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Abstract: One of the most promising techniques for the analysis of Spatio-Temporal ocean wave
fields is stereo vision. Indeed, the reconstruction accuracy and resolution typically outperform other
approaches like radars, satellites, etc. However, it is computationally expensive so its application is
typically restricted to the analysis of short pre-recorded sequences. What prevents such methodology
from being truly real-time is the final 3D surface estimation from a scattered, non-equispaced point
cloud. Recently, we studied a novel approach exploiting the temporal dependence of subsequent
frames to iteratively update the wave spectrum over time. Albeit substantially faster, the unpre-
dictable convergence time of the optimization involved still prevents its usage as a continuously
running remote sensing infrastructure. In this work, we build upon the same idea, but investigat-
ing the feasibility of a fully data-driven Machine Learning (ML) approach. We designed a novel
Convolutional Neural Network that learns how to produce an accurate surface from the scattered
elevation data of three subsequent frames. The key idea is to embed the linear dispersion relation
into the model itself to physically relate the sparse points observed at different times. Assuming
that the scattered data are uniformly distributed in the spatial domain, this has the same effect of
increasing the sample density of each single frame. Experiments demonstrate how the proposed
technique, even if trained with purely synthetic data, can produce accurate and physically consistent
surfaces at five frames per second on a modern PC.

Keywords: sea-waves; wave fields; surface reconstruction; Convolutional Neural Networks; depth
completion

1. Introduction

In the last decade, we witnessed a growing interest in the spatio-temporal characteriza-
tion of ocean wave fields. Indeed, many complex phenomena are now accounted for (and
better described) by leveraging the traditional one-point observation systems (like buoy,
wave probes, etc.) to its spatial extent. To cite a few recent examples, Benetazzo et al. [1–3]
showed that classical point-based models were unsuitable to predict the likelihood, shape,
and height of rogue waves over an area. Filipot et al. [4] studied extreme breaking waves
and their mechanical loading on heritage offshore lighthouses, Stringari et al. [5] developed
a probabilistic wave breaking model for wind-generated waves, and Douglas et al. [6]
analyzed wave interactions against rubble mound breakwaters.

Usually, acquisition of such data are made with a remote sensing infrastructure
comprising different sensors and computational techniques according to the desired scale
and resolution. The range of application spans from millimeter wavelength, exploiting

Remote Sens. 2021, 13, 3780. https://doi.org/10.3390/rs13183780 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6273-290X
https://orcid.org/0000-0001-6668-1556
https://orcid.org/0000-0001-9189-4924
https://orcid.org/0000-0002-9535-4922
https://doi.org/10.3390/rs13183780
https://doi.org/10.3390/rs13183780
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183780
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183780?type=check_update&version=2


Remote Sens. 2021, 13, 3780 2 of 24

the reflected light polarization [7], to a hundred meters where X-band radars are typically
used [8,9]. At a medium scale (from 0.2 to 50 m wavelength), optical systems based on
stereo vision have proven to be particularly successful as they directly sample the three-
dimensional sea surface over time [10–13]. However, the high accuracy and resolution of
stereo approaches come at a price of a quite demanding computing power. Indeed, they
are typically used to acquire few interesting sequences (usually shorter than one hour) that
are processed later on for analysis [14]. It is worth being noted that most of the resources
are spent to fit an equi-spaced surface grid (required for the Fast Fourier Transform) out
of the scattered point cloud that exhibits a non-uniform spatial density caused by the
perspective distortion.

Recently, we proposed a new approach called WASSfast [15] with the objective of
producing 3D surfaces in a (quasi) real-time fashion. The reason is not just a matter of
efficiency: producing wave-fields on-the-fly with image acquisition can potentially lead to
a system able to run continuously and unattended, generating valuable sea-state statistics
over long periods. Albeit promising, WASSfast can produce surfaces of 128× 128 points at
≈1 Hz, which is a huge improvement against traditional methods [12] but not yet suitable
for continuous operation.

Inspired by the recent advancements in Deep Learning models, we started investi-
gating the feasibility of a fully data-driven Machine Learning approach for the estimation
of wave surfaces from stereo data. As a matter of fact, our task shares many similarities
of typical inverse problems in imaging [16,17] for which ML represents a viable solution.
Indeed, it is trivial to sample a sparse set of 3D points from a continuous surface (direct
problem) but the inverse is in general ill-posed. Thus, it makes sense to use the direct
problem to generate the data needed to train a model created to solve the inverse.

In this paper, we introduce a novel Convolutional Neural Network (CNN) designed to
be plugged into WASSfast as a replacement of the FFT-based Predict-Update step (WASSfast
PU mode from now on). Such network is trained on simulated wave fields to learn how
to produce accurate surfaces from sparse scattered 3D point clouds. With respect to other
CNNs designed for similar tasks, we embed prior knowledge on the wave physics (i.e.,
the dispersion relation) into the architecture itself. This way, the model can learn quickly
and more accurately to reconstruct physically consistent surfaces that can match, or even
outperform, the ones generated with previous (i.e., algorithm-based) approaches. Our
experiments show the ability of the proposed CNN to estimate reliable wave fields (on
grids of 256× 256 points) at a fraction of time of the WASSfast PU algorithm, and with a
more even noise distribution in the directional wave spectrum.

Related Work

First attempts to create remote sensing systems to measure sea waves with stereo
imaging trace back to the late eighties, with the pioneering work of Shemding et al. [18,19]
and Banner et al. [20]. However, at that time, computing power was limited and most of
the analysis was conducted manually on just a few significant frames. It was only about
a decade later that Computer Vision scientists devoted their interest in developing new
techniques to automatically recover depth information from single, stereo or multi-view
images. In particular, a whole class of algorithms called Dense Stereo have been actively
studied to infer the disparity (and consequently the depth) of each pixel in a stereo image
pair [21]. Such advancements have been gradually used for oceanographic studies, like in
the seminal works of Benetazzo et al. [22], Wanek et al. [23], and Gallego et al. [24,25].

