
Empir Software Eng (2014) 19:1040–1074
DOI 10.1007/s10664-013-9248-x

A family of experiments to assess the effectiveness
and efficiency of source code obfuscation techniques

Mariano Ceccato ·Massimiliano Di Penta ·
Paolo Falcarin ·Filippo Ricca ·
Marco Torchiano ·Paolo Tonella

Published online: 23 February 2013
© Springer Science+Business Media New York 2013

Abstract Context: code obfuscation is intended to obstruct code understanding and,
eventually, to delay malicious code changes and ultimately render it uneconomical.
Although code understanding cannot be completely impeded, code obfuscation
makes it more laborious and troublesome, so as to discourage or retard code
tampering. Despite the extensive adoption of obfuscation, its assessment has been
addressed indirectly either by using internal metrics or taking the point of view
of code analysis, e.g., considering the associated computational complexity. To the
best of our knowledge, there is no publicly available user study that measures the
cost of understanding obfuscated code from the point of view of a human attacker.

Communicated by: Martin Robillard

M. Ceccato (B) · P. Tonella
Cit, Fondazione Bruno Kessler, Trento, Italy
e-mail: ceccato@fbk.eu

P. Tonella
e-mail: tonella@fbk.eu

M. Di Penta
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: dipenta@unisannio.it

P. Falcarin
School of Architecture, Computing and Engineering,
University of East London, London, UK
e-mail: falcarin@uel.ac.uk

F. Ricca
DIBRIS, University of Genova, Genova, Italy
e-mail: filippo.ricca@disi.unige.it

M. Torchiano
Politecnico di Torino, Torino, Italy
e-mail: marco.torchiano@polito.it

Empir Software Eng (2014) 19:1040–1074 1041

Aim: this paper experimentally assesses the impact of code obfuscation on the
capability of human subjects to understand and change source code. In particular,
it considers code protected with two well-known code obfuscation techniques, i.e.,
identifier renaming and opaque predicates. Method: We have conducted a family
of five controlled experiments, involving undergraduate and graduate students from
four Universities. During the experiments, subjects had to perform comprehension
or attack tasks on decompiled clients of two Java network-based applications,
either obfuscated using one of the two techniques, or not. To assess and compare
the obfuscation techniques, we measured the correctness and the efficiency of the
performed task. Results: —at least for the tasks we considered—simpler techniques
(i.e., identifier renaming) prove to be more effective than more complex ones (i.e.,
opaque predicates) in impeding subjects to complete attack tasks.

Keywords Empirical studies ·Software obfuscation ·Program comprehension

1 Introduction

Encryption and firewalls are classic solutions to mitigate the threat of remote at-
tackers (i.e., Man-In-The-Middle) who try to break into software systems. However,
these classic approaches do not help defending software systems when the attacker
is the end user (i.e., Man-At-The-End (Falcarin et al. 2011)). A vast class of client
applications are required to run under strict usage conditions, that may be violated
on tampered clients. For example, on-line game providers should prevent cheating
to ensure a fair competition; client applications for media conditioned-access (e.g.,
pay-per-view digital TV) could be tampered with to access the service in a way
that was not intended by the service provider (e.g., paying a reduced fee). Other
relevant examples of clients vulnerable to code tampering are rich Web 2.0 (Ajax)
applications and apps for smart-phones and tablets.

Among the various techniques available for protecting code from different Man-
At-The-End attacks, code obfuscation is one of the most popular choice, deployed
to prevent code comprehension, the precondition for further code tampering. Ob-
fuscation consists of code transformations that make a program more difficult to
understand by changing its structure, while preserving the original functionalities.
However, a determined attacker, after spending enough time to inspect obfuscated
code, might locate the functionality to alter and succeed in her/his malicious purpose.
For this reason, obfuscation is rarely deployed alone. Often, obfuscation is comple-
mented by other approaches, such as code replacement/update (Ceccato et al. 2007)
or tamper-detection with self-checkers (Chang and Atallah 2002; Horne et al. 2001)
or protections update (Scandariato et al. 2008; Falcarin et al. 2006), in order to give
an attacker a limited amount of time to complete her/his intent. However, to properly
plan code updates, the provider should estimate how long obfuscation would resist,
i.e., the time an attacker needs to understand obfuscated code.

Despite code obfuscation is a largely adopted solution (Collberg et al. 1997), and
many different obfuscation approaches have been proposed (Collberg and Nagra
2009), there are no publicly available user studies on code obfuscation that compare
different obfuscation techniques and measure how long it takes for an attacker to
understand and change obfuscated code.

1042 Empir Software Eng (2014) 19:1040–1074

In this paper we present a family of controlled experiments, planned and con-
ducted using a rigorous approach as described by Wohlin et al. (2000), to measure the
level of protection offered by code obfuscation. Five experiments have been designed
and conducted involving overall 74 students with different levels of experience
(e.g., undergraduate, master, and PhD students). Subjects were asked to perform
understanding and change tasks on code protected with two of the most prominent
approaches for code obfuscation—identifier renaming and opaque predicates—and
their performance has been assessed and compared in terms of task correctness and
efficiency.

The work presented here extends the one presented in Ceccato et al. (2009a)
by providing the following new contributions: (1) a new treatment, namely Opaque
predicates obfuscation; (2) results from three further experiments (Exp III, Exp IV
and Exp V); (3) an extended data analysis; (4) an extended discussion on achieved
results.

Results shed light on the validity and on the limits of code obfuscation, clarify
which strategies attackers adopt to try and break it, explain whether tools are helpful,
and make clear whether the attacker’s experience plays any role. Experimental
outcomes allow us to quantify the expected delay of successful attacks, depending
on which obfuscation is employed.

The paper is organized as follows: Section 2 covers the background on code
obfuscation. Then, Section 3 presents the experimental design and planning. Ex-
perimental results are reported in Section 4 and then discussed in Section 5. Even-
tually, related works and conclusions close the paper, respectively in Sections 6
and 7.

2 A Primer on Source Code Obfuscation Techniques

Obfuscation transformations can be classified into three main classes (Collberg et al.
1997): layout obfuscations, control-f low obfuscations and data obfuscations.

Layout obfuscations remove relevant information (such as identifier names) from
the code without changing its behavior. Identif ier renaming is an instance of layout
obfuscation that removes relevant information from the code by changing the names
of classes, fields and operations into meaningless identifiers, so as to make it harder
for an attacker to guess the functionalities implemented by different parts of the
application. There are several features of identifier renaming which are worth noting.
It is a widely implemented obfuscation technique, offered by several commercial
and academic obfuscators. The original identifiers are lost during renaming, and
in this sense the obfuscation is irreversible. With intelligent and human assisted
analysis, one may be able to reintroduce some meaningful identifiers. However, the
original identifiers are lost. Identifier renaming has no performance overheard. An
extension of the basic identifier renaming technique was proposed by Tyma (2000),
where instead of renaming an identifier to a new meaningless one, identifiers are
reused whenever possible but in such a way that overloading resolves the introduced
ambiguity correctly. The main weakness of this obfuscation technique is that much
of the structure of the program is preserved, which may assist an attacker during
reverse-engineering.

Empir Software Eng (2014) 19:1040–1074 1043

We applied Identifier renaming obfuscation on the bytecode using the SandMark
tool,1 which replaces identifiers with randomly generated ones. Obfuscated bytecode
is decompiled into Java source code using the Jad 1.5 decompiler.2

Control-flow obfuscations alter the original flow of the application. Obfuscation
based on opaque predicates (Collberg et al. 1998) is a control-flow obfuscation that
tries to hide the original behavior of an application by complicating the control
flow with artificial branches. An opaque predicate is a conditional expression whose
value is known by the obfuscator, but is hard to deduce statically by an attacker. An
opaquely True (False) predicate always evaluates to True (False) at a given position
in a program. An opaque predicate can be used in the condition of a newly generated
if statement. One branch of the if statement is filled with the original application
code, while the other is filled with a bogus version of it. Only the former branch
will be executed, causing the semantics of the application to remain the same. In
order to generate resilient opaque predicates, pointer aliasing can be used, since
inter-procedural static alias analysis is known to be intractable (Fiutem et al. 1999).

Available tools for opaque predicates apply directly on byte-code, but the obfus-
cated byte-code makes decompilers fail. So, we applied opaque predicates by means
of a source-to-source transformation program implemented in TXL (Cordy 2006),
similarly to what described by Collberg et al. (1998). For this reason the results of
our study are related (and limited to) decompilable opaque predicates. To this aim,
a pointer-intensive dynamic data structure is created and a set of pointers on this
structure are maintained. Opaque predicates are alias conditions between pointers
on such data structure. They are evaluated at decision points, in order to hide the
correct execution flow to the attacker. Moreover, random and buggy code is added
into the basic blocks controlled by those branches that are never taken due to opaque
predicates.

As part of the obfuscation, new statements are added to the code to continuously
update the data structure. Update statements, while mutating the data structure,
guarantee a known subset of alias conditions to remain valid. Nodes are added,
removed and updated, so that aliases among pointers are frequently changed, thus
making it very hard to statically detect whether two pointers refer to the same entity,
even with the support of automatic analysis tools.

Data obfuscations transform application data and data structures (e.g., data
encoding, data splitting).

In this paper we studied two out of these three obfuscations, i.e. identifier
renaming and opaque predicates.

3 Experimentation Definition and Planning

This section reports the definition, design and settings of the experiments in a
structured way, following the template and guidelines by Wohlin et al. (2000).

1http://sandmark.cs.arizona.edu/
2http://www.kpdus.com/jad.html

http://sandmark.cs.arizona.edu/
http://www.kpdus.com/jad.html

1044 Empir Software Eng (2014) 19:1040–1074

The goal of this study is to analyze the effect of two source code obfuscation
techniques, named identif ier renaming and opaque predicates3 with the purpose of
evaluating their ability in making the code resilient to malicious attacks. The quality
focus regards how these obfuscation techniques reduce the attacker’s capability to
correctly and efficiently understand and modify the source code. Investigating the
effect of obfuscation on the attack efficiency is a crucial point in our experimentation:
although we are aware that an attacker could be able to complete an attack on obfus-
cated code anyway, she could be discouraged if such an attack requires a substantial
effort/time. Results of this study can be interpreted from multiple perspectives: (i)
a researcher interested to empirically assess the identifier renaming and opaque
predicates obfuscation techniques; and (ii) a practitioner, who wants to ensure high
resilience to attacks to some components of a distributed application delivered to the
clients, running in an untrusted environment.

