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Abstract. The sundial of Euporus was discovered in 1878 within the
ancient Roman city of Aquileia (Italy), in a quite unusual location at the
centre of the city’s horse race track. Studies have tried to demonstrate
that the sundial had been made for a more southern location than the
one it was found at, although no specific alternative positions have been
suggested. This paper showcases both the workflow designed to fully
digitise it in 3D and analyses on the use of the artefact undertaken from
it. The final 3D reconstruction achieves accuracies of a few millimetres,
thus offering the opportunity to analyse small details of its surface and
to perform non-trivial measurements. We also propose a mathematical
approach to compute the object’s optimal working latitude as well as
the gnomon position and orientation. The algorithm is designed as an
optimization problem where the sundial’s inscriptions and the Sun posi-
tions during daytime are considered to obtain the optimal configuration.
The complete 3D model of the object is used to get all the geometrical
information needed to validate the results of computations.

Keywords: Computational Archaeology, 3D Reconstruction, Reverse
Engineering

1 Introduction

Digitisation and archiving play a fundamental role in cultural heritage field [13,
22]. Indeed, many technological applications are specifically designed to support
such tasks, allowing for fast and precise results which were usually obtained
through manual or analogue tools [20, 14]. In particular, 3D reconstruction of-
fers a wide range of opportunities in terms of recording artefacts geometry, open-
ing new research directions in terms of conservation, restoration and study [15,
11]. The reasons behind such applications are several: digital libraries of high-
resolution 3D models bring to the creation of extensive archives, that can be
available to a large audience of users, both in research and public communi-
ties. Digitisation also allows for restoration and monitoring of artworks which
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Fig. 1. Left: Inscriptions on the top surface of the Euporus sundial. Right: 3D acqui-
sition of the sundial: on the left the structured light scanner mounted on a tripod.

are often exposed to atmospheric agents. In particular, structured-light scanning
techniques have already been employed in some cultural heritage applications,
leading to optimal outcomes[2, 1, 21].

In this paper we describe a practical case study showing how structured-light
scanning, and particularly phase-shift technique, can be applied in a cultural
heritage application. We explore two main aspects regarding the study of an
ancient sundial: its digitisation process and the reverse engineering approach
determining the gnomon’s shape and working latitude.

The object is hosted at the National Archaeological Museum of Aquileia
(Italy), and it is known as the “Sundial of Euporus”, from the name of its
donor, M. Anstitius Euporus, inscribed within the dial. The instrument was likely
engraved in the 2nd century AD and was discovered in 1878 in the area of the
Roman Circus of Aquileia, in centre of the horse race track [8], probably not in
its original position. The object is a rare type of Karst limestone horizontal plane
sundial (see Figure 1), pertaining to the Vitruvian type called “plinthium sive
lacunar” [10], it is an horizontal slab surrounded by a frame, recalling the form
of an overturned coffered ceiling [3]. The top planar surface measures 100× 206
cm, and it is surrounded by a ∼ 10 cm frame extending all around its rectangular
shape (see Figure 1, right). A set of inscriptions located on one half of the upper
surface reveals its usage as sundial (Figure 1, left).

The first part of the paper deals with the scanning process and focuses on
the methodological aspects of the high-resolution acquisition. For the first time a
complete 3D digitisation is attempted on this sundial, opening new possibilities
in the analysis of its historical background and providing insights into the level of
ancient knowledge of sundial design and construction principles. The complete
3D model enables to perform non-trivial studies without physically accessing
the object, like analysing the technique used to chisel the inscriptions or the
planarity of the dial surface, which affects the shadows cast by the gnomon.

In the second part of this work we present the reverse engineering technique
adopted to recover the original gnomon’s shape. This study exploits the 3D
model to acquire precise measurements on the sundial’s surface and create a



Geolocating Time 3

Fig. 2. Schematic representation of the 3D digitisation pipeline (see text for details).

synthetic model of its inscriptions. Then an optimization process is formalised
and carried out to simultaneously compute the best gnomon configuration to-
gether with the optimal working latitude of the sundial.

