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Several indices can predict the long-term fate of emerging infectious diseases and the effect

of their containment measures, including a variety of reproduction numbers (e.g. R0). Other

indices evaluate the potential for transient increases of epidemics eventually doomed to

disappearance, based on generalized reactivity analysis. They identify conditions for pertur-

bations to a stable disease-free equilibrium (R0 < 1) to grow, possibly causing significant

damage. Here, we introduce the epidemicity index e0, a threshold-type indicator: if e0 > 0,

initial foci may cause infection peaks even if R0 < 1. Therefore, effective containment mea-

sures should achieve a negative epidemicity index. We use spatially explicit models to rank

containment measures for projected evolutions of the ongoing pandemic in Italy. There, we

show that, while the effective reproduction number was below one for a sizable timespan,

epidemicity remained positive, allowing recurrent infection flare-ups well before the major

epidemic rebounding observed in the fall.
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The current COVID-19 pandemic calls for modeling
tools to assess emerging disease features1–4, containment
measures5–10 avoiding social and economic havoc11–13,

and the prevention of epidemic rebounding3,9,14. To tackle these
problems, a common goal is to control the basic reproduction
number R0

15–21 down to values Rc (control reproduction
number) smaller than unity. However, even diseases with Rc < 1
may actually exhibit epidemic phases, although no asymptotic
endemism is established22. Stricter conditions are required to
avoid these subthreshold epidemics23. They are based on the
concept of epidemicity, akin to that of generalized reactivity in
dynamical systems24,25. Generalized reactivity allows determining
whether and under which conditions impulsive perturbations to a
stable steady state can be amplified by the dynamics of the system
before eventually fading out. Similarly, epidemicity analysis can help
define necessary conditions for transient epidemic outbreaks to
occur in epidemiological systems characterized by R0 (or Rc) < 1.

An epidemicity index can be defined and evaluated for any
compartmental epidemiological model described as a set of
ordinary differential equations, independently of the disease
being addressed, the relevant route(s) of transmission, and the
complexity of the (possibly spatially explicit) contact network—
as shown by previous applications to spatially implicit or explicit
models for vector-borne or water-related diseases26,27. Here, we
develop the epidemicity index (e0 or ec, for uncontrolled vs.
controlled disease spread) for COVID-19, a threshold-type
metric defined as the spectral abscissa of a matrix describing the
short-term reactivity properties of a compartmental model
for COVID-19 transmission. Differently from incidence-
based approaches, which typically aim to interpret28,29 or
anticipate30–32 the time course of an epidemic, epidemicity
indices cannot be used to quantitatively predict the occurrence,
size, or timing of a specific subthreshold outbreak. Rather, a
positive epidemicity index represents a warning about the
potential for the epidemic dynamics to surge via coalescence of
subthreshold flares; by contrast, a negative epidemicity index
structurally rules out any possible occurrence of subthreshold
outbreaks. Therefore, control strategies should precautionarily
be designed to achieve a negative value of the epidemicity index
in order to prevent epidemic rebounding.

To properly estimate reproduction numbers and epidemicity
indices in a spatially explicit setting, a natural framework to
describe epidemic dynamics unfolding over real or realistic land-
scapes, it is fundamental to account for spatial connectivity,
because estimates of the reproduction number and epidemicity
index evaluated at local (i.e., via homogeneous-mixing models) vs.
spatial scales (e.g., via metapopulation models) can diverge27,33,34.
Such connectivity, depending on the spatial scale of interest, can
be induced e.g., by the mobility of human hosts4–6 or by the
movement of pathogen receptacles like droplets charged with
SARS-CoV-2 viral loads35,36. Here, we consider a large-scale
metapopulation model describing a set (i= 1, n) of communities
with baseline population Ni connected by human mobility, sub-
divided into the COVID-19-relevant epidemiological compart-
ments (Table 1) of susceptible (Si), exposed (Ei), post-latent
infectious (also termed pre-symptomatic, Pi), symptomatic infec-
tious (Ii), asymptomatic infectious (Ai, including paucisympto-
matic), and recovered individuals (Ri) in each community i
(SEPIAR model7,14; see “Methods” and Supplementary Fig. 1). In
SEPIAR, the force of infection7,14, λi, accounts not only for locally
acquired infections, but also for those caused by movement of
susceptible and infectious individuals. The model includes three
types of containment measures: reduction of social contacts, use of
personal protection equipment, and/or local mobility restrictions
(all subsumed by the percent reduction in transmission rates, ϵi);
travel restrictions between communities i and j (ξij); and isolation

of individuals of infected compartment X (rates χXi , X∈ {E, P, I, A}
[T−1]). Individuals removed from the community (either hospi-
talized or quarantined) are also tracked in SEPIAR.