3.1 Context: The Subjects

The context of this study consists of subjects involved in the experimentation and
playing the role of attackers, and objects, i.e., systems to be attacked. Subjects are
University students, either Bachelor, Master or PhD students. The study consists of
five experiments, involving in total 74 students:

– Exp I was performed with 10 Master students from University of Trento;
– Exp II with 22 PhD students from Politecnico di Torino;
– Exp III with 16 Master students from University of Sannio;
– Exp IV with 13 (different) Master students from University of Trento; and
– Exp V with 13 Bachelor students from University of East London.

Bachelor students have just basic notions of programming in Java and some initial
knowledge of software engineering (e.g., design, testing). Master students from
both University of Trento and Sannio have an average knowledge about software
engineering topics a good knowledge on Java programming. In fact, they previ-
ously developed non-trivial systems as projects for at least three exams, such as
web applications and data processing programs, consisting in most of the cases of
few thousands lines of Java code. The purpose of such projects was to pass the
corresponding course.

All subjects attended at least one software engineering course where they learned
analysis, design and testing principles. Most PhD students held a Master in Computer
Engineering; a few were carrying out research in the field of Electronic Engineering.

3.2 Context: The Objects

The systems used to conduct the experiment are two client-server applications
developed in Java, a CarRace4 game and a ChatClient5 system.

3As already mentioned in Section 2, we restrict to decompilable opaque predicates.
4CarRace was developed by one of the authors as case study application for a previous work (Ceccato
et al. 2007).
5ChatClient is an open source project available at http://sourceforge.net/projects/jchat.

http://sourceforge.net/projects/jchat

Empir Software Eng (2014) 19:1040–1074 1045

CarRace is a network game that allows two players to run a car race; a screenshot
is shown in Fig. 1a. The player that first completes the total number of laps wins the
race. During the race, players have to refuel at the box. The number of completed
laps and the fuel level is displayed on the upper part of the window. The client
consists of 14 classes, for a total of 1,215 LOC. When obfuscated with identifier
renaming, system size does not change, while when using opaque predicates the
obfuscated application grows to 3,783 LOC.

ChatClient is a network application that allows people to have text based conver-
sations through the network; a screenshot is shown in Fig. 1b. Conversations can be
public or private. The client consists of 13 classes, for a total of 1,030 LOC of clear
code or code obfuscated with identifier renaming. When using opaque predicates the
client reaches 3,642 LOC.

These systems are comparable in complexity and size. In addition, they are small
enough to fit the time constraints of our experiments, and they are also realistic for
small/medium sized comprehension tasks.

3.3 Hypothesis Formulation and Variables Selection

Following the study definition reported above, we can formulate the following null
hypotheses to be tested:

– on Identif ier renaming:

• H01 identif ier renaming obfuscation does not significantly decrease the capa-
bility of an attacker to perform a comprehension task.

• H02 identif ier renaming obfuscation does not significantly decrease the capa-
bility of an attacker to perform a change task.

– on opaque predicates:

• H03 opaque predicates obfuscation does not significantly decrease the capa-
bility of an attacker to perform a comprehension task.

(a) CarRace (b) ChatClient

Fig. 1 Screenshots of the object applications

1046 Empir Software Eng (2014) 19:1040–1074

• H04 opaque predicates obfuscation does not significantly decrease the capa-
bility of an attacker to perform a change task.

– and on their comparison:

• H05 there is no difference between identif ier renaming and opaque predicates
in decreasing the capability of an attacker to perform a comprehension task.

• H06 there is no difference between identif ier renaming and opaque predicates
in decreasing the capability of an attacker to perform a change task.

Hypotheses H01, H02, H03 and H04 are one-tailed, since we are interested in
analyzing the effect of obfuscation in one direction, i.e., to investigate whether the
obfuscation reduces the attacker’s capability to understand the source code and to
perform a change task. Instead, hypotheses H05 and H06 are two-tailed, because
in principle we do not know which obfuscation makes the code more difficult to
understand and change.

The null hypotheses suggest we have two dependent variables, i.e., the capability
of performing comprehension tasks, and the capability of performing change tasks.
To measure the subject’s capability to perform a comprehension task (achieved
comprehension level), we asked subjects to run the application, look at the client
source code, and perform two comprehension tasks, (T1 and T2 in Table 1). These
tasks are conceived so that only one correct answer is possible, thus correct answers
can be evaluated as one, wrong answers as zero. To measure the success subjects
had in change tasks (success of change tasks), we asked them to execute two change

Table 1 Comprehension and change tasks

CarRace
T1 In order to refuel the car has to enter the box. The box area is delimited by a red

rectangle. What is the width of the box entrance (in pixel)?
T2 When the car crosses the start line, the number of laps is increased. Identify the

section of code that increases the number of laps the car has completed (report
the class name/s and line number/s with respect to the printed paper sheets).

T3 The car can run only on the track and obstacles have to be avoided, if a wall is
encountered the car stops. Modify the application such that the car can take a
shortcut through the central island.

T4 The fuel constantly decreases. Modify the application such that the fuel
never decreases.

ChatClient

T1 Messages going from the client to the server use an integer as header to distinguish
the type of the message. What is the value of the header for an outgoing public
message sent by the client?

T2 When a new user joins, the list of the displayed “Online users” is updated. Identify
the section of code that updates the list of users when a new user joins (report the
class name/s and line number/s with respect to the printed paper sheets).

T3 Messages are sent to a given room, if the user is registered in the room and if the
message is typed in the corresponding tab. Modify the application such that all the
messages from the user go to “Room 1” without the user entering the room.

T4 Messages are sent and displayed with the timestamp that marks when they have been
sent. Modify the application such that the user sends messages with a constant
timestamp = 3,00 PM.

Empir Software Eng (2014) 19:1040–1074 1047

tasks (T3 and T4 in Table 1) against the two different systems. It is important to note
that the proposed tasks are representative of realistic attacks that a hacker could
perform on a distributed game or on a chat e.g., to gain unlimited fuel, or to get
access to restricted messages. Since attacks can be thought of as maintenance tasks,
we evaluated the correctness of the attack by running test cases on the code modified
by the subjects, and evaluated the attack as successful if test cases passed (a similar
approach has been used in a previous empirical study (Ricca et al. 2008)). A test
suite was defined for each change task. The test suite reproduces the interaction
scenario of the attack to be performed and fails if the tampered behaviour is not
observed.

Hypotheses are formulated abstractly in terms of the capability of attackers to
complete attacks. However, to practically measure the capability of attackers, we
have to resort to more concrete and measurable concepts; they are correctness, re-
sponse time and efficiency. The capability of a subject in performing comprehension
or change tasks is evaluated using three metrics:

– Correctness of comprehension/change tasks. The correctness Corri = 1 if the
i-th comprehension or change task was correctly performed, 0 otherwise. Such
a correctness assessment was performed by one of the authors who inspected
the provided answers (comprehension tasks) and by running test cases (change
tasks).

– Time to correctly perform comprehension/change tasks. We collected such in-
formation by asking subjects to fill in—while performing the experiment tasks—
start and end time of each task. Such a variable is particularly important in this
experiment because, although obfuscation might not totally prevent an attack, at
least it could make it slower, thus discouraging the attackers or allowing system
administrators to enact countermeasures. Precisely, the variable Timei accounts
for the time (measured in minutes) needed to perform the task i. However, we
perform statistics only ∀i : Corri = 1.

– Efficiency in performing comprehension/change tasks. It measures the number
of correctly performed task per minute, and it is defined as:

∑2
i=1 Corri

∑2
i=1 Timei

(1)

As it can be noticed to the above formula, the efficiency sums over all (two)
comprehension or change tasks.

The main factor of the experiment—that acts as our independent variable—is
the presence of the treatment during the execution of the task. Different pairs of
alternative treatments are used in different experiments, and they are summarized in
Table 2, together with the hypotheses tests in each experiment. In Exp I and Exp II
the two alternative treatments are (i) decompiled source code,6 derived from code

6Subjects used decompiled code rather than source code because, in a realistic attack, they cannot
access the source code, but they can decompile the binary or the bytecode.

1048 Empir Software Eng (2014) 19:1040–1074

Table 2 Summary of the experiments

Experiment Hypotheses Treatment 1 Treatment 2 Experience University # of subjects

Exp I H1 H2 Clear IR Master Trento 10
Exp II H1 H2 Clear IR PhD Torino 22
Exp III H3 H4 Clear OP Master Sannio 16
Exp IV H5 H6 IR OP Master Trento 13
Exp V H5 H6 IR OP Bachelor London 13

IR = Identifier renaming, OP = Opaque predicates

obfuscated with identifier renaming, and (ii) decompiled clear code. In Exp III the
two treatment are (i) decompiled source code, derived from code obfuscated with
opaque predicates, and (ii) decompiled clear code. In Exp IV and Exp V the two
alternative treatments are decompiled source code, derived from code obfuscated (i)
with identifier renaming, and (ii) with opaque predicates.

Among the co-factors that can potentially affect the results, we identified and
measured the following ones:

– The subjects’ Experience, i.e., Bachelor, Master or PhD students. It is important
to note that, although in this paper we analyze the effect of such a co-factor, and
although we performed different experiments involving subjects with different
experience, we cannot control it. This is because we performed a convenience
sampling (based on subjects that volunteered to perform the experiment).
Therefore, randomization on this co-factor is not possible.

– The System to be attacked: as detailed in Section 3.2, to use a balanced design
we considered two systems: ChatClient and CarRace. Although their clients are
comparable in terms of size and complexity, subjects may perform differently on
different systems.

– The Lab, i.e., whether there is a learning effect across subsequent experiment
laboratories.

– Learning across subsequent tasks: in the same way as for the Lab, we analyze
whether there is a learning effect as subjects perform the four subsequent tasks.

While working on software projects, subjects undertake maintenance tasks that
require to understand and change code written by other developers. The more
experience subjects have in maintenance, the easier for them is to solve similar
tasks. Maintenance activities are similar to the tasks addressed during experimental
sessions. Therefore, experience is a co-factor that could influence the capability
of subjects to successfully complete comprehension and change tasks. As subjects
involved in the study hold a different level of experience, it makes sense to investigate
its impact on tasks. The measure is reliable, because authors of this work were the
professors in charge of the courses that hosted the experiments.

For each co-factor, we test (see Section 3.6) the effect on the efficiency in
performing the attack—as defined in equation (1)—and the interaction with the
main factor’s treatments. In other words, we want to assess if co-factors influence the
efficiency of subjects in performing an attack, and if they interact with the treatment
to influence efficiency.

Empir Software Eng (2014) 19:1040–1074 1049

3.4 Experiments Design

We adopt a counter-balanced experiment design (Juristo and Moreno 2001; Wohlin
et al. 2000) intended to fit two Lab sessions (2-hours each). Subjects are classified into
four groups, each one working in Lab 1 on a system with a treatment and working in
Lab 2 on the other system with a different treatment (see Table 3). However, subjects
work on their own, without any collaboration within the group. The design ensures
that each subject works on different Systems in the two Labs, receiving each time a
different treatment. Also, the design allows for considering different combinations
of System and Treatment in different order across Labs. More important, the chosen
design permits the use of statistical tests (e.g., the permutation test, a non-parametric
alternative to ANOVA) for studying the effect of multiple factors (Iversen and
Norpoth 1987).