2 3D Acquisition Process

The sundial digitisation was accomplished using a custom structured-light scan-
ner formed by a camera and a projector (visible in Figure 1, right). The 3D
reconstruction algorithm employs multi-period phase shift with the unwrapping
and correction methods described in [16–18]. Additionally, the signal amplitude
is used to get a high-resolution texture of the surface, since it captures the bright-
ness intensity of the object as in a standard grayscale photograph.
Each scanner acquisition generates a range-map, that is a surface composed
by the 3D triangulated vertices connected by triangles, and the corresponding
texture map. Conceptually, the range-map is equivalent to a 3D photograph,
capturing both the optical and geometrical properties of the surface.

The digitisation of the whole artefact cannot be performed with a single
acquisition; indeed the area recorded by the scanner is not large enough to cover
the entire object at a reasonable resolution, and its shape introduces occlusions in
the opposite side of each view. For these reasons we acquired several overlapping
portions of the surface to collect a set of “3D patches”, corresponding to different
range-maps. In this way, the entire artefact is recorded with high resolution,
especially in the engraved zone. The following section describes the pipeline
specifically designed to merge all the views and obtain the final reconstruction.

2.1 Reconstruction Pipeline

Starting from the acquired range-maps and textures, we designed a sequence
of operations to reconstruct the complete coloured surface. Figure 2 presents a
schematic representation of the tasks involved in the pipeline. They are the fol-
lowing: pre-cleaning, pairwise matching, view graph diffusion, global registration
and coloured surface recovery. Such operations require almost no supervision: the
user intervention is limited to the optional configuration of different task-specific
parameters.

The most challenging part of the pipeline consists in merging all the individ-
ual range-maps: this procedure is referred as registration and it has been split
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Fig. 3. Pre-cleaning results for range-maps (first and second images) and texture im-
ages (third and fourth).

in two steps. First, a pair-wise registration operates on each range-map pair to
find the best possible rotation and translation that aligns the two. Second, all
pairwise transformations are merged into a common 3D space through a global
registration step. Finally, the complete surface is recovered by means of an au-
tomated algorithm which exploits the registered points and normals.

Texture and 3D Pre-cleaning The first two tasks entail a preliminary clean-
ing phase, in which range-maps and textures are independently processed to
filter out noise and improve the photometric data quality.

Regarding the range-maps cleaning, the process involves (i) the removal of
all triangles close to the surface border, (ii) the computation of per-vertex sur-
face normal and (iii) the identification of small connected components that are
removed below a certain threshold (we set 1000 vertices). The combination of
such steps improves the quality of the range-maps, which are typically prone to
exhibit errors near the boundaries of the illuminated area. A visual example of
the effect of this cleaning process is shown in Figure 3.

For what concerns the textures, the goal of the cleaning process is to nor-
malise the uneven illumination exhibited by the intensity images. Indeed, surface
areas that are far away from the projector’s centre will appear darker than the
other ones: the effect is visible in Figure 3 (third image). To correct this phe-
nomenon, we normalized each texture by means of an high-pass filter designed to
remove the low-frequency light variations and thus preserving the high-frequency
details of the texture, which are in our interests. This operation was performed
with a non-linear top-hat operation using a disc-shaped structuring element of
size 51× 51. In Figure 3 (fourth image) we show an example of resulting image
texture after the correction. After all the images have been processed, they can
be put side by side with no evidence of texture borders or light changes, allowing
for a natural range-maps fusion.

Pair-wise Registration Given the feature-rich nature of the object surface, the
pair-wise registration step was implemented by matching feature points between
every couple of views. We exploited well-known SIFT features [12] to provide
a set of point-to-point correspondences between each couple of textures. Each
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Fig. 4. Left: the view graph. Each node represents a range-map and each edge a pair-
wise transformation (see text for details), the connected components are denoted by
different colours. Centre: the yellow component (graph nodes from 41 to 55) forms part
of the outer frame. Right: the blue component (nodes from 1 to 25) connects all the
range-maps acquired in the engraved area.

range-map associates a 3D point coordinate to each 2D point on the texture im-
age, therefore the computed feature matching produces two sets of corresponding
3D points in space. Such correspondences are exploited to compute the relative
transformation between two views, allowing the registration of the range-maps
as described in [6].