In 2017, Bergamasco et al. published WASS [12], an open-source software package
using state-of-the-art stereo techniques to automate the process of computing a dense
point cloud from stereo pairs. It has gradually become popular for many research teams
worldwide, to study waves both in open sea [1,14,26–28] or laboratory wave tanks [29,30].
Recently, such techniques have been improved following two main research directions.
The first is driven by the need to reconstruct wave fields without assuming that the cameras
are fixed with respect to the sea surface. This would allow the installation of such system
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on oceanographic or general purpose vessels. Significant improvements in this area include
the work of Bergamasco et al. [31] and Schwendeman et Thomson [32]. The second research
direction deals with the stereo reconstruction speed, with the aim of creating wave sensing
instruments that can operate continuously and unattended. In this respect, WASSfast [15]
represents a significant step in that direction, even if it is still in a prototype stage.

With the advent of new techniques using Graphical Processing Units (GPU) for model
training and inference, machine learning has increased its popularity in many engineering
and scientific disciplines. In particular, Deep Learning models now represent the state-of-
the-art for many classical Computer Vision problems. In addition, dense stereo has been
formulated as a data-driven learning problem, with approaches that can often exceed the
accuracy of legacy algorithm based solutions [33]. In our case, however, most of the time is
spent to fit a uniform surface grid to the point cloud, a problem that still needs to also be
addressed for deep-learning based dense stereo techniques.

The concept of interpolating and extrapolating scattered scalar fields is ubiquitous in
many scientific fields [34]. In addition, here, many recent approaches are based on Deep
Learning, especially when a consistent set of input–output samples are available. In the
literature, the general name of “depth completion” refers to the task of recovering dense
depth maps from sparse sample points (for example, acquired with LIDARs or Z-cam
devices). This is exactly the scenario faced by WASSfast, in which a smooth continuous
surface must be estimated from a sparse 3D point cloud. Since the geometry of the scene
is known (in particular, the mean sea-plane is already calibrated), the problem can be
formulated in the 2D space encompassed by the regular surface grid to be estimated.
Directly applying a generic CNN architecture to this problem is not trivial since, for its
sparsity, only a fraction of the input layer contains valid data. For this reason, it is not
clear how the convolution operator should behave when the filter encompasses a region in
which some of the values are not available.

Some approaches tackle the problem by assigning a predefined value to the missing
elements [35]. For example, [36] fills the input image with zeros to substitute the missing
data and then uses classical convolutional layers to propagate the depth information from
the existing values. The problem is that choosing an arbitrary value introduces some bias
in the solution, like reducing the accuracy of estimation for small depths. To alleviate this
problem, [37] proposed to keep track of the location of the missing values by creating a
binary mask of the input data. This mask is then provided to the network as part of the
input and convolved with the original data as usual. Nevertheless, this approach does not
explicitly limit the convolution to valid data which can still consider arbitrarily chosen
fill values.

Recently, Uhrig et al. [38] proposed Sparse-CNN, a sparsity invariant CNN with a
custom convolution operator which explicitly weights the elements of the convolution
kernel according to the validity of the input pixels. Furthermore, Huang et al. [39] refined
that concept in their HMS-Net, a hierarchical multi-scale version of the Sparse-CNN to
handle data with different densities. Some other approaches simulate different densities
in input images to train an encoder–decoder network and make it sparsity-invariant [40].
In our specific case, we do not observe large variations in the point density, but we suffer
from image regions in which data are simply not available (for instance, the occluded
back side of the waves, white-capped regions, etc). Thus, our efforts are oriented toward
solutions preserving the details where points are abundant, and properly filling the holes
in problematic regions.

Finally, latest works in this area aim at improving the reconstruction accuracy by
fusing depth data with an associated RGB image [41,42]. In our case, the radiance of sea
water depends on daylight and meteorological conditions, so it would be impractical to
create a training set comprising a reasonable amount of real-world working conditions.
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2. WASSfast CNN

WASSfast produces a sequence of 3D wave surfaces from samples obtained by trian-
gulating reliable sets of corresponding feature points that are assimilated frame-by-frame
into a continuous surface. We kept the first part (from stereo frames to sparse point clouds)
exactly as described in [15]. Instead, we modified the surface estimation part with a
specialized CNN designed to directly interpolate the missing data. Before the in-depth
explanation of the new approach, we think it is useful to recap how the whole WASSfast
technique works. We refer the reader to the original paper [15] for more details.

2.1. The WASSfast Pipeline

WASSfast can work efficiently by limiting the amount 3D points triangulated from
each stereo pair. To make a comparison, methods based on dense-stereo algorithms [12]
usually produce ≈3 millions points when operating on 5 M pixel images. On the contrary,
WASSfast extracts 7000 points on average, which is 450 times less. Assuming that surfaces
are described by grids of 256× 256 points (≈65,000 points in total), the problem is clearly
under-determined. In the original WASSfast PU formulation, the ill-posedness is solved by
constraining the wavenumber spectrum of subsequent surfaces to loosely behave according
to the linear dispersion relation.

The whole procedure is summarized in Figure 1. WASSfast operates sequentially on
the stereo frames according to their acquisition time. In every iteration, it takes as input
the stereo pair at time t together with the estimate of the surface spectrum at time t− 1 (in
the first frame, the previous spectrum is assumed to be zero everywhere). Then, the PU
approach operates as follows:

1. feature detection and optical flow are used to extract a set of matching feature points
between left and right images;

2. matches are triangulated to obtain a sparse 3D point cloud;
3. spectrum at time (t) (i.e., the current frame) is Predicted from the previous estimate at

time (t− 1) according to the linear dispersion relation;
4. spectrum prediction is updated to fit the triangulated points obtained in step 2. This

creates an estimate of the spectrum at time (t) that is used when processing frames at
time (t + 1). Thus, the process repeats from step 1.

Feature extraction
and matching

Triangulation

Input stereo frames

Corresponding features Sparse 3D Point Cloud

Spectrum at time t-1

Prediction

Predicted Spectrum at time t Estimated spectrum at time t

Inverse FFT

Estimated 3D surface

Update

Point 
cloud t+1

Point 
cloud t-1

PU Mode

CNN Mode

Figure 1. The WASSfast reconstruction pipeline. Input stereo frames are analyzed to extract a sparse
set of corresponding feature points for triangulation. This create a sparse 3D point cloud from which
a gridded 3D surface is estimated. The original approach described in [15] is shown at the top with
the name “PU Mode”. At the bottom, the CNN mode described in this paper uses a CNN to directly
reconstruct the surface with a learning-based approach.
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Considering the obtainable speedup, PU formulation works surprisingly well but
contains some intrinsic limitations hindering any further improvement. First, it must
process frames sequentially, so no parallel computation can be performed (at least at a
frame level). Second, spectrum prediction can only look at the past (previous estimate
at time t − 1) and not the future frames. Using both previous and next frames would
probably constrain it better for an improved prediction. Finally, the update step is based
on a numerical optimization whose running time depends on the data. Convergence can
be quick in some cases (just a few iterations) or very slow in some unlucky circumstances.
In practice, the maximum number of iterations can be set by the user, but this will not
guarantee the convergence. Thus, on average, the processing speed is 1 Hz, but some
frames can take longer than others.