3.5 Experimental Procedure

This section details the procedure we followed to perform the experiments, and
the material employed. Before each experiment, subjects were properly trained
with lectures on obfuscation techniques and with program comprehension exercises
on the (non-obfuscated) source code of an electronic record book. The purpose
of training is to make subjects confident about the kind of tasks they are going
to perform and the environment (e.g., IDE and documentation) they will have
available.

Right before the experiment, we provided subjects with a detailed explanation
of the tasks to be performed during the lab; no reference was made to the study
hypotheses.

For the experiment, subjects used a personal computer equipped with the
Eclipse™ development environment—which they are familiar with—including syn-
tax highlighting and debugger, and with the Java API documentation available. We
distributed the following material, available online for replication purposes7 to our
subjects:

– a short textual documentation of the system they had to attack;
– a jar archive containing the server of the application. The server was executed

locally by the subjects to avoid any network related problem. However, we did
not provide the source code and checked that subjects did not decompile it;

– the decompiled client source code, either clear or obfuscated depending on the
group the subject belonged to (see Tables 2 and 3); and

– slides explaining the experiment procedure.

The experiment was carried out according to the following procedure. Subjects
had to:

1. read the application description;
2. import the client source code in Eclipse;
3. run the application (CarRace or ChatClient) to familiarize with it;

7http://selab.fbk.eu/ceccato/replication_packages/id_renaming_vs_opaque_predicates_package.tgz

http://selab.fbk.eu/ceccato/replication_packages/id_renaming_vs_opaque_predicates_package.tgz

1050 Empir Software Eng (2014) 19:1040–1074

Table 3 Experiment design

Group A Group B Group C Group D

Lab 1 CarRace (TR1) CarRace (TR2) ChatClient (TR2) ChatClient (TR1)
Lab 2 ChatClient (TR2) ChatClient (TR1) CarRace (TR1) CarRace (TR2)

(TR1) = Treatment 1, (TR2) = Treatment 2

4. for each of the four tasks to be performed: (i) ask the teacher for a paper sheet
describing the task to be performed; (ii) mark the start time; (iii) read the task
and perform it; and (iv) mark the stop time and return the paper sheet;

5. after completing all tasks, create an archive containing the modified project and
send it to the teacher by email;

6. complete a post-experiment survey questionnaire.

During the experiment, teaching assistants and professors were in the laboratory
to prevent collaboration among subjects, and to check that subjects properly fol-
lowed the experimental procedure.

After the experiment, subjects were required to fill a post-experiment survey
questionnaire. It aimed at both gaining insights about the subjects’ behavior during
the experiment and finding justifications for the quantitative results. The question-
naire contains 18 questions (see Table 4 and experimental package or a longer
technical report (Ceccato et al. 2009b) for details)—most of them expressed in a
Likert scale (Oppenheim 1992) with 5 levels—related to:

– the clarity of tasks and objectives (Q1–Q4);
– the difficulties experienced when performing the different tasks (comprehension,

feature location,8 and change tasks) (Q5–Q7);
– the confidence in using the development environment and the debugger (Q8,

Q10);
– the usefulness of the Eclipse renaming and debugging features (Q11, Q12);
– debugger frequency of use (Q9), number of executions in debugging mode (Q14)

and execution mode (Q13);
– the percentage of total time spent looking at the source code and executing the

system (Q15, Q16);
– to what extent subjects considered the analysis of obfuscated code hard (Q17);
– whether subjects considered executing the system important to better under-

stand the behavior of obfuscated code (Q18).

3.6 Analysis Method

Different kinds of statistical tests have been used to analyze the results of this
experiment. All of them have been applied using the R statistical environment (R
Core Team 2012).

8The goal of feature location (Eisenbarth et al. 2003) is to identify the computational units (e.g.,
procedures, class methods) that specifically implement a feature (e.g., requirement) of interest.

Empir Software Eng (2014) 19:1040–1074 1051

Table 4 Post-experiment survey questionnaire

ID Question

Q1 I had enough time to perform the tasks. (1–5).
Q2 The system description was clear. (1–5).
Q3 The lab objectives were clear. (1–5).
Q4 The tasks were perfectly clear. (1–5).
Q5 I experienced no difficulty in program understanding. (1–5).
Q6 I experienced no difficulty in the identification of the segment of code

relevant for the tasks. (1–5).
Q7 I experienced no difficulty in changing the segment of code relevant for the

tasks. (1–5)
Q8 I experienced no difficulty in using the development environment (Eclipse). (1–5)
Q9 I used the Eclipse debugger (never, only a few times, sometimes, often, always)
Q10 I experienced no difficulty in using the Eclipse debugger. (1–5)
Q11 The debugging environment is useful to execute the tasks. (1–5)
Q12 I found the renaming facility useful. (1–5)
Q13 How many executions (i.e., run of the System not in debugging mode) have

you done on average before having completed the requirement? (1, ≥ 2
and < 4, ≥ 5 and < 7, ≥ 7 and < 10, ≥ 10)

Q14 How many executions (i.e., run of the System in debugging mode) have you
done on average before having completed the requirement? (1, ≥ 2 and
< 4, ≥ 5 and < 7, ≥ 7 and < 10, ≥ 10)

Q15 How much time (in terms of percentage) did you spend looking at the code?
(<20 %, ≥20 % and <40 %, ≥40 % and <60 %, ≥60 %
and <80 %, ≥80 %)

Q16 How much time (in terms of percentage) did you spend running the system?
(<20 %, ≥20 % and <40 %, ≥40 % and <60 %, ≥60 % and
<80 %, ≥80 %)

Extra questions for groups working on obfuscated source code:

Q17 Understanding the obfuscated code is hard. (1–5)
Q18 Running the system is useful to understand the obfuscated code. (1–5)

1 = strongly agree, 2 = agree, 3 = not certain, 4 = disagree, 5 = strongly disagree

To analyze whether the obfuscation reduces the correctness of comprehension and
change tasks, we used tests on categorical data (i.e., the tasks can be either correct or
wrong). In particular, we used the Fisher’s exact test (Devore 2007), more accurate
than the χ2 test for small sample sizes, which is another possible alternative to test the
presence of differences in categorical data. The same analysis was conducted in Ricca
et al. (2009).

To be as much as possible conservative (because of the sample size and mostly
non-normality of the data), a non-parametric test has been used to test the hy-
potheses related to differences in the subjects’ time and ef f iciency in performing
comprehension and change tasks. This choice is in agreement with the suggestions
by Motulsky (2010) in Chapter 37. The unpaired analysis—i.e., an analysis of all
data grouped by different treatments of the main factor—is performed using the
Mann-Whitney, (one- and two- tailed) test (Sheskin 2007). Such a test allows to
check whether differences exhibited by subjects with different treatments (clear and
obfuscated code) over the two labs are significant.

1052 Empir Software Eng (2014) 19:1040–1074

While this test allows for checking the presence of significant differences, it
does not provide any information about the magnitude of such a difference. This
is particularly relevant in our study, since we are interested in investigating to
what extent the use of obfuscation reduces the likelihood of completing an attack
and increases the time needed for an attack. To this aim, two kinds of effect size
measures have been used, the odds ratio and the non-parametric Cliff’s delta (d)
effect size (Grissom and Kim 2005).

The odds ratio is a measure of effect size that can be used for dichotomous
categorical data. An odds Sheskin (2007) indicates how likely it is that an event will
occur as opposed to it not occurring. Odds ratio is defined as the ratio of the odds of
an event occurring in one group (e.g., experimental group) to the odds of it occurring
in another group (e.g., control group), or to a sample-based estimate of that ratio. If
the probabilities of the event in each of the groups are indicated as p (experimental
group) and q (control group), then the odds ratio is defined as:

OR = p/(1 − p)

q/(1 − q)
(2)

An odds ratio of 1 indicates that the condition or event under study is equally
likely in both groups. An odds ratio greater than 1 indicates that the condition or
event is more likely in the first group. Finally, an odds ratio less than 1 indicates that
the condition or event is less likely in the first group.

For independent samples, Cliff’s delta provides an indication of the extent to
which two (ordered) data sets overlap, i.e., it is based on the same principles of the
Mann-Whitney test. For dependent samples, it is defined as the probability that a
randomly selected member M1 of one sample has a higher response than a randomly
selected member M2 of the second sample, minus the reverse probability. Formally:

d = Pr
(

Mi
1 > M j

2

)
− Pr

(
M j

2 > Mi
1

)

A sample estimate of this parameter can be obtained by enumerating the number of
occurrences of a sample one member having a higher response value than a sample
two member, and the number of occurrences of the reverse. This gives the sample
statistic:

d =
∣
∣
∣Mi

1 > M j
2

∣
∣
∣ −

∣
∣
∣M j

2 > Mi
1

∣
∣
∣

|M1| |M2|
Cliff’s Delta ranges in the interval [−1 . . . 1]. It is equal to +1 when all values of one
group are higher than the values of the other group and −1 when reverse is true.
Two overlapping distributions would have a Cliff’s Delta equal to zero. The effect
size is considered small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474 and large
for d ≥ 0.474 (Cohen 1988).

To provide a picture of what a worst case scenario (fastest attack) could look like
we compute, for each experiment and for each system used in the experiment, the
lowest times (expressed in minutes) achieved in correctly answering comprehension
questions (T1, T2) and performing change tasks (T3, T4). We compare the difference
between the obfuscated and clear cases to the pooled standard deviation (as for
the Cohen d). We deem relevant the differences that are ≥ σ . A case of relevance
difference is also when no correct answers are delivered with one treatment, while

Empir Software Eng (2014) 19:1040–1074 1053

correct answers are delivered with the other treatment. Although we cannot claim
statistical significance and therefore no specific hypothesis was formulated, we
believe this measure provides useful insights.

The analysis of co-factors, as well as the hypothetical effect of confounding factors
such as System and Lab, is performed using permutations test (Baker 1995), and
interactions are visualized using interaction plots. The permutation test is a non-
parametric alternative to the two-way Analysis of Variance (ANOVA); differently
from ANOVA, it does not require data to be normally distributed. The general idea
behind such a test is that the data distributions are built and compared by computing
all possible values of the test statistic while rearranging the labels (representing the
various factors being considered) of the data points. We used the implementation
available in the lmPerm R package. We have set the number of iterations of
the permutation test procedure to 500,000. Since the permutation tests samples
permutations of combination of factor levels, multiple runs of the test may produce
different results. We made sure to choose a high number of iterations such that
results did not vary over multiple executions of the procedure.