Since some possible matching errors would significantly affect the alignment
precision, a RANSAC-based algorithm [4] was adopted to select only the con-
sistent 3D matches and obtain the best transformation between point clouds.
The quality of the alignment is measured in terms of inliers, i.e. couples of 3D
points for which distance after the transformation is below a threshold (1 mm).
This ensures a minimum level of precision for each registration: all the pairwise
transformations exhibiting at least 20 inliers were included in the so-called view
graph, described in the next paragraph.

View-Graph Diffusion A view graph is used to group the computed transfor-
mations: each node represents an acquired range-map, while each edge denotes
the transformation between such views. In other words, when an edge is present,
it indicates a valid transformation between two overlapping acquisitions: there-
fore each connected component represents a group of range-maps that can be
merged to obtain a portion of the whole object.
In Figure 4 (left) the complete view graph is displayed: each connected compo-
nent is identified by a different colour. Due to small estimation errors, within
a connected component different paths between two views would result in two
inconsistent transformations. In order to compute a coherent set of transfor-
mations within each group of views, a state-of-the-art diffusion technique was
applied as described in [24], ensuring the overall error minimisation for each
set. After the diffusion, the range-maps belonging to a connected component are
merged to form a macro-section of the sundial. In Figure 4 (centre and right)
the merged range-maps coming from the two largest components are shown.
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Fig. 5. Some views of the final coloured model after Poisson surface reconstruction.
Top: the whole scanned artefact. Bottom: details of the sundial engraving.

Global Registration and Surface Reconstruction The global registration
step involves the joining of the surfaces obtained from each connected component
of the graph. First, a rough registration is performed in a semi-automatic way by
manually selecting some correspondence points. Then, to refine the alignment
all the components are registered using ICP (Iterative Closest Point) algorithm
[25]. Finally, the surface of the sundial was computed applying Screened Poisson
Reconstruction method [7]. This algorithm generates closed watertight surface
which interpolates all the given points: the output is a set of coloured points and
triangles reconstructing the entire object.

2.2 Reconstruction Results

Since the most relevant part of the sundial is the engraved zone, the acquisition
process was planned to capture such area with a higher accuracy with respect
to the rest. The acquisition was performed in two sessions: first, the scanner was
configured to acquire an area of approximately 40x30cm, at a distance of ∼100
cm in order to obtain a high-resolution for the main inscriptions. We acquired
40 range-maps with this configuration: the first 25 were acquired closer to the
object, while the rest covered more surface in order to help the global registration
of each view. All acquired views were planned so that the overlapping portion
of each range-map with its successive was at least 1

3 of its area. The second
session entailed a change of the scanner optics in order to acquire a wider area
(approximately 150x200 cm) at a distance of 250 cm. We acquired 45 range-maps
all around the whole artefact, capturing both the outer frame and the planar
surface. For each range-map, an average of 6.5 million triangles composed from
∼5 million 3D points were acquired. After the global registration, each range-map
was resampled to obtain a roughly uniform distribution of the 3D points among
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Fig. 6. Time slots displayed by the sundial, each one denotes an equal subdivision of
daylight. Solstice hyperbole and equinox line are also highlighted.

all the connected components. The final surface was created using the screened
Poisson reconstruction algorithm with a tree depth set to 11 and 3 samples per
node. Figure 5 shows the model of the scanned artefact in its entirety (top row)
and some details of the sundial engraving (bottom row). The overall resolution
is high enough to allow the analysis not only of the whole artefact, but also of
the micro-furrows, scratches and unevenness of surface.