The idea explored in this paper is to substitute steps 3 and 4 with a Convolutional
Neural Network trained to directly produce surface grids from the triangulated points.
The ill-posedness here is solved by letting the model learn what a physically consistent
surface should look like according to what has been seen during the training process.
The temporal constraints given by the dispersion relation are embedded in the model by
processing 3 frames at once: (t− 1), (t) and (t+ 1) to produce the surface at time (t). When
operating on the whole sequence, each frame is partially processed three times (as previous,
next and current frame) but, apart from that, model execution can be parallelized on the
whole sequence. We call this new mode of operation WASSfast CNN.

2.2. Network Architecture

Differently from the PU approach, all the triangulated 3D points are discretized to
the defined surface grid before any other operation (Figure 2). This is performed by
transforming the point cloud in the mean sea plane reference frame (aligned with the grid),
and then projecting each point onto the closest grid node. This operation is implemented
simply by discarding the z-coordinate, and rounding the remaining two to the closest
integer. This way, the projection is very fast but less accurate compared to the PU approach
for two reasons. First, more than one point can end up into the same grid cell. In this case,
we just randomly select one of those and discard the others. Second, some information is
lost during the discretization since the original “sub-pixel” coordinates are rounded to the
closest grid node. This can lead to a cutoff in the high frequencies of the wave spectrum,
unless the grid resolution is reasonably high. Nevertheless, this operation is extremely
fast, since it can be parallelized with respect to the point cloud, and automatically solves
the problem of having two or more points too close together, a critical condition for the
convergence of the PU approach.

After point discretization, the problem is simplified from a general 3D surface interpo-
lation to an image processing-based depth completion performed directly on the surface
grid. Indeed, our grid can be seen as a 1-channel floating-point image in which each pixel
(i.e., cell) denotes either the elevation of the chosen point with respect to the sea plane or a
NaN to indicate that no point was discretized into that grid cell. At this point, the task is to
“fill” the missing pixels with reasonable values according to the optimal surface we aim
to estimate.

The complete network architecture is displayed in Figure 3. It takes as input three
subsequent frames: It−1, It, It+1, and produces in output the resulting surface Ot where
the missing values have been filled. It is composed by three macro blocks that are executed
one after the other. The Depth Completion block implements a preliminary fill of It−1 and
It+1 using two instances (with shared weights) of the Depth Completion CNN proposed
in [38]. Then, the Temporal Combiner “transports” the sparse points from t + 1 and t− 1 onto
t to produce an intermediate sparse image Î which is denser than It. From here, the final
Surface Reconstruction part estimates the missing values combining a sequence of Sparse
Convolutions with the classical Shepard interpolation [43] (also known as Inverse Distance
Weighting, or IDW).
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Figure 2. The point discretization process used to prepare data for the subsequent WASSfast CNN.
Top-left: initially, points are defined in the left (or right) camera reference system. Top-right: points
are transformed to the mean sea-plane reference system spanning the x–y axis with the z oriented
upward. Bottom-right: points are parallel projected into the regular grid defined on the mean
sea-plane. Bottom-left: A closeup of what happens if multiple points (a, b, c) falls on the same grid
cell. A random point is chosen and its x–y coordinates are approximated to the coordinate of the grid
cell center. This way, the entire grid cell takes the elevation value of the randomly chosen point.

Depth completion Temporal combiner Surface Reconstruction

DC

+

DC

+-

IDW

5
5 2
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Sh
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ed
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Figure 3. The WASSfast surface reconstruction CNN. Input is composed by 3 frames taken at time (t− 1), (t) and (t + 1).
Each frame is a 2-channel 256× 256× 2 tensor containing the sparse elevation data and the validity mask. The phase
rotation matrices P∆t−1 and P∆t+1 are assumed to be known according to the current sequence frame rate, wave propagation
direction, etc. Frames It−1 and It+1 are processed in parallel by 2 depth completion blocks with shared weights. Then,
the temporal combiner transports the surfaces St−1 and St+1 to time t. The predicted surfaces are multiplied by their
original masks (Mt−1,Mt+1) and merged with It, creating new denser data (Ī ,M̄). The result is then processed by the
surface reconstruction block to produce the final surface Ot.

The novelty of our approach, compared to just using a general purpose Depth Comple-
tion CNN, is twofold. First, we introduce physical constraints our reconstructed surfaces
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(in this case, the dispersion relation) since we know that points are samples triangulated
from a real sea-surface. Second, we train the network to reconstruct the difference (i.e., the
high-frequencies) with respect to a surface already interpolated with a general-purpose
method. Experimentally, we observed that this leads to better results than directly recon-
structing the final surface (see Section 2.5). In the following sections, we describe each
block in detail.

2.3. Depth Completion Block

The depth completion block consists of an end-to-end CNN taking a 256× 256× 2
input tensor and producing a 256× 256× 1 output tensor S . The two input channels are
organized as follows: the first channel I is a floating point image containing some pixels
with valid depth values (representing sea-surface elevation at that grid point, normalized
in range 0 . . . 1 according to the minimum and maximum value of the batch) and some
others corresponding to missing data, arbitrarily filled with zeros. The second channelM
consists of a data mask, i.e., a binary image containing 1 or 0, denoting respectively that the
pixel at that coordinate is valid (i.e., the first channel contains an observed value) or not.

The architecture is a classical feed-forward network as shown in Figure 4: it contains
a sequence of five sparse convolution layers, followed by Rectified Linear Unit (ReLU)
activations. Each sparse convolution produces a 16-channels output tensor obtained by
convolving the input with 16 different trainable kernels with predefined sizes. At the
end, a sparse convolution with a single 1× 1× 16 kernel followed by a linear activation
produces the resulting dense output surface S .

