude or in the same direction on each
face in a pairing. This observation even applies for the cases
for doubles, in which both face values are the same. Specif-
ically, (1,1) through (5,5) have symmetric bias levels, while
(6,6) is distinctly asymmetric. In particular, the bias level
for the latter needs to be substantially increased for one
die and substantially decreased for the other, presumably to
avoid a 12 in the opening roll. In general, the bias levels
required for winning are larger when a 6 is present at all,
suggesting that a 6 is not especially helpful in Craps.

We next consider a more realistic scenario, in which the
bias levels are constrained, so that the cheating is less likely
to be detectable. For this purpose, we assume that the mod-
ified face must have an outcome probability that deviates
no more than ε = 20% from the original 1/6 probability;
specifically, the new value must lie between 2/15 and 1/5
(inclusive). This implies that:

Ψ(qd) ≤
1

750
,

but we also impose a constraint on the maximum bias of the
face we are changing.

We formulate the following optimization problem for the
face pair f1 and f2:

argmax
x,y

p(qf1
1 (x),qf2

2 (y)) (1)

s.t.

2

15
≤ x, y ≤ 1

5
,

Table 2 shows the solution results from this optimization
problem. If we are only allowed to decrease the outcome
probability of one of the die faces, then the optimal choice
is to decrease the probability of face 1 in both dice. If we
are only allowed to increase the probability of a certain die
face, then the optimal choice is to increase the probability
of face 5. Having one die biased against 1, and the other in
favour of 5, is also a very good solution, but is not optimal.

Table 1: Minimum cheating required on a single face
to reach a winning probability of 1/2. The first col-
umn indicates the faces f1 and f2 that are modified
on each die. The second and third columns show
the bias required on each die to achieve a winning
probability of 1/2.

f1, f2 P[f1] in die 1 P[f2] in die 2

1, 1 −10.4% −10.4%
1, 2 −19.2% −5.16%
1, 3 −19.2% 5.26%
1, 4 −19.1% 5.31%
1, 5 −14.52% 9.52%
1, 6 −20.5% 1.58%
2, 2 −28.6% −28.6%
2, 3 −35.2% 36.1%
2, 4 −34.4% 35.1%
2, 5 −12.9% 21.6%
2, 6 −53.3% −20.8%
3, 3 28.9% 28.9%
3, 4 −13.2% 56.7%
3, 5 11.6% 24.8%
3, 6 59.9% 4.60%
4, 4 28.9% 28.9%
4, 5 11.8% 24.5%
4, 6 59.3% 7.80%
5, 5 15.4% 15.4%
5, 6 28.9% 5.96%
6, 6 −59.1% 60.8%

Table 2: Solution of the constrained single-face op-
timization problem for Strategy 1. The first column
indicates the faces f1 and f2 that are modified on
each die. The second column shows the best winning
probability attainable with cheating, while columns
3 and 4 show the outcome probabilities used to at-
tain the maximum winning probability.

f1, f2 P[win] P[f1] in die 1 P[f2] in die 2

1, 1 0.506653 2/15 2/15
1, 2 0.501677 2/15 2/15
1, 3 0.501694 2/15 1/5
1, 4 0.501716 2/15 1/5
1, 5 0.504172 2/15 1/5
1, 6 0.500405 2/15 1/5
2, 2 0.497644 2/15 2/15
2, 3 0.497022 2/15 1/5
2, 4 0.497080 2/15 1/5
2, 5 0.500695 2/15 1/5
2, 6 0.49557 2/15 2/15
3, 3 0.497667 1/5 1/5
3, 4 0.496433 1/5 1/5
3, 5 0.499808 1/5 1/5
3, 6 0.495316 1/5 2/15
4, 4 0.497667 1/5 1/5
4, 5 0.499865 1/5 1/5
4, 6 0.495294 1/5 2/15
5, 5 0.502144 1/5 1/5
5, 6 0.498334 1/5 1/5
6, 6 0.493711 2/15 1/5
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Table 3: Probability of not rejecting null hypothesis
H0 for single-face Strategy 1 solutions.

n Face 1: P[n.r. H0] Face 5: P[n.r. H0]
200 0.8650 0.8690
400 0.7641 0.7653
600 0.6514 0.6570
800 0.5272 0.5422
1, 000 0.4252 0.4472
2, 000 0.0920 0.1312
5, 000 0.00001 0.00003

In general, the structural results in Table 2 align well with
those in the earlier Table 1, in terms of the directionality of
the bias required to improve the odds of winning at Craps.
There are a few exceptions, however, such as the cases for
(3,4), (3,6), and (4,6) in the tables. In each of these cases,
the constrained search settles on a local optimum at an end-
point of the permitted range, but without finding a winning
probability of at least 1/2. In fact, only 8 of the 15 face
combinations in Table 2 produce winning strategies under
the cheating constraints given. However, dice combinations
with f2 = 5 seem very robust, regardless of f1, in terms of
winning or almost breaking even.