The permutation tests relate the dependent variable—i.e., efficiency in the com-
prehension and in the change task—with:

1. the main factor Treatments, i.e., the kind of obfuscation applied (or no
obfuscation);

2. the considered co-factors, i.e., subjects’ Experience, System considered in the
study, and Lab in which the task was performed;

3. the interaction between the main factor and the co-factors;
4. the interaction between co-factors themselves.

Note that we only considered two-way interactions. Three- or four-ways interac-
tions cannot be applied due to the limited number of data points, and also would not
be very meaningful to be interpreted.

To analyze the effect of the learning across subsequent tasks, we used a repeated
measures permutation test, which is, again, the non-parametric alternative to the
Repeated Measures ANOVA. Specifically, this test allows to distinguish the between
subjects variance, due to the application of different treatments to different subjects,
from the within subjects variance, due to (i) different treatments received by each
subject due to the experimental design, (ii) the ordering and possible different
difficulty of the questions being asked, and (iii) the interaction between these two
factors.

Regarding the analysis of survey questionnaires, we evaluate questions related
to objectives clarity, availability of enough time and general difficulties subjects
might have encountered (Q1–Q4, Q8, Q10) by verifying that the answers are either
Strongly agree (1) or Agree (2). Similarly to Ricca et al. (2010), we test medians,
using a one-tailed Mann-Whitney test for the null hypothesis Q̃x ≥ 3, where 3
corresponds to “Undecided”, and Q̃x is the median for question Qx. A similar
analysis is performed, only for subjects receiving obfuscated code, for questions
related to the use made of the debugger (Q9), the difficulty in comprehending
obfuscated code (Q17) and the usefulness of executing the system to understand it
when the code is obfuscated (Q18).

For the questions related to the ability of subjects to perform comprehension,
feature location, and change tasks (Q5, Q6, Q7), answers of subjects receiving

1054 Empir Software Eng (2014) 19:1040–1074

the first treatment T R1 (i.e., clear code) were compared with answers of subjects
receiving the second treatment T R2 (i.e., obfuscated code). In this case a two-
tailed Mann-Whitey test is used for the null hypothesis ˜QT R1 = ˜QT R2 . A similar
comparison is also performed for questions concerning the usefulness of debugging
(Q11) and automatic renaming (Q12), and for questions concerning the number of
executions (Q13), debugging runs (Q14) and time spent looking at the code (Q15)
and running the system (Q16).

In all the statistical tests performed, we considered a 95 % significance level, i.e.,
we accept a 5 % probability of committing a Type I error.

3.7 Threats to Validity

We identified the main threats to the validity that can affect our results (Wohlin et al.
2000): construct, internal, conclusion, and external validity threats.

Construct validity threats concern the relationship between theory and obser-
vation. They are mainly due to how we measure the capability of a subject to
perform an attack. The tasks were chosen to be as representative as possible of
realistic attacks. Also, the measurements we conceived—comprehension questions
with one possible answer and test cases to assess code correctness—are as objective
as possible. Clearly, the ability to understand the questions we asked might not fully
reflect the comprehension achieved by the subject for that particular task. Also, the
test cases we used cover only the scenario we asked to modify in the attack task.
Alternative scenarios are not tested, as well as code not directly involved in the
scenario that might have been impacted by the change.

Internal validity threats concern additional factors that may affect an independent
variable. They can be due to learning and fatigue effects. Since the common design
envisages a sequence of two labs in which, although with different treatments,
the same type of task is required, it is possible to observe a learning effect; as a
consequence a subject’s performance could improve from the first to the second lab.
The chosen design should mitigate the possible confounding effect of learning on the
main factor effect. To limit the fatigue effect, we introduced a break between the two
tasks. Moreover, subjects were not aware of the study hypotheses, and were told they
would not be evaluated on the performance observed during the experiment.

Conclusion validity concerns the relationship between the treatment and the
outcome. To analyze correctness, we opted for the Fisher’s exact test, more accurate
than the χ2 test for small sample sizes. On the contrary, for analyzing time and
efficiency we selected a non-parametric test (i.e., Mann-Whitney), because it is very
robust and sensitive (Motulsky 2010) (see chapter 37). Similarly, the analysis of
co-factor has been performed using permutation test, which is a non-parametric
alternative to ANOVA and does not require data to be normally distributed as
ANOVA does. Survey questionnaires, mainly intended to get qualitative insights,
were designed using standard structure and scales (Oppenheim 1992).

External validity concerns the generalization of the findings. First, only two
types of obfuscation—identifier renaming and opaque predicates—were considered.
While for identifier renaming the strength of the obfuscation does not change
across different implementations, strength of opaque predicates may vary, depending
on the complexity of predicates and on of what code is generated in the dead
branches. Then, although we considered two different distributed systems belonging

Empir Software Eng (2014) 19:1040–1074 1055

to different domains and having a different complexity, further studies with different
systems are desirable. Last, but not least, the studies were performed in academic
environments. Although for this type of experiment (hacker attack) it is not inter-
esting to experiment with industrial developers, we are aware that the expertise of
students could be far from that of hackers. However, hackers are not easily available
and the only pragmatic possibility is resorting to students. Moreover, this threat was
at least mitigated (i) by considering students with different level of experience, (ii)
by analyzing the worst case scenario, and (iii) by performing a co-factor analysis
by experience. All in all, many hackers are not that different from best students
(high Experience subjects/worst case scenarios in our experiments). Clearly, further
studies with larger groups of objects, more demanding tasks, and more experienced
participants are needed to confirm or contradict the results from this study.

4 Results

This section reports the results of the five experiments, with the aim of testing the
hypotheses formulated in Section 3.3. Working data sets are available for replication
purposes.9

4.1 Analysis of Correctness

Table 5 reports the analysis of correctness of the tasks performed by our subjects,
each experiment in a different line. The table reports the hypothesis tested and the
treatments considered in each experiment. Then, for each treatment, the number
of correct and wrong tasks (both comprehension and change tasks), the p-value
resulting from the Fisher’s test and the effect size, computed as the odds ratio (an
odds ratio < 1 indicates that the chances of success are higher with the first treatment
than with the second one). Significant p-values <0.05 are shown in bold face.

No statistical significance can be observed for comprehension tasks, suggesting
that obfuscation does not impact the likelihood of comprehension tasks to be
performed correctly. However, for change tasks, statistical significance (p-value
shown in bold face) can be observed for Exp I and Exp II with an OR < 1 (0.14 in Exp
I and 0.23 Exp II), indicating that the chances of obtaining correct comprehension are
about 7 and 4 times higher with clear code than with obfuscated code respectively. No
statistical significance can be observed for Exp III, suggesting that opaque predicates
obfuscation offers a limited level of protection and that it is not effective in making
change tasks harder. At a first glance, data seems to be not consistent, since the
direct comparison between the two obfuscation techniques (Exp IV and Exp V)
does not reach statistical significance, suggesting that the level of protection achieved
by them is similar, while identifier renaming has a statistically significant effect for
change tasks, when compared to clear code, while opaque predicates does not have
any statistically significant effect. However, it should be noticed that transitivity does
not hold for statistical significance. Subsequent analysis on time and ef f iciency will
provide more insight in this point.

9http://selab.fbk.eu/ceccato/replication_packages/id_renaming_vs_opaque_predicates_package.tgz

http://selab.fbk.eu/ceccato/replication_packages/id_renaming_vs_opaque_predicates_package.tgz

1056 Empir Software Eng (2014) 19:1040–1074

Table 5 Number of correct tasks and results of Fisher’s test

Exp Hyp. Treat. Treat. Clear code Identifier renaming Opaque predicates Analysis

1 2 Correct Wrong Correct Wrong Correct Wrong p-value OR

(a) Comprehension

I H1 Clear IR 11 7 8 12 – – 0.16 0.43
II H1 Clear IR 23 15 27 17 – – 0.62 1.04
III H3 Clear OP 20 12 – – 19 9 0.76 1.26
IV H5 IR OP – – 8 14 13 12 0.38 1.87
V H5 IR OP – – 12 12 12 12 1.00 1.00

(b) Change

I H2 Clear IR 15 3 8 12 – – 0.01 0.14
II H2 Clear IR 33 5 24 16 – – 0.01 0.23
III H4 Clear Op 21 11 – – 22 6 0.92 1.90
IV H6 IR OP – – 6 2 9 3 1.00 1.00
V H6 IR OP – – 0 17 2 19 0.49 Inf

Significant p-values are shown in bold face

Overall, hypothesis H02 on identifier renaming can be rejected using the Fisher’s
test on Exp I and Exp II. Therefore, we can formulate the following alternative
hypothesis:

– HA2: Identifier renaming obfuscation decreases the capability of an attacker to
perform correct change tasks.

4.2 Analysis of Time

Figure 2 shows boxplots of the time required to deliver correct answers (wrong
answers are discarded for this analysis) on all the five experiments, divided in (a)
comprehension tasks and (b) change tasks. From the graphs we can observe that
obfuscated code (either with identifier renaming and opaque predicates) appears
to require more time for a correct comprehension and for elaborating a correct
attack (Exp I, II and III). Strangely enough, the trend observed for the direct
comparison of the two obfuscation (Exp IV and V) has alternating directions. In fact,
comprehension tasks require more time with identifier renaming, while change tasks
require more time with opaque predicates. As it can be noticed, there is no boxplot
for identifier renaming in Exp V, as in such a case nobody was able to correctly
complete any change task when this obfuscation was deployed.

Table 6 reports descriptive statistics and the unpaired analysis of the time required
to deliver correct answers. For each experiment, the table reports the tested hy-
pothesis, the two alternative treatments, the number of subjects that participated,
mean, median and standard deviation of the time needed to deliver correct answers
and elaborate correct change tasks. P-values of the Mann-Whitney unpaired test
and the Cliff’s d effect size are reported for the experimental data (negative effect
sizes indicate that values observed with the second treatment are higher than those
observed with the first treatment). No analysis is reported for change tasks on Exp V,
because only two subjects performed a correct change task, and both of them under
the same treatment.

Empir Software Eng (2014) 19:1040–1074 1057

Fig. 2 Boxplots of time to
attack. “Clear” (white) = clear
code; “Ir” (red) = code
obfuscated with identifier
renaming; “Op” (green) =
code obfuscated with opaque
predicates

Clear Ir Clear Ir Clear Op Ir Op Ir Op
0

10
20

30
40

50
60

T
im

e
[m

in
.]

Exp I Exp II Exp III Exp IV Exp V

Clear Ir Clear Ir Clear Op Ir Op Ir Op

0
10

20
30

40

T
im

e
[m

in
.]