256

25
6 11

11

2

7
7

16

5
5

16

3
3

16

3
3

16

1
1

16

256

25
6

16 1 16 1 16 1 16 1 16 1

Sparse Convolutions + ReLU activation

Input

Figure 4. The depth completion block involves a sequence of sparse convolution layers (see Figure 5),
interleaved by ReLU activations.

The idea behind sparse convolution is simple but effective in practice. Let the input
be a N ×M× k tensor, composed by the concatenation of a N ×M× (k− 1) tensor repre-
senting image data and an N ×M× 1 tensor representing the binary mask (respectively
white and yellow blocks in Figure 5). The first data block is multiplied element-wise to the
mask to explicitly fill invalid values with zeros (note that valid values remain untouched
since they are multiplied by 1). The zero-filled data are convolved as usual, but the result
is normalized according to the number of valid values inside the region spanned by the
convolution filter. In other words, the normalization factor results in being the number
of ones found in the mask within the corresponding convolution window: such factor is
simply computed by convolving the mask with a constant kernel composed by all ones,
with the same size as the kernel used for data convolution. Finally, the layer output is
computed by dividing the convolved data with the convolved mask, and then adding a
trainable bias.
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*.
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Weights

Ones

1/x

. +
Bias

Max Pooling

Figure 5. The sparse convolution operation takes an input tensor composed by sparse data (in white)
and the associated validity mask (in yellow). Data are convolved and then normalized to account
only the valid points encompassed by the kernel. Mask is dilated by the max pooling operation and
finally concatenated to the output.

At the same time, the mask needs to be updated coherently with the new data in
order to propagate the information. This is done by dilating the 1-regions of the mask,
performing a max-pooling operation with unitary stride and size equal to the convolution
kernel (note that this is equivalent to compute a morphological dilation on the mask). In
this way, the valid data values are propagated through the new mask. Assuming to employ
v filters for data convolution, the new data and mask are concatenated together to produce
the N ×M× (v + 1) output tensor. The whole operation is summarized in Figure 5.

Note that, albeit generic, this block would be sufficient to fill the missing grid values.
However, as shown in the experimental section, what follows embeds physical priors to
the network and greatly improves the final surface.

2.4. Temporal Combiner Block

The temporal combiner block lies at the core of the proposed WASSfast network:
indeed, it is designed to fuse the information coming from three subsequent frames and
improve the quality of the final output. The rationale is that each input frame It can be
seen as a random sampling of the unknown sea surface at time t. Therefore, considering
two distinct frames Iti and Itj , they will contain valid values at different locations. If we
imagine to “transport” the valid points from ti to tj (or vice-versa), we can increase the
sampling density of one of the two images and therefore improve the quality of the final
output. This operation is not trivial unless we are able to accurately track the reconstructed
points along the frame sequence. Nevertheless, physical priors on the wave dynamics
can be taken into account to predict the sea surface at a certain (sufficiently small) time
delta ∆t. This is exactly the operation performed by the PU approach during the prediction
phase (see [15], Section 2.3 for details). To summarize, it is sufficient to take the 2D Fourier
spectrum of the surface at time t, rotate its phases by an angle defined by the linear dispersion
relation, and then compute the inverse Fourier transform to obtain the predicted surface at
time t + ∆t.

The structure of the temporal combiner is shown in the central part of Figure 3: it
takes as inputs the previous It−1, next It+1 and current frame It in the sequence being
analyzed, together with their associated masksMt−1,Mt+1 andMt.

The depth completion block described in Section 2.3 is applied in parallel (sharing the
weights) only on It−1 and It+1. In this way, we obtain the two dense surfaces St−1 and
St+1 associated with the previous and next frames, respectively.

At this point, we can exploit the temporal relation between subsequent frames and
predict two new surfaces by rotating the phases of St−1 and St+1, assuming a time delta of
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∆t and −∆t, respectively. This is implemented as an element-wise multiplication between
the complex matrix resulting after the 2D Fourier transform of the surface and a phase
rotation matrix:

S ′t−1 = F−1
(

F (St−1)�P∆t

)
(1)

S ′t+1 = F−1
(

F (St+1)�P−∆t

)
.

where F (·) denotes the 2D Fourier transform and � is the element-wise matrix multiplica-
tion. The 2D phase rotation matrix P∆t is computed as follows:

P∆t =
(

Akx ,ky

)
(2)

Akx ,ky = ei∆tωkx ,ky

ωkx ,ky = sign(sxkx + syky)g
√

k2
x + k2

y

where kx ky are the grid wavenumbers, and sx, sy are two signs related the main wave
propagation direction (The predict step implemented in WASSfast is able to automatically
estimate sx, sy by analyzing the optical flow between the first two frames).

In this way, S ′t−1 and S ′t+1 are the predicted surfaces at time t computed respectively
from St−1 and St+1. In other words, this operation allowed for “moving” both the surfaces
to time t, enabling us to merge the resulting data with different random samplings. Then,
S ′t−1 and S ′t+1 are sparsified again by filling with zeros all the pixels corresponding to
zeros in the original binary masks:

I ′t−1 = S ′t−1 �Mt−1 (3)

I ′t+1 = S ′t+1 �Mt+1.

The final step of the temporal combiner consists of blending the obtained values
and the current input sparse data It. First, the three sparse images need to be combined
according to possible overlapping. Indeed, since we want to merge in the same image
sparse points coming from different random samplings, we need to take care of the pix-
els for which we have more than one value. For this reason, given a pixel location p,
the corresponding values will be weighted as follows:

Î(p) =
1−α

2 I ′t−1(p)Mt−1(p) + αIt(p)Mt(p) + 1−α
2 I ′t+1(p)Mt+1(p)

1−α
2 Mt−1(p) + αMt(p) + 1−α

2 Mt+1(p)
(4)

where α ∈ [0, 1] is a weighting parameter. In this way, if only one out of three elevation
values is present at pixel p, it will be included in the merged image. On the other hand,
if we have more than one possible value in p, the final elevation is computed as a weighted
sum of the available values. In our tests, we gave a higher relevance to the central frame
(i.e., the input data for which we did not apply prediction) by setting α = 0.8. Note
that, with this formulation data in I ′t−1 and I ′t+1 being weighted equally, there could
be some cases for which they should be treated differently, for example if the frame rate
is not constant. Indeed, the adaptation of such weighting parameters could be further
investigated in some future work. After the operation described in Equation (4), the sparse
image Î incorporates sparse points coming from the three input frames, exploiting the
prediction step. The associated mask is simply computed as the element-wise logical or
among the three input masks:

M̂ =Mt−1 ∨Mt ∨Mt+1. (5)
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Given the different random sampling at each frame, this new sparse image Î will be
denser with respect to the three inputs taken separately, with the advantage of possibly
improving the final surface quality and constraining the temporal evolution of the surfaces
according to the data acquired immediately before and after the currently reconstructed
frame. Note two interesting features of the temporal combiner. First, the Fourier Transform
and point blending are all linear operations that can be easily differentiated so it does
not pose any problem for the back-propagation [44] (Chapter 6.5). Second, the temporal
combiner does not contain any weight to be trained. After this part, the pair (Î ,M̂) is then
used as an input for the reconstruction block.