3 Gnomon Reverse Engineering

From ancient times, sundials were manufactured with the purpose of measuring
time from the apparent position of the sun in the sky. Usually sundials comprise
an object casting a shadow (the gnomon) and a surface, where the shadow is
casted, in which some marks indicate the time or the current part of the day.
Ancient sundials usually divide daylight time (i.e. from sunrise to sunset) into
equal parts. For this reason the construction of such objects is easier and lon-
gitude correction is not needed, since it does not point the “clock time” as we
are used today. Indeed, since daylight has a variable duration depending on day
and latitude, each “time slot” does not have the same duration throughout the
year.

The line connecting the Sun with the tip of the gnomon describes a cone in
a frame which is rotating with the Earth. The shadow of the tip is therefore
located on the intersection between that cone and the sundial plane, forming
a conic section depending on the displacement of the plane containing the Sun
apparent path and the celestial equator (in which the tip lies). Most of the days
the conic section is an hyperbola, more or less curved, becoming a line twice a
year during the equinoxes, when light and night times have the same duration.
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Fig. 7. On the left, the 3D points acquired from the model; on the right, the corre-
sponding 2D points used for optimization. All measures are displayed in mm.

Figure 6 highlights the salient curves engraved in the studied sundial. Two
hyperbole are visible (depicted in blue and yellow), indicating the path traced
by the shadow of the gnomon’s tip during winter and summer solstices. The
horizontal red line is the equinox line, traced by the shadow during two days,
in autumn and spring. Finally, the engraved part of the object includes eleven
segments used to mark the time during the day (in black).

3.1 Dial Parametrisation

To reverse engineer the Euporus’ sundial, we first need to localise all the marks
on the sundial’s plane. We recovered those points from the 3D reconstruction
of the artefact, ensuring a measurement precision of about a millimeter and the
computation non-trivial features, such as the object’s planarity.

We computed the coordinates of 34 points in three-dimensional space from
the intersections between equinox and solstices curves with the 11 time marks.
Figure 7 (left) shows a detail of the 3D model and the extracted points: three for
each time mark (in red) plus the gnomon’s base (in black). Note that the time
marks are not perfectly symmetric with respect to the central line (the sixth),
that corresponds to the south-north axis. The acquired points were transformed
to a convenient reference frame: a plane was fitted to the 34 intersection points to
define a geographical frame with the y-axis (coinciding with the sundial’s main
axis) facing north, x-axis faces east and z-axis oriented upward. The applied
transformation does not affect the final result since the sundial’s axis must be
aligned with the North-South axis to work properly.

The measured points are almost coplanar with a maximum distance from
the fitted plane of ∼ 0.8 mm. Therefore, we can assume the points to lay on the
plane (so that their z coordinate is zero) without loss of precision in the following
computations. The result of model acquisition is shown in the rightmost part
of Figure 7. After normalization, the point coordinates on the sundial’s plane
(apart from the gnomon’s base) are arranged in a rank 3 tensor Vαβγ with
α ∈ {1, 2, 3, 4} denoting respectively spring equinox, summer solstice, autumn
equinox and winter solstice, β ∈ {1, . . . , 11} identifying the βth intersection point
with the time marks and γ ∈ {1, 2} the 2D coordinate of the point. Note that
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points with α = 1 and α = 3 are identical since the projection during the two
equinoxes must correspond.

3.2 Formalization of Sundial Functioning

In order to introduce the notation that will be used in the following parts, we
define the following sets:

– Y ⊂ Z: set of years (BC negative, AC positive).
– ∆: set of dates s.t. d ∈ ∆ indicates a day in the format (year, month, day).
– T : set of timestamps. Each element t ∈ T encodes a date and a time. A

timestamp can be interpreted as a sequence of values of the kind (year,
month, day, hour, minutes, seconds).

– L = [−90, 90]: set of latitudes (in degrees).

Suppose to have a function which returns the Sun’s position given a latitude and
a timestamp:

S(t, l) : T × L→ S2 (1)

where S2 is the set of 3D vectors belonging to the surface of a unitary sphere.
The result of such function is a unit vector which points at the Sun’s position
during timestamp t at latitude l.