Exp I Exp II Exp III Exp IV Exp V

(a) Comprehension

(b) Change

The amount of time required to correctly answer comprehension tasks is sig-
nificantly longer when working with identifier renaming than when working with
clear code (Exp I and II) and with opaque predicates (Exp V) with a large effect

Table 6 Unpaired analysis of time to attack

Exp Hyp. Treat. 1 Treat. 2 Analysis

Name N Mean Median σ Name N Mean Median σ p-value Cliff’s d

(a) Comprehension

I H1 Clear 11 7.4 7.0 5.3 Ir 8 19.0 17.0 8.8 <0.01 −0.78
II H1 Clear 23 4.8 3.0 4.8 Ir 27 12.5 10.0 10.5 <0.01 −0.65
III H3 Clear 20 4.2 3.0 3.5 Op 19 5.2 3.0 4.3 0.18 −0.17
IV H5 Ir 8 19.3 17.0 12.5 Op 13 17.8 11.0 17.1 0.43 0.22
V H5 Ir 12 32.9 32.5 14.1 Op 12 17.9 17.5 15.3 0.01

(b) Change

I H2 Clear 14 11.4 10.0 11.0 Ir 8 14.8 11.5 10.8 0.18 −0.25
II H2 Clear 33 4.5 4.0 3.4 Ir 24 9.9 10.0 6.4 <0.01 −0.52
III H4 Clear 21 5.6 4.0 4.0 Op 22 8.6 7.0 6.0 0.02 −0.35
IV H6 Ir 6 11.5 7.5 11.1 Op 9 11.3 11.0 7.8 0.68 −0.15

1058 Empir Software Eng (2014) 19:1040–1074

size (d≥0.47). Statistical significance is not reached on Exp III when comparing
opaque predicates with clear code. This suggests that code obfuscated with identifier
renaming requires a longer amount of time to be understood, but this effect is not
observed when the code is obfuscated with opaque predicates.

When facing change tasks, the time required to attack an obfuscated program is
significantly longer than when changing clear code, when identifier renaming is used
(Exp II) the effect size is large (d≥0.47), when opaque predicates is used (Exp III)
the effect size is medium (d=0.35). No statistical significance can be observed in the
direct comparison (Exp IV and Exp V).

For Exp I, we can reject hypothesis H01 on identifier renaming, while we cannot
reject H02. Instead, for Exp II, we can reject both H01 and H02. Exp III allows us
to reject H04 on opaque predicates In Exp IV we did not observe any significant
difference between identifier renaming and opaque predicates. Instead, in Exp V
we could reject H05, concerning the comparison between identifier renaming and
opaque predicates obfuscations on comprehension tasks.

Therefore, we can accept the following alternative hypotheses (in parentheses we
report the experiments for which such conclusions are valid):

– HA1: identifier renaming obfuscation significantly decreases the time required to
perform a correct comprehension task (Exp I and Exp II).

– HA2: identifier renaming obfuscation significantly decreases the time required to
perform a correct change task (Exp II only).

– HA4: opaque predicates obfuscation significantly decreases the time required to
perform a correct change task (Exp III).

– H05: identifier renaming is significantly more ef fective than opaque predicates
in increasing the time required to perform a correct comprehension task (Exp V
only).

4.3 Analysis of Efficiency

Figure 3 shows boxplots of the number of correct answers per minute (efficiency) for
all the five experiments, divided by comprehension and change tasks (respectively
(a) and (b) in Fig. 3). As also the figure highlights, both comprehension and change
tasks appear to be performed more efficiently on clear code than on code obfuscated
with identifier renaming (Exp I and Exp II). Reduced efficiency of obfuscation is
not so evident when we compare clear code with code obfuscated with opaque
predicates (Exp III). The direct comparison of the two obfuscations (Exp IV and Exp
V) partially confirms this result. In fact, comprehension tasks are conducted more
efficiently on code obfuscated with opaque predicates, while change tasks report very
similar efficiency. In particular, in Exp V (bachelor students) only very few subjects
could correctly deliver change tasks with either obfuscation techniques.

Table 7 reports the descriptive statistics and the unpaired analysis of attack
efficiency, each experiment in a different line. The table reports the hypotheses
tested in each experiment, the two treatments adopted, the number of subjects who
participated to it, mean, median and standard deviation of efficiency. Then p-values
computed by the Mann-Whitney unpaired test and the Cliff d effect size are reported.

Both on comprehension and on change tasks, subjects working on clear code
outperformed subjects working on code obfuscated with identifier renaming (Exp

Empir Software Eng (2014) 19:1040–1074 1059

Fig. 3 Boxplots of attack
efficiency. “Clear”
(white) = clear code;
“Ir” (red) = code obfuscated
with identifier renaming;
“Op” (green) = code
obfuscated with opaque
predicates

Clear Ir Clear Ir Clear Op Ir Op Ir Op
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

of

 c
or

re
ct

 a
ns

w
er

s/
T

im
e

[m
in

.]

Exp I Exp II Exp III Exp IV Exp V

Clear Ir Clear Ir Clear Op Ir Op Ir Op

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

of

 c
or

re
ct

 a
ns

w
er

s/
T

im
e

[m
in

.]

Exp I Exp II Exp III Exp IV Exp V

(a) Comprehension

(b) Change

I and Exp II) in a statistically significant way, with a large effect size (d≥ 0.47). This
suggests that the first obfuscation makes the code substantially harder to understand
and change.

Table 7 Unpaired analysis of efficiency of attacks

Exp Hyp. Treat. 1 Treat. 2 Analysis

Name N Mean Median σ Name N Mean Median σ p-value Cliff’s d

(a) Comprehension
I H1 Clear 9 0.08 0.08 0.05 Ir 10 0.02 0.01 0.02 <0.01 0.77
II H1 Clear 19 0.15 0.14 0.10 Ir 22 0.06 0.05 0.06 <0.01 0.50
III H3 Clear 16 0.19 0.18 0.14 Op 14 0.16 0.14 0.12 0.33 0.10
IV H5 Ir 12 0.02 0.00 0.03 Op 13 0.05 0.03 0.04 0.11 −0.37
V H5 Ir 12 0.02 0.02 0.01 Op 12 0.03 0.03 0.02 0.16 −0.35

(b) Change

I H2 Clear 9 0.11 0.08 0.12 Ir 10 0.03 0.01 0.04 0.05 0.77
II H2 Clear 19 0.24 0.22 0.17 Ir 22 0.07 0.06 0.07 <0.01 0.50
III H4 Clear 16 0.18 0.13 0.18 Op 14 0.13 0.10 0.10 0.31 0.10
IV H6 Ir 12 0.08 0.08 0.06 Op 13 0.07 0.07 0.06 1.00 −0.37
V H6 Ir 12 0.00 0.00 0.00 Op 12 0.00 0.00 0.01 0.19 −0.35

1060 Empir Software Eng (2014) 19:1040–1074

Then, when considering opaque predicates, subjects working with obfuscated
code exhibited a performance similar to subjects working on clear code (Exp III),
suggesting that this second obfuscation offers a very limited protection against
attacks. However, when comparing directly the two obfuscations (Exp IV and Exp
V), the difference in subjects’ performance is not statistically significant.

Overall, hypotheses H01 and H02 on identifier renaming can be rejected using
data from Exp I and Exp II. Hypotheses H03 and H04 on opaque predicates cannot
be rejected on Exp III. Therefore, we can formulate the following alternative
hypotheses:

– HA1: identifier renaming obfuscation significantly decreases the ef f iciency of an
attacker performing comprehension tasks.

– HA2: identifier renaming obfuscation significantly decreases the ef f iciency of an
attacker performing change tasks.

4.4 Analysis of Worst Case Scenario

Depending on their security requirements, applications protected by obfuscation
may suffer the problem known as break once run everywhere. According to this
concern, the first attacker able to break the obfuscation may share the solution
or distribute a “crack”, i.e., a small program encoding the attacker’s knowledge to
automatically bypass the protection. Thus, once the obfuscation is broken by the
fastest attacker, all instances of the application should be considered insecure.

To measure the protection offered against the break once run everywhere pattern,
we compare the amount of time taken by the fastest subject to complete compre-
hension and change tasks. For each experiment, we identify the shortest time (best
attack) taken by subjects to complete successful tasks, when working on decompiled
clear code and on code protected with different obfuscations. Such best time cases
correspond to the worst cases from the obfuscator point of view.

Table 8 reports the shortest time (expressed in minutes) taken to successfully
complete tasks when different protections are deployed (different obfuscations or
clear code) when working on different object applications. The table also reports
the pooled standard deviation of the time for successful attacks. The relevant
cases (pooled standard deviations smaller than the difference of lowest times) are
highlighted in boldface. Relevant cases are also those where subjects could deliver
no correct answer when working with one treatment, but could when working with
the other treatment.

We observe three relevant differences when comparing identifier renaming with
clear code, two in Exp I and one in Exp II. For the ChatClient system on Exp I
the fastest attack on code obfuscated with identifier renaming in T1 takes 25 times
longer than on clear code, while no one could complete correctly T2 on obfuscated
code, compared to the 20 min required on clear code. For the CarRace system, on
Exp I the fastest attack on obfuscated code in T1 takes more than 7 times longer than
on clear code, while on Exp II the fastest attack for T3 on obfuscated code takes 10
times longer than on clear code.

Considering the comparison between code obfuscated with opaque predicates
and clear code, in Exp III, only one relevant case can be observed. No one could
accomplish task T4 on the clear code of the system ChatClient.

Empir Software Eng (2014) 19:1040–1074 1061

Table 8 Lowest times for successful attacks

Exp Treatment ChatClient CarRace

T1 T2 T3 T4 T1 T2 T3 T4

I Clear 1 20 3 15 2 7 3 1
Ir 25 18 9 15 7 12 3
σpooled 4.2 29.0 6.3 6.6 3.7 12.0 4.3

II Clear 1 3 2 3 2 2 1 1
Ir 5 2 4 1 4 2 10 0
σpooled 10.9 7.9 5.2 3.6 3 5.6 4.7 3.6

III Clear 1 5 2 2 1 2 1
Op 2 5 2 5 2 3 3 3
σpooled 3.0 4.8 6.2 1.3 5.1 4.5 5.6

IV Ir 8 22 11 3 16 10 15 4
Op 5 11 5 4 4 9 4
σpooled 18.9 9.1 13.5 8.8 2.6

V Ir 30 23 26 13
Op 10 18 21 3 26
σpooled 5.5 9.3 19.2 7.1

Considering the direct comparison of the two obfuscations (Exp IV and V),
there are five relevant differences. On the system ChatClient, no subject performed
correctly task T2 when working with opaque predicates in Exp IV and, in Exp V,
the amount of time required to correctly perform task T1 with identifier renaming
was 3 times longer than the same task on opaque predicates. On CarRace, the fastest
subject who worked with identifier renaming on Task T1 in Exp IV took 4 times
longer than the fastest subject who had opaque predicates. A similar ratio applies to
Exp V, task T2. On Exp V, the only case for which we observe a change task (T3 and
T4) correctly performed is for a subject who worked on code obfuscated with opaque
predicates (T4 on CarRace).