2.5. Surface Reconstruction Block

The surface reconstruction block is added after the temporal combiner, taking as input
the sparse data Î and the mask M̂. At this stage, Î is denser than the original It, but tends
to exhibit regions where no samples at all are present. These “holes” in the data typically
occur on the back-side (with respect to the camera viewpoint) of high waves or in areas
where no photometrically distinctive features are present (like in flat white-capped regions
formed by breaking waves).

We observed that just using the depth completion block (Figure 4) fails to both preserve
details where many samples are present and close the larger holes. The problem is that the
sparse convolutions must have a limited extent (3× 3 or 5× 5) to be effectively trained,
but that means increasing the network depth to accommodate sparser regions. However,
in all our tests, we observed that the deeper the network, the smoother the resulting output
tends to be. One solution might be to use a multi-scale depth completion network [39]
in this last stage, but such architecture is more complex and therefore harder to train
and slower during its usage. Thus, we explored a different approach in which sparse
convolutions are used only to improve the surface’s small details.

It is easy to note that the classical Shepard interpolation (in its simple form, with-
out taking into account local gradients) is a non-trainable instance of a sparse convolution
(see Figure 5). In addition, known as Inverse Distance Weighting, the idea is to fill a missing
value with the average of the valid neighboring pixels, weighted by a negative power
of their distance. If we restrict the averaging neighborhood to a fixed maximum radius,
its implementation can be realized by convolving both the sparse data and mask with a
kernel filled with values that are proportional to the distance from the central pixel. After
that, the convolved image is divided element-wise with the convolved mask to obtain
a dense surface. Since the IDW kernel values are not trainable, its impact on our model
is negligible even when using window sizes several time bigger than the ones used for
sparse convolutions. Thus, we decided to mix the two approaches to take the best of the
two worlds.

The idea is to create a coarse surface using IDW, and then “add” the additional details
with the usual depth completion network that learns to refine the final surface. Indeed,
the obtained surface SIDW is initially subtracted from the sparse points Î (essentially like
in a high-pass filter), then a series of four sparse convolutions with ReLU activations are
performed on sparse data. Finally, the surface SIDW is added back to Î to obtain the final
output surface.

3. Network Training

To be properly trained, WASSfast CNN requires several input–output samples, like the
ones shown in Figure 6. One possibility is to use WASS as a reference surface reconstruction
method to generate the expected output surfaces. We discarded this alternative for the
following reasons:

1. Training data should be as heterogeneous as possible to comprise different wave
direction, sampling density, frame rates, etc. This requires great effort in organizing a
vast set of WASS processed data that would be impractical. Moreover, in this way, we
are not ensured to capture as many conditions as possible to avoid overfitting.
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2. WASS data partially suffers from depth quantization produced by the dense stereo
approach. If used for training data without proper filtering, the CNN would probably
learn to “simulate" the quantization effect along the image scanlines;

3. A vast amount of data needed to train a Deep Neural Network model without over-
fitting. We currently do not have enough data to ensure proper training, and data
augmentation is a partially viable option since it is difficult to define image trans-
formations to realistically simulate different view angles, wave directions, lighting
conditions, etc.

To overcome these problems, we used the Matlab package WAFO [45] to generate
training and test data in a completely synthetic way. Specifically, we generated several
scenarios comprising linear and nonlinear Gaussian waves in an area with a similar extent
of the one used in previous WASS setups (see Table 1 for details).

Table 1. Parameters used to generate different scenarios used for training.

Parameter Value

Grid size 256× 256

Grid cell size (m) 0.46

Frame rate (Hz) 7

Significant wave height Hm0 (m) Random uniform in range [5.0 . . . 8.0]

Primary peak period Tp (s) Random uniform in range [7.2 . . . 8.8]

Spreading parameter Sp (deg) Random uniform in range [15.0 . . . 22.0]

Wave direction θ0 (rad) Random uniform in range [0 . . . 2π]

Number of frames 700

Each scenario is composed by a sequence of sea surfaces Ōt sampled on a regular
256× 256 grid at a frame rate of 7 Hz, simulated using the bimodal (swell+wind) Torsethau-
gen spectral density model implemented in WAFO. Sea-state parameters are randomized
to simulate a wide range of conditions that can be considered reasonable for a typical
WASSfast installation on an offshore research platform. All the generated surfaces are the
expected outputs of our CNN, divided into training and testing sets. In detail, for training
data, we generated 200 different scenarios: for each one, we selected 64 frames, for a total
of 12,800 different surfaces (each one with corresponding previous and next frames). The
test set includes 100 scenarios, each one including 32 frames, for a total of 3200 surfaces.

Figure 6. Example of one synthetically generated scenario with network input at different densities
d = 0.1, 0.2 and the corresponding Ōt (right).

To generate the sparse input It we designed a specific sampling procedure so that the
resulting points exhibit features as close as possible to an actual stereo acquisition.

We opted for a non-uniform sampling of each surface Ōt: we did this by associating
each grid point (x, y) with a different probability of being observed: we denote such
probability as pŌt

(x, y). All points have the same “initial” probability of being sampled,
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equal to d ∈ [0, 1]. In this way, we ideally obtain a uniform sampling with density d: we
will address to such variable d in the rest of the paper as the density parameter for data
generation. Then, we simulated waves self-occlusion by decreasing with a factor q ∈ [0, 1]
the probability for a point to be observed only if it exhibits a negative gradient on the
y-direction (In our experiments, we kept a fixed q = 0.2). Therefore, given a surface Ōt, we
define pŌt

(x, y) as follows:

pŌt
(x, y) =

{
dq if ∂Ōt

∂y (x, y) < 0

d otherwise.
(6)

The input image It is then computed sampling surface Ōt according to the outcome of a
random variable XŌt

following a Bernoulli distribution:

XŌt
(x, y) ∼ Ber(pŌt

(x, y)) (7)

It(x, y) = Ōt(x, y)XŌt
(x, y).