As we already discussed, the sundial’s marks do not indicate the ”clock”
time, but the current fraction of light-time, that has been equally split. There-
fore, we are only interested in the light time of each day, and not in the real
clock time as we were calibrating a clock. In other words, given a date and a
place on Earth we just need to compute the 12 time slots, without considering
the so-called apparent solar time. For this reason we have no need of longitude
corrections, thus our formulation restricts to latitude only, fixing the longitude
value in all the computations. Moreover, the geographic area involved in the
research is quite narrow in terms of longitude, but it exhibits a wider latitude
range. Considering that the optimal working location of the object is extremely
sensitive to latitude changes (especially for what concerns the hyperbole curves
and equinox line), the longitude can be considered irrelevant for our purposes.

The projection of a generic 3D point on the sundial’s plane can be computed
considering a projective system in which the Sun is the centre, located at infinity,
emitting light rays to be projected on the sundial’s plane as a parallel projection
[5]. The resulting projection p′ of a 3D point p on a plane is computed as follows:

p′ =

(
rT1
rT2

)(
p +
−p · n
n · s

s

)
(2)

where s is the vector pointing at Sun’s position computed as in (1), and n is a
unitary vector representing the normal direction of the plane (i.e. perpendicular

to it) in which the shadow is casted. Finally,
(
r1 r2 n

)T
is the rotation matrix
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Fig. 8. Left: punctual projection, with unknown gnomon configuration. This setup is
sufficient to estimate p2 coordinates as well as the optimal latitude. Right: presumed
gnomon configuration. Points p1 and p2 are projected on the plane, forming a segment.

transforming the sundial’s plane to our geographical plane. Note that we used
the first two rows of the matrix so that the final projected point is a 2D point.

We model the gnomon through two junction points, characterizing the shadow’s
length and slope. The end of the vertical part will be identified as p1, while the
endpoint of the tilted part is p2. Figure 8 displays a schematic representation
of the projection. In particular, points and vectors involved in Equation 2 are
included (the apostrophe denotes the projection of the point).

3.3 Recovery of the Optimal Gnomon’s Geometry

Since the sundial works with 12 equally-spaced time slots during daylight, we
define a utility function H such that H(d, l) : ∆×L→ T 11. Given a date d and
a latitude l, such function computes the 11 timestamps which should correspond
to the marks on sundial’s plane. Note that each timestamp marks the transition
from one slot to the following one, as sketched in Figure 6: the first mark denotes
the end of the first slot and the beginning of the second, and so on. Our goal is
to estimate the parameters so that the gnomon’s shadow is projected as close as
possible to the corresponding marks at the timestamps returned by function H.

We divided the operation in two independent tasks: (i) the joint optimization
of p2 and the latitude and (ii) the computation of p1 and thus the inclination
of the gnomon. The choice is driven by the following observations: the sundial’s
working latitude is only affected by the projection of point p2 during equinoxes
and solstices. In fact, the endpoint of the shadow casted by the gnomon must
fall exactly on those curves in four specific days in a year. In this terms, we can
forget the gnomon’s shape and consider only a punctual projection of p2 onto
the plane (see Figure 8, left). During the four relevant days such projection must
overlap with the corresponding curve.

Once the point p2 is fixed, and hence the latitude is recovered, the shadow’s
inclination allows to guess a possible shape for the whole gnomon. In particular,
we assume a single joint in correspondence of point p1. This task could be affected



Geolocating Time 11

by the thickness of the stick, and requires a different criterion to assess the
correctness of the projection.

Latitude Optimization For the sundial to work we need the shadow of the
gnomon’s tip p2 to occur in some predefined points during four days every year.
Each of these days is associated with a curve and, in turn, each curve is marked
with eleven points corresponding to the time slots dividing each day.

Solstices and equinoxes days slightly change each year, thus we define a utility
function D̂(y) which returns four dates from ∆ corresponding to equinoxes and
solstices in year y. These dates are computed as follows: summer and winter sol-
stices are the dates in which the daylight is respectively maximum and minimum
(between 20-22 June and 20-23 December), while the two equinoxes are days in
which daylight is equal to night time (19-21 March and 21-24 September).