We next turn our attention to the detectability of the
cheating strategy. There are several approaches that a casino
observer could use for this purpose. We consider two ap-
proaches: monitoring the outcomes of individual die rolls,
and monitoring the distribution for the number of rolls in
each Craps game. Other approaches could consider the pro-
portion of games won, or the monetary winnings.

Suppose that an observer wants to use a χ-square goodness-
of-fit test to check if the dice are fair. The null hypothesisH0

is that the outcome of a dice roll has the same 1/6 probabil-
ity for all the faces. A significance level of 0.05 is assumed.
The observer focuses on one die, and performs n rolls. We
determine the probability that the hypothesis H0 is rejected
when the die has some outcome distribution q̂d. In order to
determine this probability, we use a Monte Carlo simulation
that considers 10, 000 independent experiments, each with
n rolls, and we count how many of these experiments lead
the observer to reject the null hypothesis.

In Table 3, we show the results of Monte Carlo simulation
experiments to assess the effectiveness of detecting Strategy
1. We have two columns: one in which the probability of a 1
is decreased to 2/15, and the other in which the probability
of a 5 is increased to 1/5. This cheating strategy, with 20%
bias, seems eminently detectable. Indeed, with only 1, 000
rolls, the observer rejects the null hypothesis more than 50%
of the time.

In Figure 1, we show the difference in the probability of
observing a certain number of dice rolls between the fair and
cheated games for the two optimal solutions (in bold) from
Table 2. We can see that, although the manipulation of the
outcome probability of face 1 gives a higher probability of
winning, it also changes the distribution of the number of
dice rolls in a more prominent way (i.e., fewer games end
after the opening roll). In particular, it is much easier to
detect the (1,1) cheating strategy than it is to detect the
(5,5) cheating strategy. As such, the (5,5) strategy might
be preferable, based on this detection metric.
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Figure 1: Difference in the probability of observing
a certain number of dice rolls in the fair game and
when cheating according to single-face Strategy 1.

2.5 Solution for Multi-Face Strategy 2
We next consider the multi-face Strategy 2, which seems

inherently stronger than the single-face Strategy 1. In Strat-
egy 2, the probabilities for all six faces can be manipulated,
as long as they sum to unity.

Let Ψmax be the maximum level of bias allowed in the
dice. Then, for Strategy 2, we solve the following optimiza-
tion problem using the variables q11, . . . , q16, q21, . . . , q26:

argmax
q1,q2

p(q1,q2) (2)

s.t.

Ψ(q1) ≤ Ψmax ,Ψ(q2) ≤ Ψmax ,

∀d ∈ {1, 2} :

(
∀i ∈ {1, . . . , 6} : 0 ≤ qdi ≤ 1,

6∑
i=1

qdij = 1

)
.

Note that p(q1,q2) is a rational function in the variables
qdj , whose numerator and denominator degrees are 4 and
2, respectively. We use the Interior Point Method to solve
the optimization problem, where the first and second order
derivatives are computed symbolically.

For this optimization, we use a uniform distribution for
both dice (i.e., fair dice) as the initial starting point. Al-
though the Interior Point Method may converge to a sub-
optimal solution, the choice of this starting point is intuitive
for finding the minimum bias required on the dice. We have
tried the optimization starting from other randomly chosen
starting points, and have observed the same convergence
point. This empirical observation suggests that the local
optimum is also a global optimum, though we do not yet
have a mathematical proof of this property.

For Ψmax = 0.00025, we obtain the local maximum p =
0.50002 corresponding to:

q̂1 = q̂2 = (0.1548, 0.1627, 0.1701, 0.1703, 0.1749, 0.1672) .
(3)

This result is quite insightful. Both dice are modified in
exactly the same way: face 5 receives the highest probability
(about 5% bias), while face 1 receives the lowest probability
(about -7% bias). Furthermore, the probability for the num-
ber 6 is perturbed the least, reflecting its minor influence on

56 Performance Evaluation Review, Vol. 48, No. 4, March 2021



Table 4: Probability of not rejecting null hypothesis
H0 for multi-face Strategy 2 solution.

n P[not rejecting H0]
200 0.9359
400 0.9206
600 0.9085
800 0.8911
1, 000 0.8998
2, 000 0.7712
5, 000 0.4679
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Figure 2: Difference in the probability of observing
a certain number of dice rolls in the fair game and
when cheating according to multi-face Strategy 2.

the game’s outcome. These small modifications suffice to
overcome the house advantage in Craps.