4.5 Analysis of Co-factors

This section reports the analysis of co-factors that could have influenced the results
of our experiments, with respect to the efficiency of completing comprehension and
change tasks.

Results of the permutation test for the comprehension tasks are reported in
Table 9. Specifically, results indicate that:

– The subjects’ Experience has a marginal effect on the code comprehension.
However, there is no significant interaction with the Treatment, i.e., more
experienced subjects performed better than less experienced ones, regardless of
the level of obfuscation;

– The characteristics of the objects (System) does not have any significant effect,
nor any interaction with the Treatment or with the other co-factors;

– The Lab has a significant effect, as well as a marginal interaction with the
Treatment. Looking at the results more in detail (see also Fig. 4), we can infer
that the improved efficiency due to learning is more relevant on clear code than

1062 Empir Software Eng (2014) 19:1040–1074

Table 9 Comprehension task: analysis of the influence of co-factors, of their interaction with the
main factor and between themselves

Df R sum Sq R mean Sq Iter Pr(Prob)

Treatment 2 0.19 0.09 500,000 <0.01
Experience 2 0.04 0.02 500,000 0.05
Treatment: experience 2 0.02 0.01 500,000 0.20
System 1 0.02 0.02 500,000 0.10
Treatment: system 2 0.00 0.00 308,611 0.95
Experience: system 2 0.01 0.00 500,000 0.53
Lab 1 0.03 0.03 500,000 0.03
Treatment: lab 2 0.04 0.02 500,000 0.05
Experience: lab 2 0.00 0.00 132,413 0.98
System: lab 1 0.01 0.01 500,000 0.33
Residuals 121 0.80 0.01

on obfuscated code. In other words, previous experience in performing attack
tasks is valuable when facing clear code, but it is almost irrelevant when working
on obfuscated code.

Table 10 reports permutation test results for change tasks. Results indicate that:

– The subjects’ Experience has a significant effect, although it does not interact
with the main factor and with other factors;

– There is a significant effect of the System on which the task was performed (i.e.,
CarRace or ChatClient) on the efficiency of the change task. This result can be
interpreted by looking at the interaction plot of Fig. 5: although the CarRace
system is always easier to attack than the ChatClient system, the difference is
reduced when obfuscating the code (both with identifier renaming and opaque
predicates).

– The Lab in which the task was performed does not have any significant effect,
nor it interacts with the main factor or with other factors.

Finally, we analyzed the learning effect across questions with the repeated
measures Permutation Test for comprehension and change tasks respectively (see

Fig. 4 Interaction plot
of Treatment & Lab
(comprehension tasks)

0.
05

0.
10

0.
15

Treatment

m
ea

n
of

 C
or

re
ct

/T
im

e
[m

in
.]

clear ir op

 Lab

2
1

Empir Software Eng (2014) 19:1040–1074 1063

Table 10 Change task: analysis of the influence of co-factors, of their interaction with the main factor
and between themselves

Df R sum Sq R mean Sq Iter Pr(Prob)

Treatment 2 0.06 0.03 500,000 0.05
Experience 2 0.21 0.10 500,000 <0.01
Treatment: experience 2 0.05 0.02 500,000 0.10
System 1 0.14 0.14 500,000 <0.01
Treatment: system 2 0.17 0.08 500,000 <0.01
Experience: system 2 0.01 0.00 500,000 0.62
Lab 1 0.02 0.02 500,000 0.14
Treatment: lab 2 0.02 0.01 500,000 0.27
Experience: lab 2 0.01 0.01 500,000 0.51
System: lab 1 0.01 0.01 500,000 0.24
Residuals 95 0.89 0.01

Tables 11 and 12). The test does not report any within subject significant effect of the
Question, nor any interaction between Question and Treatment. This suggests that
the difficulty of the different questions, as well as their ordering, does not influence
the experimental results.

4.6 Analysis of Post-experiment Survey Questionnaire

The post-experiment survey questionnaire (see Table 4) is aimed at both gaining
insights about the subjects’ behavior during the experiment and finding justifications
for the quantitative results.

Questions Q1, Q2, Q3 and Q4 are intended to perform a validation of the clarity
of the experimental tasks and objectives, while Q8 and Q10 aim at check possible
problems occurred with the experimental settings. Questions Q17 and Q18 are
intended to identify possible problems encountered when working on obfuscated
code.

No general problem emerged from the analysis of survey questionnaire questions
(Q1, Q2, Q3, Q4, Q8, Q10) when considering answers from all the experiments
together (first line of Table 13). Only a few specific problems emerged on some

Fig. 5 Interaction plots
of Treatment & System
(change tasks)

0.
05

0.
10

0.
15

0.
20

0.
25

Treatment

m
ea

n
of

 C
or

re
ct

/T
im

e
[m

in
.]

clear ir op

 Application

car
chat

1064 Empir Software Eng (2014) 19:1040–1074

Table 11 Repeated measures Permutation Test of Efficiency by Treatment & Question (compre-
hension tasks)

Df R sum Sq R mean Sq Iter Pr(Prob)

(a) ChatClient
Between subjects

Treatment 2 0.30 0.15 500, 000 <0.001
Residuals 66 0.60 0.01

Within subjects
Question 1 0.00 0.00 51 1.00
Treatment: question 2 0.00 0.00 51 1.00
Residuals 66 0.00 0.00

(b) CarRace
Between subjects

Treatment 2 0.30 0.15 500, 000 <0.001
Residuals 67 1.33 0.02

Within subjects
Question 1 0.00 0.00 51 1.00
Treatment: question 2 0.00 0.00 51 1.00
Residuals 67 0.00 0.00

experiments, related to the overall subjects’ ability to perform the tasks in the allotted
time and related to the clarity of the lab objectives. Subjects of Exp I experienced
problems regarding the time needed to perform the task (Q1), and to use the
debugger (Q10). Debugger was a problem also in Exp IV and Exp V. No particular
problem occurred in Exp II (more experienced subjects) and Exp III.

Subjects from all the experiments agreed (p-value <0.01) that the obfuscated
code was more difficult to understand (Q17), and that system execution is necessary

Table 12 Repeated measures Permutation Test of Efficiency by Treatment & Question (change
tasks)

Df R sum Sq R mean Sq Iter Pr(Prob)

(a) ChatClient
Between subjects

Treatment 2 0.09 0.05 500,000 0.02
Residuals 51 0.62 0.01

Within subjects
Question 1 0.00 0.00 51 1.00
Treatment: question 2 0.00 0.00 51 1.00
Residuals 51 0.00 0.00

(b) CarRace
Between subjects

Treatment 2 1.31 0.65 500,000 <0.001
Residuals 56 1.82 0.03

Within subjects
Question 1 0.00 0.00 51 1.00
Treatment: question 2 0.00 0.00 51 1.00
Residuals 56 0.00 0.00

Empir Software Eng (2014) 19:1040–1074 1065

T
ab

le
13

Su
rv

ey
qu

es
ti

on
na

ir
e

an
al

ys
is

:o
bj

ec
ti

ve
s

cl
ar

it
y

an
d

pr
ob

le
m

s
en

co
un

te
re

d
w

it
h

ti
m

e/
se

tt
in

gs
an

d
O

bf
us

ca
ti

on
-s

pe
ci

fi
c

qu
es

ti
on

s
(M

an
n-

W
hi

tn
ey

fo
r

m
ed

ia
n(

Q
x
)≥

3)

E
xp

Q
1

Q
2

Q
3

Q
4

Q
8

Q
10

Q
17

Q
18

Q̃
1

p-
va

lu
e

Q̃
2

p-
va

lu
e

Q̃
3

p-
va

lu
e

Q̃
4

p-
va

lu
e

Q̃
8

p-
va

lu
e

Q̃
10

p-
va

lu
e

Q̃
17

p-
va

lu
e

Q̃
18

p-
va

lu
e

A
ll

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

I
2

0.
08

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

3
0.

47
2

<
0.

01
2

0.
01

II
1

<
0.

01
2

<
0.

01
2

<
0.

01
2

<
0.

01
2

<
0.

01
2

<
0.

01
2

<
0.

01
1

<
0.

01
II

I
1

<
0.

01
2

<
0.

01
1

<
0.

01
1

<
0.

01
1

<
0.

01
2

<
0.

01
2

0.
02

2
0.

01
IV

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

2
<

0.
01

3
0.

30
2

<
0.

01
2

<
0.

01
V

2
0.

03
2

0.
02

2
<

0.
01

2
<

0.
01

2
0.

01
3

0.
31

1
<

0.
01

2
<

0.
01

M
ed

ia
ns

Q̃
x

on
th

e
le

ft
ha

nd
si

de
of

th
e

co
lu

m
n

an
d

p-
va

lu
es

on
th

e
ri

gh
th

an
d

si
de

1066 Empir Software Eng (2014) 19:1040–1074

Table 14 Effect of treatment on comprehension and maintenance (Mann-Whitney for
median(Qt1)=median(Qt2))

Exp Treatments Q5 Q6 Q7 Q9 Q11 Q12 Q13 Q14 Q15 Q16

I Clear Ir 0.52 0.04 0.20 0.38 0.73 0.28 0.04 0.28 1.00 0.50
II Clear Ir <0.01 <0.01 <0.01 0.25 0.34 0.04 0.95 0.01 0.22 0.24
III Clear Op 0.66 1.00 0.57 0.19 0.76 0.22 0.76 0.44 0.28 0.93
IV Ir Op 1.00 0.23 1.00 0.69 0.16 0.91 0.43 0.66 0.93 0.31
V Ir Op 0.29 0.05 0.18 0.80 0.89 0.46 0.51 0.70 0.97 0.20

for understanding the behavior of the code (Q18), as a complement to static code
analysis.

After the assessment of the experimental settings, we compared the answers
provided by subjects, when using clear and obfuscated code, or code obfuscated with
two different obfuscation techniques (see Table 14), on the difficulties encountered
in code comprehension (Q5), location of the feature to be understood/changed (Q6),
and in performing the change task (Q7). In Exp I, subjects felt that identifier renam-
ing makes feature location more difficult (p-value=0.04), while there is no difference
for code comprehension (p-value=0.52) and change (p-value=0.20) tasks. In Exp
II, subjects felt that identifier renaming makes all three activities—comprehension,
feature location and change—more difficult (p-value < 0.01 in all cases). In Exp III,
opaque predicates did not cause major problems to comprehension, feature location
and change when compared to the clear code (p-value > 0.05 in all cases). In the
direct comparison of the two obfuscations, identifier renaming is reported as more
problematic than opaque predicates with respect to identification of the features to
change only in Exp V, but not in Exp IV. This partially confirms the quantitative
analysis.