In this way, we obtain a non-uniform sampling that is coherent with the waves direction
and the (virtual) stereo cameras capturing the scene.

Figure 6 displays the resulting points applying respectively a low sampling ratio
(d = 0.1, left) and a higher one (d = 0.2, center), together with the Ground Truth surface
(GT). Moreover, we introduced random holes, i.e., areas where surface points are completely
missing. This aspect is also fundamental for simulating real-world data since the acquired
point clouds may exhibit missing data in relatively large areas. To this end, we introduced
a parameter maxh representing the maximum number of holes appearing in a single frame:
each image will therefore include a random number of holes in the interval [0, . . . , maxh].
Each generated hole is also characterized by a variable size, uniformly selected in the
range [minr, maxr] and by a variable shape, expressed as a covariance value in the range
[mincov, maxcov].

3.1. Loss Function

As mentioned before, the training process aims at estimating the weights of the neural
network model (i.e., the values of convolution kernels and biases) so that the produced
output Ot is as similar as possible to the true output Ōt. This notion of similarity is given
by the so-called Loss Function that gives a penalty factor depending on how much Ot is
different from the correct output.

Needless to say that the loss function plays a crucial role to let the network behave as
expected. A sophisticated loss function may better account for challenging situations at a
price of a more unstable gradient during training phase with the consequent risk of being
stuck on a local minima. Several loss functions have been proposed in the literature when
working with Neural Networks for image processing [46]. In the case of our application,
we used a combination of L1 loss and Structural Similarity Index (SSIM) proposed by
Wang et al. [47] weighted by a factor λ (set to 0.84 in all our experiments). The complete
loss function used for training is shown in Equation (8):

L(Ōt,Ot) = (1− λ)|Ōt −Ot|+ λ SSIM(Ōt,Ot) (8)

3.2. Training Process

As previously discussed, the proposed WASSfast CNN is composed by three main
blocks: depth completion, temporal combiner, and surface reconstruction. The depth
completion task plays a fundamental role for the surface reconstruction, since its output is
directly used in the prediction step of the temporal combiner to merge frames at different
times and obtain a denser set of points. Needless to say, the temporal combiner presented
in our architecture is effective only if the depth completion block produces a reasonable
estimate of the correct underlying surface. When the training process is started, this
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unlikely happens since the initial weights are randomly generated. Therefore, at an initial
training stage, the temporal combiner will “scramble" the phases of completely random
surfaces, producing outputs significantly far from the actual surface. This makes the whole
optimization highly unstable and hard to converge in practice.

Note that the trainable parts of the network are the initial depth completion block
(repeated for input at times t− 1 and t+ 1) and the weights of sparse convolutions involved
in the final reconstruction step. Indeed, the depth completion block can be seen as an
independent sub-network, producing a dense surface from sparse input points. For this
reason, we decided to first train the depth completion block as a standalone network:
in this way, we can plug the (very close to optimal) weights in the complete WASSfast
CNN network and proceed with global optimization avoiding training instability. Hence,
the training process is divided into two steps:

1. The depth completion block alone (Figure 4) is trained on the whole dataset until
convergence.

2. The full WASSfast CNN (with temporal combiner and surface reconstruction) is
trained introducing the depth completion block weights already trained in the
first step.

In this way, the depth completion block is optimized beforehand so its initial weights
(when the full network train is performed) are already close to the global optimum.

Moreover, while training the depth completion block, we observed that changes in
the density of training data have a significant effect on the reconstruction accuracy. We
experimentally observed that starting with a relatively high sample density and gradually
lowering its value throughout the optimization leads to a quicker and more stable con-
vergence. The concept of presenting to the network gradually complex examples during
training is addressed in the literature as curriculum learning [48–50]. In some cases, such a
method is shown to be an effective training strategy, leading to fast and stable convergence
and to a better network generalization.

We train the depth completion block in groups of several epochs, reducing the sample
density range in each group and testing the resulting loss on a separated validation set,
according to the following schedule:

• 50 epochs, sampling d ∼ U(0.15, 0.20)
• 50 epochs, sampling d ∼ U(0.10, 0.15)
• 70 epochs, sampling d ∼ U(0.05, 0.10)
• 70 epochs, sampling d ∼ U(0.03, 0.05)

where U(a, b) denotes a uniform distribution over the interval [a, b]. After that, we filled
the pre-trained weights in the depth completion block and trained the full network for 50
more epochs, until the loss shows no significant change between each iteration. For this
last step, we restrict the input density d in [0.10, 0.2], since it represents closely the density
of real-world data. For the IDW convolution part, we empirically identified a good kernel,
namely a 21× 21 matrix with its values set equal to the distance from the window center
to the power of −2.8. Considering the density of our data, we found this configuration of
IDW to be suitable to obtain a smooth initial surface without introducing artifacts.

In both of the training steps, we employed all the surfaces generated in the training set
and randomly generated sparse input data with holes as described previously, with maxh =
5 and minr = 20, maxr = 50 (in pixels). Note that the random generation of the input
points takes place at the beginning of each epoch, so the network is constantly feed with
new patterns of sparse data, avoiding overfitting. In all cases, we used the the Adam
optimizer with an adaptive learning rate, starting from 10−3 and automatically decreased
to a minimum of 10−5 according to the slope of the loss function during the training.

4. Experimental Results

In order to analyze the quality of the sea surface reconstruction using our approach, we
divided the experimental validation into two parts. First, we tested the depth-completion
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capability of the proposed WASSfast CNN against another CNN-based method and a non-
learning interpolation approach. Since this kind of comparison requires the availability of
an accurate ground truth, we performed such experiments exploiting only the synthetically
generated data (the test set as described in Section 3). After that, we tested the proposed
WASSfast CNN system by embedding the CNN-based surface reconstruction technique
directly in the reconstruction pipeline with real-world data. In this way, we were also
able to compare the results obtained with the CNN-based approach against WASSfast PU
and WASS.