The function P (y, l,p2,n) computes a rank 3 tensor, with a structure ana-
logue to V , containing the projections of 3D point p2 at each of the 11 times-
tamps of each four dates in D̂(y).

In an ideal configuration the coordinates of the computed projections in P
perfectly overlap with the sundial’s points in V . In practice the projection can
not be perfect, so we aim to minimize the squared distance of all the projections
from the corresponding sundial’s points. Thus, we formulate the following non-
linear least square problem:

(l∗,p∗2,n
∗) = argmin

l,p2,n

∑
y∈Y

(P̄ − V̄ )T (P̄ − V̄ ) (3)

where V̄ and P̄ are the linearized 88-elements row vectors of the tensors Vαβγ
and P (y, l,p2,n) and the set Y contains a list of years in which solstices and
equinoxes dates have been computed. With this formulation we optimize simul-
taneously the latitude, the gnomon’s vertex and the normal of the sundial’s
plane in such a way that the sum of the distances from the casted shadows to
the target points is minimized. Note that the minimization is non-linear due to
the function (1) used in P .

Gnomon’s Inclination Optimization In this second step, we keep fixed the
coordinates of p2, the latitude and the plane normal as the optimal values ob-
tained in the previous task, so that the position of p1 has an impact only on the
shadow’s shape and inclination. Indeed, in this setup the role of p1 is simply aes-
thetic because the oblique part of the gnomon projects a segment which should
be aligned with the eleven sundial’s marks to ease the time reading.

For this reason the position of p1 is estimated such that its punctual pro-
jection falls as close as possible to the line of the corresponding time mark,
determined by the current time slot. Since the original gnomon was supposed
to rise vertically from its base, the only parameter we need to optimize is the
junction’s height. The coordinates of point p1 are:

p1 = (x0, y0, h)T (4)
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where (x0, y0) are the coordinates of the gnomon’s base (Figure 7, the black
point) and h is the elevation of the junction point.

Similarly to what we did for p2, we define a function P(d, l,p1,n) returning a
rank 2 tensor Pβζ describing the eleven projections (in homogeneous coordinates,
with ζ ∈ {1 . . . 3}) of point p1 during day d at latitude l. Such projections are
computed in correspondence of the eleven timestamps that split the daylight of d
into twelve equal time slots. Note that, unlike the previous function P (computed
in four particular days of a year), P is defined for a single day, since we want
the projection of p1 to be close to the engraved segments during all days and
not only during solstices and equinoxes.

We also need to express the parameters of the eleven lines containing the
segments of the sundial. In a 2D Euclidean plane, a line can be denoted as
` = (a, b, c) such that a point (x, y) lies on the line if ` · (x, y, 1) = 0.

We collect these values in a rank 2 tensor Vβζ such that

Vij =
`i
||`i||

(5)

and `i = (ai, bi, ci) are the three parameters of the i-th line lying on the plane.
Then, we minimize the squared distance of such projections from the corre-
spondent line engraved on the sundial’s surface. Considering P̄ the linearized
row-vector of P(d, l,p1,n), the energy function to be minimized is now:

h∗ = argmin
h

∑
y∈Y

∑
d∈D(y)

(P̄ · V̄)2. (6)

The optimization task is performed selecting a set of years Y and the corre-
sponding sets D(y) containing all the valid dates in y. Unlike the previous energy
function, P is linear since equation (1) can be pre-computed for the given dates.
Therefore, a global minimum can be found through simple linear least squares.

4 Results

Both the optimization tasks were performed over a set of several years to provide
a robust estimation of the gnomon’s configuration and latitude. Therefore, we
chose a set of years in which the sundial were in use and optimized the config-
uration for that specific period. To compute the correct Sun’s position given a
place, time and a date, we used the open-source library Pvlib [23], implementing
the Solar Position Algorithm [19]. Such algorithm ensures a precision of ±0.0003
degrees between the years 2000 BC and 6000 AD.