We also investigated the perceived usefulness of the tools available to the subjects,
i.e., the use (Q9) and usefulness of the debugger (Q11) and the renaming facility
provided by Eclipse (Q12). In general, subjects did not report a different usage
of these facilities when facing different treatments. The only reported difference
is in Exp II (more expert subjects), where the renaming facilities were used more
extensively when working with code obfuscated with identifier renaming.

When performing comprehension and change tasks, we investigated whether
there was a variation—between subjects with different treatments—in the number
of system executions (Q13) and executions in debugging mode (Q14) reported
by subjects, the percentage of time spent looking at the code (Q15), and running
the system (Q16). A significant difference was found in Exp I, where subjects felt
they needed to execute the system more times (Q13, p-value=0.04) when it was
obfuscated with identifier renaming (4 to 10 executions) than when it was in clear
(2 to 4 executions). While in Exp II more executions were performed in debugging
mode (Q14, p-value=0.01) when working on obfuscated code (2 to 4 executions)
with respect to clear code (just 1 execution), although subjects said they used the
debugger for obfuscated code as often as for clear code (Q9, p-value=0.38 in Exp I
and 0.25 in Exp II). Results suggest that in Exp I subjects used system executions as
a way to better understand obfuscated systems, but they did not use the debugger,
differently from the subjects of Exp II, since they felt debugging difficult to perform
(as reported in the answers to question Q10).

Empir Software Eng (2014) 19:1040–1074 1067

Therefore, on the results of the post-experiment survey questionnaire, partici-
pants reported that:

– Obfuscated code was difficult to understand;
– They had to execute the code for understanding the behavior of obfuscated code,

especially when identifier renaming was used;
– For some of them, attacking code obfuscated with identifier renaming was

difficult, mainly because this obfuscation made features more difficult to locate.
However, after having located features, only few participants had problems in
understanding and in changing them;

– In code obfuscated with opaque predicates, features were not particularly hard
to locate, understand and change;

– Code obfuscated with identifier renaming was more difficult to attack that code
obfuscated with opaque predicates, because in the first case features were more
difficult to identify;

– The debugger was not useful to attack obfuscated code, mainly because the
debugger was difficult to use on obfuscated code;

– Renaming facilities were useful just in few cases, and just to attack code obfus-
cated with identifier renaming.

5 Discussion

The quantitative results reported in Section 4 allow us first to draw conclusions for
each individual technique—identifier renaming and opaque predicates—and then to
outline some general observations.

5.1 Identifier Renaming

– Identif ier Renaming obfuscation represents an ef fective protection technique:
when the source code is obfuscated with Identifier Renaming, the capability of
an attacker to understand the code decreases in terms of time and efficiency. The
capability to change the code decreases in terms of accuracy, time and efficiency
(See the analysis of correctness, time and efficiency). By comparing the average
time spent to correctly change clear and obfuscated code we observe that, on
average, an attack on the code obfuscated with Identifier Renaming takes 2
times longer than on the clear code (see the analysis of time). In the worst
case, it takes 10–25 times more than the clear code (see the analysis of worst
case).

– Renaming facilities can weaken Identif ier Renaming: once the intended purpose
of an identifier is recovered, the attacker can change the till-that-point mean-
ingless identifier into a meaningful one, using renaming facilities (e.g., those
provided by a development environment). However, to properly use renaming
facilities, some level of experience is required. We observed that inexperienced
attackers prefer not to change the code, and work on the obfuscated code directly
(see post-questionnaire analysis, Q12).

1068 Empir Software Eng (2014) 19:1040–1074

5.2 Opaque Predicates

– Opaque Predicates obfuscation of fers a limited protection: when the code is
obfuscated with Opaque Predicates, the capability of an attacker to change the
source code is reduced in terms of the required time to perform the attack; no
significant change is observed in terms of correctness and efficiency of the attack.
Code obfuscated with Opaque Predicates requires 20–50 % more time to be
attacked than clear code (see analysis of time and worst case).

– Opaque Predicates obfuscation does not make features dif f icult to locate: Opaque
predicate obfuscation obstructs code comprehension by complicating the control
flow. However, perfect comprehension of the control flow is not required to
elaborate an attack; a limited knowledge of an important portion of code is
sufficient. Indeed, subjects reported that when the code is obfuscated with
Opaque predicates, features are not difficult to locate and change (see post
questionnaire analysis, Q5–7 Exp III).

– Executing the program thwarts Opaque Predicates obfuscation: Opaque Predi-
cates may be statically undecidable, but at run time their values can be directly
observed and the obfuscation can be easily broken. By leveraging this feature,
an attacker can understand which segments of the obfuscated code are actually
executed and can remove those that are never executed. Obfuscated program
execution turned out to be useful for identifier renaming too, because it helped
to understand the application behavior anyway (see post questionnaire analysis,
Q18).

5.3 General Findings

– Identif ier Renaming is preferable to Opaque Predicates: when it is possible
to chose what kind of obfuscation to deploy, Identifier Renaming should be
used instead of Opaque Predicates. In fact, by comparing the average time
taken to correctly answer a comprehension task on clear and obfuscated code,
comprehension tasks on code obfuscated with Identifier Renaming require, on
average, twice more time than with Opaque predicates (see the analysis of time).

– Learning is limited on obfuscated code: Some learning effect was observed.
After acquiring some experience in attack tasks, efficiency on tasks improves.
However, while improvements are remarkable when attacking clear code, they
are very limited on obfuscated code. Obfuscation poses a limit on the amount
of knowledge that can be reused between consecutive attack tasks (see co-factor
analysis, Lab and Question).

6 Related Work

In the past, the evaluation of the increased complexity introduced by obfuscation has
been mainly addressed through code metrics. Collberg et al. (1997) proposed the use
of complexity measures (e.g., potency) in obfuscator tools to help developers choose
among different obfuscation transformations. More recently, Udupa et al. (2005)
used the amount of time required to perform automatic de-obfuscation to evaluate
the usefulness of control-f low f lattening obfuscation, relying on a combination of

Empir Software Eng (2014) 19:1040–1074 1069

static and dynamic analysis. Goto et al. (2000) proposed the depth of parse tree to
measures source code complexity. Anckaert et al. (2007) attempted to quantify and
compare the level of protection of different obfuscation techniques. In particular,
they proposed a series of metrics based on code, control f low, data and data f low:
they computed such metrics on some case study applications (both on clear and
obfuscated code), however without performing any validation on the proposed
metrics. Rather than proposing new metrics, we aim at experimentally assessing
obfuscation techniques, by measuring the success of an attack and the efficiency of
an attacker in performing it, on both clear and obfuscated source code.

The work most similar to ours is an experimental study on the complexity of
reverse engineering binary code (Sutherland et al. 2006). The authors of this study
asked a group of 10 students (of heterogeneous level of experience) to perform static
analysis, dynamic analysis and change tasks on several C (compiled) programs. They
found that the subjects’ ability was significantly correlated with the success of reverse
engineering tasks they had to perform. Our study goes beyond: we compare—
by using statistical tests and effect size measures—the capability and efficiency of
subjects in performing attack tasks on clear and obfuscated code. Thus we can
quantify the increased effort necessary to reverse engineer an obfuscated program,
with respect to the effort necessary for a non-obfuscated one. We also compared two
different obfuscation techniques.

In a companion paper (Ceccato et al. 2009a) we describe the initial design and
planning of this experimentation, limited just to one obfuscation technique, i.e.,
Identifier renaming, and we report early results of Exp I and Exp II, just in terms of
attack efficiency. The present work builds on top of it, by extending the experimental
design with a new treatment, namely Opaque predicates obfuscation, and three
further experiments (Exp III, Exp IV and Exp V). Moreover, we perform analysis of
correctness, of time and worst case analysis, and we analyze the effect of co-factors
as well as the answers provided by subjects to survey questionnaires over all the five
experiments.

7 Conclusions

To the best of our knowledge, this is the first work that presents a family of
experiments devoted to quantifying and comparing the effectiveness of code ob-
fuscation, as a countermeasure against code tampering. As expected, after enough
time, even obfuscated code can be understood and eventually tampered, however
the delay due to obfuscation largely depends on which obfuscation technique is used.
Quite surprisingly, the simpler obfuscation (Identifier Renaming) was found to be
more resilient than the more sophisticated one (Opaque Predicates). This probably
depends on the process attackers follow to locate the portions of code to change.
These results provide useful hints to design an effective code protection strategy and
to integrate code obfuscation with complementary protection approaches, such as
code replacement.

Future work will be devoted to replicate this experiment in different contexts.
We would like to understand whether (or not) the results obtained by the family
of conducted experiments are preserved also for other categories of subjects (e.g.,
professional developers) and when changing the domain and the complexity of the

1070 Empir Software Eng (2014) 19:1040–1074

systems/tasks. Last, but not least, we did not assess the combined effect of different
obfuscation techniques: this is another topic of interest for future studies.

References

Anckaert B, Madou M, Sutter BD, Bus BD, Bosschere KD, Preneel B (2007) Program obfuscation:
a quantitative approach. In: QoP ’07: Proc. of the 2007 ACM workshop on quality of protection.
ACM, New York, NY, USA, pp 15–20. doi:10.1145/1314257.1314263

Baker RD (1995) Modern permutation test software. In: Edgington E (ed) Randomization tests.
Marcel Decker

Ceccato M, Di Penta M, Nagra J, Falcarin P, Ricca F, Torchiano M, Tonella P (2009a)
The effectiveness of source code obfuscation: an experimental assessment. In: IEEE
17th international conference on program comprehension (ICPC), pp 178–187.
doi:10.1109/ICPC.2009.5090041

Ceccato M, Di Penta M, Nagra J, Falcarin P, Ricca F, Torchiano M, Tonella P (2009b) The
effectiveness of source code obfuscation: an experimental assessment. Tech. rep., University of
Sannio. URL http://www.rcost.unisannio.it/mdipenta/icpc09-tr.pdf

Ceccato M, Preda MD, Nagra J, Collberg C, Tonella P (2007) Barrier slicing for remote software
trusting. In: Proc. of the 7th IEEE international working conference on source code analysis and
manipulation (SCAM 2007). IEEE Computer Society, pp 27–36. (Sept. 30 2007–Oct. 1 2007).
doi:10.1109/SCAM.2007.4362895

Chang H, Atallah M (2002) Protecting software code by guards. In: ACM workshop on security and
privacy in digital rights management. ACM

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum
Associates, Hillsdale, NJ

Collberg C, Nagra J (2009) Surreptitious software: obfuscation, watermarking, and tamperproofing
for software protection, 1st edn. Addison-Wesley Professional

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. Technical
Report 148, Dept. of Computer Science, The Univ. of Auckland

Collberg C, Thomborson C, Low D (1998) Manufacturing cheap, resilient, and stealthy opaque
constructs. In: POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT sympo-
sium on principles of programming languages. ACM, New York, NY, USA, pp 184–196.
doi:10.1145/268946.268962

Cordy J (2006) The TXL source transformation language. Sci Comput Program 61(3):190–210
Devore JL (2007) Probability and statistics for engineering and the sciences, 7th edn. Duxbury Press
Eisenbarth T, Koschke R, Simon D (2003) Locating features in source code. IEEE Trans Softw Eng

29(3):195–209
Falcarin P, Collberg C, Atallah M, Jakubowski M (2011) Guest editors’ introduction: software

protection. IEEE Softw 28(2):24–27
Falcarin P, Scandariato R, Baldi M (2006) Remote trust with aspect oriented programming. In: IEEE

advanced information and networking applications (AINA-06). IEEE
Fiutem R, Tonella P, Antoniol G, Merlo E (1999) Points-to analysis for program understanding.