In Table 4, we show the results regarding the detectabil-
ity of Strategy 2. Again, this approach uses Monte Carlo
simulations and χ-square goodness-of-fit tests, with the null
hypothesis H0 being that the dice are fair. With only 1, 000
die rolls, the observer is unlikely to reject the null hypothe-
sis. With 5, 000 die rolls, however, the observer has a 53%
probability of detecting the cheating.

Finally, we study the change in the distribution of the
number of dice rolls caused by the cheating. Figure 2 shows
the difference in the probability of observing a certain num-
ber of dice rolls between the fair and cheated games. The
cheated version has a slightly lower probability (-1.8%) of an
instant win or loss on the opening roll, while the probability
of winning or losing with two dice rolls is slightly higher.

Comparing the multi-face Strategy 2 results in Figure 2
with those for the single-face Strategy 1 in Figure 1, and
noting the difference in scales, reveals that Strategy 2 is
less detectable than the (1,1) configuration of Strategy 1,
but more detectable than the (5,5) configuration in Strategy
1. Thus the multi-face Strategy 2 is not always superior
to Strategy 1 with regard to detectability. In fact, neither
Strategy 1 nor Strategy 2 strictly dominates the other. This
is a somewhat surprising insight from our modeling results.

3. SIMULATION MODEL AND RESULTS
In this section, we use Monte Carlo simulation to explore

several aspects of the Craps dice game. The simulation re-
sults provide validation for our analytical model, and some
insights into intermediate states of the Craps game. Further-
more, the simulation model facilitates explorations beyond
the assumptions used in the analytical model.

3.1 Simulation Model
We used a Monte Carlo simulation to model the Craps

dice game. The simulator is written in C (about 200 lines of
code), and compiled and run on a Linux system. Command-
line parameters are used to specify the number of games to
play (default is 10 million), as well as the bias level (if any)
and preferred value for each of the two dice being rolled.
We focus only on positive bias here, since the results for
negative bias are qualitatively similar.

The simulator uses the random() function from the C li-
brary for pseudo-random number generation, from which
Uniform(0,1) values are used to generate the results for each
roll. In the unbiased case (Fair Dice), an EquiLikely(1,6)
function is used to generate values for each of the two dice.
In the biased cases, a NotQuiteEquiLikely(1,6) function is
used to increase the probability for the preferred die value.
Unless specified otherwise, the two dice values are generated
independently, and summed to produce each roll outcome.

The simulator models the state evolution of each Craps
game, from the opening roll until the final outcome is deter-
mined. Statistics are recorded regarding wins, losses, point
(target) values, and total dice rolls. Summary statistics are
saved from each simulation run, and post-processed to pro-
duce graphical results and additional statistical analyses.

3.2 Simulation Verification
Figure 3 shows the simulation results from a simple case

with full bias (i.e., probability 1) for the face value 5. This
scenario is considered with 0, 1, or 2 Biased-5 dice.

When Fair Dice are used, the winning probabilities from
the opening roll match those expected. That is, a 7 is rolled
with probability 6/36, and an 11 is rolled with probability
2/36. Similarly, the losing outcomes on the opening roll for
2, 3, and 12 match the expected values of 1/36, 2/36, and
1/36, respectively.

When only one (deterministic) Biased-5 die is used, the
opening roll always contains at least one 5, and it is no
longer possible to lose in this stage, since the sum already
exceeds 3, and cannot possibly reach 12. However, there
is only a 1/3 probability of winning in this stage (i.e., 1/6
for a sum of 7, and 1/6 for a sum of 11). All other cases
proceed into a subsequent round with one of four possible
point values: 6, 8, 9, or 10. At this stage, there is a 50-50
chance of winning. This makes sense since getting a 7 and
getting the desired point value are equally likely (1/6 each);
all the other possible outcomes for the dice merely prolong
the game. So the overall winning probability with such a
fully biased die is 2/3.

Playing Craps with two fully-biased Biased-5 dice is triv-
ial, and not shown in the graph. That is, the opening roll
is always a 10, which neither wins nor loses, but the subse-
quent roll of 10 matches the target point value, and wins.