4.1. Comparison against Synthetic Data

To compare our method with other depth completion techniques, we employed
the synthetic sea surfaces in the test set created as shown in Table 1. We compared
WASSfast CNN with the sparsity-invariant CNN performing depth completion proposed
in [38] (denoted as SparseCNN). Moreover, we applied a non-learning algorithm for depth
completion, consisting of a simple IDW operation with a fixed kernel. The rationale of this
comparison is to test the actual ability of the proposed architecture to blend three frames
and generate a more accurate surface with respect to other methods employing only the
input sparse data.

Figure 7 (first row) shows the Mean Absolute Error (MAE) and Peak Signal to Noise
Ratio (PSNR) for our method, SparseCNN, and IDW varying the density of input data
from d = 0.05 to d = 0.20. Error bars show the standard deviation obtained running the
methods on all of the different scenarios included in the test data. We can observe that
the proposed architecture outperforms both techniques, exhibiting a better accuracy in all
the cases. As expected, the overall reconstruction quality increases proportionally with
the point density. Surprisingly, IDW works better than SparseCNN, especially the point
density increases. This validates the fact that SparseCNN tends to overfit to the amount of
points it has seen during the training. Therefore, to ensure a good quality for sparse regions,
it over-smooths areas where finer details are present. On the other hand, our network
exploits successfully the temporal relation between the frame to be reconstructed and its
previous and next, effectively improving the surface accuracy on finer details. In Figure 7
(second row), we show the effect of interpolation on the frequency spectra. To evaluate
that, we generated two 10 min long synthetic sequences, with sampling d = 0.08 and
d = 0.2, respectively, and extracted a timeseries at the center of the reconstruction grid.
Then, we used the WAFO’s dat2spec function to estimate the one-sided spectral density
from data. We can observe how the spectrum obtained with WASSfast CNN (blue line) is
more similar to the Ground Truth (black line) especially at frequencies ranging from 0.25to
0.38 rad/m where other methods undershoot the energy contribution. There is a plateau
starting at 0.58 rad/m, where the spectra of all the methods are not reliable anymore.
At low frequencies, below 0.04 rad/m, our approach also performs better than IDW and
SparseCNN, but the difference is less noticeable.

Figures 8 and 9 display some qualitative results from different samplings and scenarios.
In all cases, surfaces produced by WASSfast CNN are qualitatively better with respect to
other methods. Indeed, the full WASSfast network output exhibits more details, especially
at high frequencies, where they are difficult to recover due to a particularly sparse sampling.
Moreover, the predicted output shows no spikes or artifacts regardless of the sampling
position of the input points. Instead, PU mode may fail to converge whenever two input
points are spatially close, as reported in the original paper.
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Figure 7. Top row: comparison of the mean absolute error (left) and peak signal to noise ratio (right) of the surface
reconstructed with WASSfast CNN, SparseCnn and IDW varying the sample density. Bottom row: frequency spectra of
timeseries extracted from a grid center when reconstructing a synthetic sequence at different sampling densities.

4.2. Comparison on Real Data

Experiments on real data were performed using three records acquired in 2018 at the
Gageocho ORS managed by the Korea Institute of Ocean Science and Technology (KIOST).
We used the same dataset described in [3,15] for a direct comparison between the well
known WASS pipeline [12], WASSfast working with the existing PU mode, and the newest
developed CNN mode.

Such data were recorded after the passage of the tropical storm Kong-rei, originated
from a tropical disturbance in the open Pacific Ocean. For a couple of days, it went
westward, organizing into a tropical depression on 27 September. Then, it intensified into a
powerful Category 5 super-typhoon early on 2 October. The data used in our study were
recorded on 6 October when Kong-rey made landfall in Tongyeong (South Gyeongsang
Province in South Korea) as a high-end tropical storm, transitioned a few hours later
into an extratropical cyclone, while impacting southern Hokkaido, such as areas near
Hakodate. Sequences are composed by 2000 stereo frames acquired at a frame rate of 7.5
Hz, distributed along the day at 10:00 a.m., 2:00 p.m. and 5:00 p.m. local time (see Table 2
for details).

For the processing, we used a consumer high-end desktop PC equipped with an Intel
Core i9-9900K CPU running at a 3.6 Ghz (peak) and a single Nvidia GeForce RTX 2080 with
the software compiled and running natively on Windows 10. We started by reconstructing
the three sequences with WASS to obtain the corresponding dense point clouds. Then,
the mean sea plane was estimated to define the square grid surface measuring 128× 128
m divided into 256× 256 nodes (grid resolution 0.5 m). Area spans starting from ≈36
m away from the camera up to 163 m in the farthest point. As common in the literature,
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WASS’ surface used for reference was gridded from each point cloud using the Matlab
scatteredinterpolant function. It works by computing a Delaunay’s triangulation of the data
points to linearly interpolate grid points inside each triangle. Average running time was
≈0.7 frames per second (FPS) for WASSfast PU and ≈5 FPS WASSfast CNN. Standard
WASS gridding took more than a minute per frame.

Table 2. The three stereo sequences used to compare the two WASSfast reconstruction modes against
the old WASS pipeline.

Record Name Time Location Rate Length

G201810061000 6 October 2018, 10:00 UTC9 Gageocho ORS 7.5 Hz 2000 frames

G201810061400 6 October 2018, 14:00 UTC9 Gageocho ORS 7.5 Hz 2000 frames

G201810061700 6 October 2018, 17:00 UTC9 Gageocho ORS 7.5 Hz 2000 frames

Figure 8. Qualitative result of our CNN for sea waves’ surface reconstruction. From left to right: sparse input data, IDW
interpolation, output of depth completion, WASSfast CNN output Ot, ground truth output Ōt. Each row shows a different
scenario with an increasing sampling. Note how the full network output (with temporal combiner and an additional
feed-forward CNN step) improves the reconstruction of the depth completion block alone (SparseCNN), especially at high
frequencies. Colorbar is in meters.
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Figure 9. Surface reconstruction errors (in meters) when reconstructing the synthetically generated data. From left to right:
sparse input data, ground truth, IDW interpolation, sparseCNN, WASSfast CNN. Each row shows a different scenario with
an increasing sampling.

4.2.1. Time Series Comparison

In Figure 10, we compare the surface elevation time series extracted at the grid center,
corresponding to the x–y coordinates (−0.35,−70.35) m with respect to the right camera
reference frame (Figure 11 bottom-right). The time series produced by WASSfast (both
modes) are very similar to the ones produced by WASS. However, as observed in [15],
WASSfast tends to produce a smoother surface elevation field since the total number of
triangulated points are a fraction of the ones produced by WASS resulting in a lower
spatial resolution.