The joint optimization of the gnomon’s tip p2 and the latitude was performed
computing the solstices and equinoxes from 200 AD to 230 AD and minimiz-
ing the energy function (3). The Nelder-Mead simplex algorithm for function
optimization has been used, as described in [9]. Such method is a numerical al-
gorithm used in multidimensional optimization problems for which derivatives
are not known, like in our case where the Sun position function is not derivable.
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Fig. 9. Projections (red crosses) of point p2 during equinoxes and solstices before (left)
and after (right) optimization of latitude and point p2. The rightmost configuration
exhibits a better overlap between projections and sundial’s points.
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Fig. 10. Final configuration results. Left: shadows projected during daylight time in
winter solstice (blue), autumn and spring equinoxes (green) and summer solstice (red).
Right: shadows projected during a whole year (every 10 days), in correspondence of
the eleven sundial’s time marks.

The initial latitude was set at 45.46◦ North (Aquileia latitude) and the
gnomon’s endpoint was positioned in a plausible way such that its shadows fall
close to the ideal points lying on the solstices and equinoxes curves. The plane
normal was also initialised as n = (0, 0, 1), that is perfectly parallel with respect
to the ground. The initial configuration is displayed in Figure 9 (left), in which
each red cross marks the shadow projected by the gnomon’s endpoint p2 during
the selected days of the period.

The optimization took around 250 iterations to converge, setting a maximum
tolerance over both the energy values and the optimized value equal to 10−5.
Surprisingly, the estimated optimal working latitude of the sundial was 44.019
N (in decimal notation), which is roughly 160 km south of Aquileia. As for the
plane normal vector n, each test did not change its orientation, so we kept the
sundial’s plane parallel to the ground. The estimated gnomon’s endpoint has
final coordinates p2 = (23.8225,−0.0007, 50.1031). Figure 9 (right) displays the
shadows cast by p2 in the optimized configuration: We observe a good overlap
between the majority of the sundial’s marks and the projected shadows. Also,
points corresponding to the earliest and latest hours of winter solstices are not
perfectly aligned. This could be caused by errors in the sundial design, since the
shadows in these specific times are longer and thus more difficult to estimate.
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Regarding the junction point p1, we optimized its height over all days of the
selected years, resulting in an optimal value h = 47.97 mm. Figure 10 displays
the results obtained with the complete optimal configuration of the gnomon. The
leftmost plot shows the set of shadows projected during the day respectively in:
winter solstice (in blue), summer solstice (red) and equinoxes (green). Note that
the inclination of the projected segment is almost parallel to the engraved lines
and the top part of the shadows points at the two hyperbole and the line. The
rightmost plot shows the shadows (in red) projected during a whole year in
correspondence of the timestamps that denotes the change of timeslots in which
each day is divided. Note that the inclination of the shadows is almost always
parallel to the sundial segments, as expected if p1 is correctly estimated.

Finally, we virtually rendered the shadow casted after the gnomon estimation
to verify if it coincides with the marks of the sundial at equinoxes and solstices.
Figure 11 shows three rendered pictures with the computed gnomon and the
projected shadow for interesting days of the year.

5 Conclusions

The scanning of the Euporus sundial is the first step of a more in-depth analysis
to be undertaken on the artefact. The reconstruction provides a high quality
3D shape record of the sundial’s surface with measurement accuracy to the
millimetre level and serve as a fine 3D representation that can be used for doc-
umentation, research and conservation purposes.

Moreover, the 3D model supported a further analysis to determine the geo-
graphical location for which the sundial was designed and shaped. In particular,
a mathematical analysis of the gnomon’s projection and the relative optimization
process shown that the optimal working latitude for this kind of configuration is
indeed a southern location with respect to the place where the object was discov-
ered (lat 44.019 N, while Aquileia latitude is 45.79 N). A plausible hypothesis is
that the Euporus sundial inscription was copied from another object designed for
more southern latitudes, and perhaps some calculation errors caused its slightly
defective functioning in Aquileia area.

Fig. 11. Digital rendering of the sundial with a simulated gnomon as computed in
our optimization process. The Sun position was set according to the optimal latitude.
Pictures show the casted shadow during (from left to right): summer solstice, winter
solstice and equinox.
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