J Syst Softw 44(3):213–227
Goto H, Mambo M, Matsumura K, Shizuya H (2000) An approach to the objective and quanti-

tative evaluation of tamper-resistant software. In: 3rd int. workshop on information security
(ISW2000). Springer, pp 82–96

Grissom RJ, Kim JJ (2005) Effect sizes for research: a broad practical approach, 2nd edn. Lawrence
Earlbaum Associates

Horne B, Matheson L, Sheehan C, Tarjan RE (2001) Dynamic self-checking techniques for improved
tamper resistance. In: ACM workshop on security and privacy in digital rights management.
ACM

Iversen G, Norpoth H (1987) Analysis of variance, 2nd edn. Sage Publications
Juristo N, Moreno A (2001) Basics of software engineering experimentation. Kluwer Academic

Publishers, Englewood Cliffs, NJ
Motulsky H (2010) Intuitive biostatistics: a nonmathematical guide to statistical thinking. Oxford

University Press. http://books.google.it/books?id=R477U5bAZs4C
Oppenheim AN (1992) Questionnaire design, interviewing and attitude measurement. Pinter,

London

http://dx.doi.org/10.1145/1314257.1314263
http://dx.doi.org/10.1109/ICPC.2009.5090041
http://www.rcost.unisannio.it/mdipenta/icpc09-tr.pdf
http://dx.doi.org/10.1109/SCAM.2007.4362895
http://dx.acm.org/10.1145/268946.268962
http://books.google.it/books?id=R477U5bAZs4C

Empir Software Eng (2014) 19:1040–1074 1071

R Core Team (2012) R: a language and environment for statistical computing. Vienna, Austria.
http://www.R-project.org. ISBN 3-900051-07-0

Ricca F, Di Penta M, Torchiano M, Tonella P, Ceccato M (2010) How developers’ experience and
ability influence web application comprehension tasks supported by UML stereotypes: a series
of four experiments. IEEE Trans Softw Eng 36:96–118. doi:10.1109/TSE.2009.69

Ricca F, Di Penta M, Torchiano M, Tonella P, Ceccato M, Visaggio CA (2008) Are fit tables really
talking?: a series of experiments to understand whether fit tables are useful during evolution
tasks. In: 30th International Conference on Software Engineering (ICSE 2008), pp 361–370

Ricca F, Torchiano M, Di Penta M, Ceccato M, Tonella P (2009) Using acceptance tests as a support
for clarifying requirements: a series of experiments. Inf Softw Technol 51:270–283

Scandariato R, Ofek Y, Falcarin P, Baldi M (2008) Application-oriented trust in distributed com-
puting. In: 3rd international conference on availability, reliability and security, ARES 08. IEEE,
pp 434–439

Sheskin D (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn.
Chapman & All

Sutherland I, Kalb GE, Blyth A, Mulley G (2006) An empirical examination of the reverse engineer-
ing process for binary files. Comput Secur 25(3):221–228

Tyma P (2000) Method for renaming identifiers of a computer program. US Patent 6,102,966
Udupa S, Debray S, Madou M (2005) Deobfuscation: reverse engineering obfuscated code. In: 12th

working conference on reverse engineering. doi:10.1109/WCRE.2005.13
Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2000) Experimentation in

software engineering—an introduction. Kluwer Academic Publishers

Mariano Ceccato is tenured researcher in FBK (Fondazione Bruno Kessler) in Trento, Italy. He
received the master degree in Software Engineering from the University of Padova in 2003, and the
PhD in Computer Science from the University of Trento in 2006. His research interests include secu-
rity testing, migration of legacy systems, aspect oriented programming and empirical studies. He was
program co-chair of the 12th IEEE Working Conference of Source Code Analysis and Manipulation
(SCAM 2012) held in Riva del Garda, Italy. For more details visit http://selab.fbk.eu/ceccato/.

http://www.R-project.org
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.69
http://dx.doi.org/10.1109/WCRE.2005.13
http://selab.fbk.eu/ceccato/

1072 Empir Software Eng (2014) 19:1040–1074

Massimiliano Di Penta is associate professor at the University of Sannio, Italy. His research interests
include software maintenance and evolution, reverse engineering, empirical software engineering,
search-based software engineering, and service-centric software engineering. He is author of over
160 papers appeared in international conferences and journals. He serves and has served in the
organizing and program committees of over 60 conferences such as ICSE, FSE, ASE, ICSM,
ICPC, CSMR, GECCO, MSR, SCAM, WCRE, and others. He is program chair of MSR 2013
and ICPC 2013. He has been been general chair of SCAM 2010, WSE 2008, general co-chair of
SSBSE 2010, WCRE 2008, and program co-chair of ICSM 2012, MSR 2012, SSBSE 2009, WCRE
2006 and 2007, IWPSE 2007, WSE 2007, SCAM 2006, STEP 2005, and of other workshops. He is
steering committee member of ICSM, CSMR, WCRE, IWPSE, SSBSE, PROMISE, and past steering
committee member of ICPC and SCAM. He is in the editorial board of the Empirical Software
Engineering Journal edited by Springer, and of the Journal of Software: Evolution and Processes
edited by Wiley. He is member-at-large of the executive committee of the Technical Council of
Software Engineering (TCSE). He is member of IEEE, IEEE Computer Society, and of the ACM.
Further info on www.rcost.unisannio.it/mdipenta.

Paolo Falcarin is a Senior Lecturer (Associate Professor) in Software Engineering at the University
of East London, UK. He was awarded his Ph.D. in Software Engineering in 2004, and MEng in
Computer Engineering in 2000 from Polytechnic of Turin, Italy. His research interests include
software protection, obfuscation, service modeling and composition, and self-adaptive distributed
systems. He has published more than 60 publications in international journals and conference
proceedings. He was co-editor of a special issue of IEEE Software on Software Protection in 2011.
He was visiting lecturer at Tongji University of Shanghai (China) in 2009, and visiting researcher
at ETH Zurich (Switzerland) in 2003, and UCL (UK) in 2012. He is a Fellow of the British Higher
Education Academy.

http://www.rcost.unisannio.it/mdipenta

Empir Software Eng (2014) 19:1040–1074 1073

Filippo Ricca is an assistant professor at the University of Genova, Italy. He received his PhD degree
in Computer Science from the same University, in 2003, with the thesis “Analysis, Testing and Re-
structuring of Web Applications”. In 2011 he was awarded the ICSE 2001 MIP (Most Influential
Paper) award, for his paper: “Analysis and Testing of Web Applications”. He is author or coauthor
of more than 90 research papers published in international journals and conferences/workshops. At
the time of writing, the h-index reported by Google Scholar is 22 (13 in Scopus); the number of
citations 1891. From 1999 to 2006, he worked with the Software Engineering group at ITC-irst (now
FBK-irst), Trento, Italy. During this time he was part of the team that worked on Reverse
engineering, Re-engineering and Software Testing. His current research interests include Reverse
engineering, Empirical studies in Software Engineering, Web applications and Software Testing. The
research is mainly conducted through empirical methods such as case studies, controlled experiments
and surveys.

Marco Torchiano is an associate professor at Politecnico di Torino, Italy; he was a post-doctoral
research fellow at Norwegian University of Science and Technology (NTNU), Norway. He received
an MSc and a PhD in Computer Engineering from Politecnico di Torino, Italy. He is author or
coauthor of more than 100 research papers published in international journals and conferences. He
is the co-author of the book ‘Software Development–Case studies in Java’ from Addison-Wesley,
and co-editor of the book ‘Developing Services for the Wireless Internet’ from Springer. His current
research interests are: design notations, model-driven development, OTS-based development, and
software engineering for mobile and wireless applications. He consistently applies an empirical
software engineering approach.

1074 Empir Software Eng (2014) 19:1040–1074

Paolo Tonella is head of the Software Engineering Research Unit at Fondazione Bruno Kessler
(FBK), in Trento, Italy. He received his PhD degree in Software Engineering from the University
of Padova, in 1999, with the thesis “Code Analysis in Support to Software Maintenance”. He is the
author of “Reverse Engineering of Object Oriented Code”, Springer, 2005. In 2011 he was awarded
the ICSE 2001 MIP (Most Influential Paper) award, for his paper: “Analysis and Testing of Web
Applications”. He participated in several industrial and EU projects on software analysis and testing,
among which FITTEST (FP7 n. 257574). He was Program Chair of ICSM 2011 and ICPC 2007;
General Chair of ISSTA 2010 and ICSM 2012. He regularly reviews papers for journals such as
TSE, TOSEM, STVR, EMSE, JSME. In 2011–2012 and earlier he was recognized as a distinguished
referee of TOSEM. Paolo Tonella is in the editorial board of EMSE and JSME. His current research
interests include code analysis, web and object oriented testing, search based test case generation,
empirical studies.

	A family of experiments to assess the effectiveness and efficiency of source code obfuscation techniques
	Abstract
	Introduction
	A Primer on Source Code Obfuscation Techniques
	Experimentation Definition and Planning
	Context: The Subjects
	Context: The Objects
	Hypothesis Formulation and Variables Selection
	Experiments Design
	Experimental Procedure
	Analysis Method
	Threats to Validity

	Results
	Analysis of Correctness
	Analysis of Time
	Analysis of Efficiency
	Analysis of Worst Case Scenario
	Analysis of Co-factors
	Analysis of Post-experiment Survey Questionnaire

	Discussion
	Identifier Renaming
	Opaque Predicates
	General Findings

	Related Work
	Conclusions
	References