The output of WASSfast while running in CNN mode is very similar to the one
produced in PU mode. This is evident for sequence G201810061000 and G201810061700,
characterized by better contrast and exhibiting a higher number of triangulated points.
The Pearson’s coefficient between WASS and WASSfast CNN is on the order of 0.98,
with the CNN mode performing better than PU for the two aforementioned sequences
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(exact coefficients reported in Figure 10). Only in sequence G201810061400 did the CNN
mode performed slightly worse, even if the difference is almost negligible.

Overall, the two modes appear to be really similar when comparing time series ex-
tracted at the center of the grid, showing that the proposed Deep Neural Network was
effectively trained to accurately reconstruct sea surfaces from sparse scattered data. Con-
sidering the speedup obtained for the processing, this novel mode is certainly promising
for future extensive application.
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Figure 10. Time series comparison between WASS, WASSfast PU and WASSfast CNN on the three sequences at the
Gageocho ORS. Pearson’s correlation between each WASSfast mode and standard WASS is reported in the legends.

4.2.2. Sea-Waves Spectrum

After assessing that WASSfast CNN is able to produce surface elevations close to
the ones produced by WASS, we analyzed the space-time spectra of the three Gageocho
sequences to evaluate if it is also possible to reliably characterize the sea-state condition.

We used the spatio-temporal sea surface elevation fields z(x, y, t), computed with the
two WASSfast modes, to characterize the spectral and statistical properties of the wave field.
We assume it to be statistically homogeneous in its spatial extent and stationary within the
time interval of each record. Thus, from each z(x, y, t), the 3D spectrum S(Kx, Ky, ωa) was
obtained using the 3D Discrete Fourier transform and analyzed to compare the energy dis-
tribution at different wavenumbers and frequencies. Then, we integrated the 3D spectrum
along all the directions to obtain the omni-directional apparent frequency variance density
spectrum (Figure 11).
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Figure 11. Frequency-spectra comparison between WASS, WASSfast PU, and WASSfast CNN. Bottom-right: The recon-
structed area (red polygon) with the grid point used to extract the elevation timeseries.

In all three sequences, we observe a good localization of the peak frequency and
almost the same energy response from frequencies ranging from 0.01 to 0.5 rad/s, in
accordance with what was previously observed in the synthetic tests. At lower and higher
frequencies, the various approaches slightly diverge. Both PU and CNN modes have a
lower energy response at higher frequencies, with CNN lower than PU, showing in general
that the surface produced by the CNN tends to be less noisy than the other. It has to be
noted, however, that the spectrum update step of WASSfast PU can be tuned to weight
the high-frequencies cutoff between the data and the predicted previous surface. This
cannot be controlled in CNN mode as it is automatically learned by the network during
the training. Interestingly, we observe that the CNN mode works better than PU mode at
low frequencies ranging from 0.01 to 0.1 rad/s where the latter tend to underestimate the
energy involved. Sequence G201810061400 shows a slightly different spectrum than the
other two, and that may be the reason why the Pearson’s correlation for that timeseries is
slightly worse for the CNN mode.

Additionally, in Figure 12, we compared some sections of the 3D spectrum S(Kx, Kw, ωa)
at ω = 0.3, 0.4, 0.5 Hz for the record G20200916T010003 computed with PU and CNN mode.
It is interesting to observe that PU suffers some energy loss at a certain portion of the spec-
trum, as reported in [15]. Note, for instance, that, at 0.5 Hz, the top-left section of the
spectrum is noisier than the bottom right half. The new CNN approach seems not to be
affected by this problem, even if it uses the same principle of PU mode for predicting the
wave spectra among different frames. We think that the final surface reconstruction part of
the network is able to compensate this energy loss more efficiently than the update step of
the WASSfast PU mode. This behavior is very interesting and will be investigated in the
near future.
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Figure 12. Directional spectra sliced from the 3D spectrum S(Kx, Ky, ωa) at ω = 0.3, 0.4, 0.5 Hz for record G20200916T01000. Top row:
WASSfast PU mode; Bottom row: WASSfast CNN mode.

4.2.3. Qualitative Results

For all the processed sequences, we plotted the resulting reconstructed surfaces on top
of the original images. The rendering is performed using the freely available wassncplot
tool (https://github.com/fbergama/wassncplot, accessed on 20/05/2021, which renders
the produced NetCDF space-time elevation fields z(x, y, t) to a wireframe colored grid.

In Figure 13, we show some selected frames from the same Gageocho sequences used
for spectra analysis. WASSfast CNN looks slightly smoother than the others but exhibit a
less spiky behaviour in problematic areas at the far end of the reconstruction grid. Note
also that the WASSfast CNN grid has a full extent of 256× 256 with no weighting window
involved (as in PU mode where the window is used to avoid spectral leakage when rotating
the harmonics). Full length videos are available as Supplemental Material.

https://github.com/fbergama/wassncplot
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Figure 13. Qualitative comparison of the surface grid reconstructed by WASS (Top) and WASSfast PU (Mid) and WASSfast
CNN (Bottom) for record G201810061400.
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5. Conclusions

We studied a new data-driven approach for 3D reconstruction of sea waves. By reusing
the sparse feature matcher implemented in WASSfast, we posed the problem as a Depth
Completion scenario for which modern Deep Learning approaches have demonstrated to
be very effective. Our novel Convolutional Neural Network architecture is based on the
Sparse-CNN but takes into account the temporal evolution of the sea surface under study.
In particular, we exploit the linear dispersion relation to increase the sampling density and
to enforce temporal smoothness among consecutive frames. Moreover, the final surface
reconstruction stage learns to reconstruct the high frequency details by estimating the
residuals with respect to a non-trainable, but highly efficient, Inverse Distance Weighting
based interpolation.

Experiments on both synthetic and real-world data show that the new approach leads
to a more accurate reconstruction, especially at high frequencies, while being almost five
times faster than other methods. Considering the significant speedup obtained for the
processing, this approach is certainly promising for future implementation as a continuous
acquisition and monitoring system of directional wave spectra.

Code is available at https://gitlab.com/fibe/wassfast.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183780/s1, Videos: Side-by-side comparison of WASSfast PU and CNN mode for sequences
described in Table 2.
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