3.3 Results for Medium Bias
Clearly, using fully-biased dice would be easily detected

by the casino, so Figure 4 presents a more realistic sce-
nario with only 25% bias in favour of 5. In the Fair Dice
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Figure 3: Effect of a Biased-5 die on opening roll in Craps (full bias).

case, the win/loss probabilities in the opening roll match the
known values for the Craps game. With a single Biased-5
die, the win probability remains the same for a 7, and in-
creases slightly for an 11. Meanwhile, the loss probabilities
for the opening roll decline on all three cases. These trends
are consistent with those in the previous example, for the
same reasons. Furthermore, these effects are further ampli-
fied when both dice are biased in the same way.

The bottom two graphs in Figure 4 take a closer look
at the wins and losses in subsequent rounds. These results
are broken down by the different point values possible, with
wins in Figure 4(c), and losses in Figure 4(d). These graphs
show a lateral shift of winning probabilities from low point
values to high point values, and a corresponding decline in
loss probabilities as well. At this bias level, the effect on
winning probabilities is more pronounced than the effect on
loss probabilities. For this particular example, the chances
of winning the Craps game are slightly better than 50%,
consistent with the analytical model. Any bias stronger than
15.4% achieves this goal when two Biased-5 dice are used.

3.4 Heterogeneous Dice
We next used our simulator to explore dice configurations

that are heterogeneous, both in face values and bias levels.
Figure 5 shows the simulation results from these exper-

iments. Each graph shows the winning probability for the
Craps game when the first die is biased by 10% toward the
value indicated (i.e., towards 1 in Figure 5(a), and towards
6 in Figure 5(f)). Upon each graph is a dotted horizontal
line showing the winning probability (0.493) in the baseline
configuration of Fair Dice, as well as a solid horizontal line
showing the cheating goal of exceeding a 50% winning prob-
ability. The remaining six lines show the results for different
preferred values (1 through 6) on the second die, as a func-
tion of the bias level. We consider bias levels ranging from
0% to 25%, in steps of 5%.

Figure 5(a) shows that having one die biased toward the
value 1 is a bad idea. This setting makes the winning proba-
bility worse than the baseline case, even when the second die
is fair. When the second die is biased, a preferred value of 1
is clearly the worst, since it increases the chances of losing
in the opening roll (i.e., sum of 2 or 3). A preferred value of
2 is also a poor choice, for similar reasons. A value of 6 has
an intermediate effect: it increases the chance of winning in
the opening roll, but also increases the chances of losing on

subsequent rolls. The line for this value is close to horizontal
over the parameter range considered. The best choice for a
preferred value on the second die is 5, as indicated previ-
ously by our mathematical model. With a Biased-5 die, one
can re-attain the baseline winning probability with a bias of
about 15%, but it is not possible to attain the goal of a 50%
winning probability, even with 25% bias. Using a Biased-3
or Biased-4 die is less effective, with 25% bias needed just to
regain the baseline winning probability. These two lines are
very similar, and are almost indistinghishable on the graph.

Similar observations apply for Figure 5(b), in which the
first die is biased towards the value 2. The initial starting
point on the left edge of the graph is slightly better than
for the Biased-1 die, since one of the ways to lose in the
opening roll (i.e., a sum of 2) is now less likely. However,
the winning probability is still worse than the baseline of
Fair Dice. Furthermore, the structure of the six lines (i.e.,
slopes and relative ordering) for different preferred values on
the second die remain the same as seen previously, albeit at
slightly higher winning probabilities. None of these config-
urations achieve the desired goal of 50% over the range of
bias probabilities considered here.

The simulation results for a Biased-3 die (in Figure 5(c))
and a Biased-4 die (in Figure 5(d)) are very similar. Both
have an initial starting point above the Fair Dice baseline,
since the losing combinations in the opening roll are less
likely. The graphs are otherwise structurally similar to the
previous graphs. The only new observations here are that
the lines for Biased-3 and Biased-4 on the second die now
disambiguate themselves, and that the relative ordering of
these two lines depends on the preferred value of the first
biased die. Specifically, the results indicate that it is slightly
better to roll two 3’s or two 4’s than it is to roll a 3 and a 4
together (i.e., sum of 7). The intuition is that a 7 hurts the
winning probability more across (possibly many) subsequent
rolls than it helps in the (single) opening roll.

Figure 5(e) shows the simulation results for a Biased-5 die,
which has the most pronounced positive impact on the win-
ning probability, as noted earlier. The initial starting point
with the first Biased-5 die is distinctly above the baseline
for Fair Dice. The effects of the second biased die are struc-
turally similar to the previous results, with Biased-1 being
the worst choice, and Biased-5 being the best. Note that
Biased-6 as the second die is now more favourable than ob-
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Figure 4: Effect of Biased-5 dice on Craps game outcome when relative bias is 25%.

served previously, with a positive slope across the range of
bias values considered. The intuition is the increased proba-
bility of an 11 on the opening roll. Note also that the lines for
Biased-3 and Biased-4 become indistinguishable once again.
The most important observation from Figure 5(e) is that it
is now possible to “beat the casino”, with a winning prob-
ability above 50%. In this example, this can be achieved if
the second Biased-5 die has at least 20% bias. This result
matches closely with the analytical model, for which a bias
of about 15% on each of two Biased-5 dice was sufficient to
achieve the goal. The larger bias indicated in Figure 5(e) is
because the first die has only 10% bias.

Finally, Figure 5(f) shows the results for a Biased-6 first
die. The initial starting point for this graph is close to the
baseline value, since the contributions to winning (i.e., sum
of 11) and losing (i.e., sum of 12) in the opening roll are
comparable, and offset each other. The rest of the graph is
similar to those presented earlier. Biased-5 for the second
die is again the best choice, since it increases the chances of
winning in the opening roll with an 11, and decreases the
chances of losing there with a 12. A Biased-6 second die is
slightly worse than the baseline with Fair Dice, because of
the increased chance of a 12 in the opening roll.

3.5 Correlated Dice
As a final set of simulation experiments, we consider the

possibility of correlated dice, which are not reflected in our
current analytical model.

We consider two rather simple correlation scenarios. In
the positive correlation scenario, there is a tendency for the
second die to achieve the same numerical value as the first
die (i.e., doubles are achieved more often than normal by
the roll). In the negative correlation scenario, the dice tend
towards different values, so that doubles are less likely than
normal. The level of cross-correlation is 5% in these tests.

Figure 6 shows the results from this simulation experi-
ment, using a format analogous to that from Figure 4.

The most obvious impact from positively correlated dice
is a decline in the win probability for the opening roll. This
makes sense since odd-numbered values for the sum are less
likely. In the extreme case of 100% positive correlation (not
shown here), only doubles are possible as the outcome from
the dice roll. In such a scenario, it is not possible to win on
the opening roll, but it is possible to lose then, with prob-
ability 1/3, if the sum is 2 or 12. In subsequent rounds,
100% positive correlation means a guaranteed win, since it
is not possible to roll a 7, so the overall winning probability
becomes 2/3. With the 5% positive correlation, the trend
is the same, though the effect is less dramatic. Doubles are
slightly more likely, which increases the loss probability in
the opening roll. For subsequent rounds, there is an in-
creased probability of doubles, and a slight increase in the
overall win probability, since 7 is less likely.

Negatively correlated dice have very different effects. In
our simulation, we use a Uniform(0,1) random variate u to
generate the value for the first die, and 1 − u to generate
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Figure 5: Monte Carlo simulation results for heterogeneous biased dice.
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Figure 6: Effect of correlated dice on Craps game outcome (bias 0%; correlation 5%).

the value for the second die. In the 100% correlation sce-
nario, this means that a 7 is always rolled in the opening,
and wins. At the 5% correlation level in Figure 6, this effect
is evident, but less pronounced. In particular, there is a not-
icable increase in winning the opening round with a 7, and
a noticable decline in the winning probability in subsequent
rounds, since rolling a 7 will lead to a loss. The overall result
is a decline in the winning probability for the Craps game.

In summary, these simulation experiments show that cor-
related dice are inferior to two independent biased dice.

4. CONCLUSIONS
In this paper, we used mathematical analysis and simula-

tion to study the Craps casino game with loaded dice.
The main conclusions from our work are the following.

First, a die outcome of 5 is extremely powerful in Craps,
since it boosts the odds of winning in the opening roll, and
eliminates the chances of losing in the opening roll. Second,
the most effective cheating strategies for Craps are to have
either two Biased-1 dice (with about -10% bias), two Biased-
5 dice (with about 15% bias), or one Biased-1 die (-7% bias)
and one Biased-5 die (about 5% bias). These perturbations
suffice to tip the odds in favour of the Craps player, instead
of the casino. Finally, the side effects of these biased dice on
the empirically observed number of dice rolls per game are
small, and the (5,5) strategy is especially difficult to detect.

Determining whether such biased dice are practically re-
alizable, or detectable by a casino, remains for future work.
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