Results
Generalized reproduction numbers and epidemicity indices.
We establish conditions for possible long-term circulation of the
pathogen in a naïve population (i.e., lacking any prior immunity),
either in uncontrolled settings (R0) or when containment efforts
are instituted (Rc)

19,21 via a next-generation matrix (NGM)
approach22,33,34,37 (“Methods”). R0 and Rc are the spectral radii
ρ(⋅) of generalized reproduction matrices7,33,34 accounting for
local transmission and mobility fluxes. Specifically, in the absence
of controls we obtain:

R0 ¼ ρðδE½θP þ σδPθIðϕIÞ�1 þ ð1� σÞδPθAðϕAÞ�1�ðϕEϕPÞ�1Þ;
ð1Þ

where δE,P are the rates at which exposed individuals enter the
post-latent stage or post-latent individuals develop either symp-
tomatic (a fraction σ) or asymptomatic infections; θX are matrices
describing disease transmission from the three infectious classes
(X∈ {P, I, A}), incorporating mobility; ϕX are diagonal matrices
representing the transition rates from the infection subsystem
(X∈ {E, P, I, A}) to the other compartments of SEPIAR
(“Methods”). The θX matrices change because of control mea-
sures implementing contact reductions (0 ≤ ϵi ≤ 1) and travel
restrictions (0 ≤ ξij ≤ 1), while the ϕX matrices change owing to
isolation of infected individuals (at rates χXi ). Thus, the control
reproduction number is Rc ¼ R0ðθPc ; θPc ; θAc ;ϕE

c ;ϕ
P
c Þ, where

R0ð�Þ is the same functional relation of Eq. (1), and the matrices
θXc and ϕX

c are the counterparts of θX and ϕX (“Methods”).
Generalized reactivity24,25 can be used to determine the

occurrence of subthreshold epidemics, namely whether perturba-
tions to a stable equilibrium of SEPIAR may determine a
temporary increase of the Euclidean norm ∣∣y∣∣ of a suitable
system output vector y obtained by a linear transformation of the
infection subsystem (“Methods”). Given the emerging nature of
SARS-CoV-2, we focus only on transient dynamics associated
with perturbations to the disease-free equilibrium (DFE). The
epidemicity indices, e0 (uncontrolled disease spread) and ec (with
containment measures), are the spectral abscissae ΛRe

maxð�Þ of the
Hermitian matrices H0 and Hc (“Methods”), constructed from
SEPIAR and the structure of the output. Short-term flare-ups are
possible only if

e0 ¼ ΛRe
maxðH0Þ> 0 or ec ¼ ΛRe

maxðHcÞ> 0 ð2Þ
in the cases of basic or control epidemicity indices (“Methods”).
Here the spectral abscissa is defined as the largest real part of the
eigenvalues of a matrix (note the difference with the spectral
radius, which is the largest module of the eigenvalues).

To illustrate the above concepts, Fig. 1 shows results for a two-
community implementation of SEPIAR, in which y is the eight-
dimensional vector with components E1,2, P1,2, I1,2, A1,2. If R0 < 1
and e0 < 0 (Fig. 1a–c), system trajectories (a) converge rapidly
toward the DFE (R0 < 1), and both total prevalence of infection
(b) and system output (c) decline monotonically over time in the
system output (e0 < 0). If R0 < 1 and e0 > 0 (d–f), the initial focus
of infections causes a noticeable increase in total disease
prevalence. Trajectories eventually converge to the DFE, although
over a much longer timescale: the total duration of the infection
increases from about 50 days in Fig. 1b to more than 150 days in
(e). Also, depending on initial conditions, the system output may
either monotonically decrease after a perturbation (with small
rebounds being possible later on) or show a transitory increase.
The latter behavior represents the signature of positive
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Table 1 State variables of model (Eq. (3)).

Variable Definition

Si Susceptible individuals in community i
Ei Exposed (latently infected) individuals in community i
Eqi Exposed individuals from community i who are quarantined at home
Pi Post-latent (incubating infectious) individuals in community i
Pqi Post-latent individuals from community i who are quarantined at home
Ii Symptomatic infectious individuals in community i
Ihi Symptomatic individuals from community i who are treated at a hospital
Ai Asymptomatic or paucisymptomatic infectious individuals in community i
Aq
i Asymptomatic or paucisymptomatic individuals from community i who are quarantined at home

Ri Recovered individuals in community i

Fig. 1 A graphical illustration of the concept of epidemicity. Computational results for COVID-19 transmission in two human communities connected by
mobility. a System trajectories projected onto the plane spanning the total number of infected people in each of the two communities (Zi= Ei+ Pi+ Ii+Ai,
i= 1, 2). Trajectories have been initialized with a few exposed individuals in either community (black, yellow, and purple curves), or with a mix of infected
individuals in both communities (green, corresponding to the perturbation of the DFE with the fastest growth in the system output25). For this parameter
combination (βP1 ¼ βP2 ¼ 1:2 ´ 10�1 days−1), all trajectories converge to the DFE (R0 < 1, e0 < 0). b Temporal dynamics of the total number of infected
people in the two communities (Z(t)=∑i[Ei(t)+ Pi(t)+ Ii(t)+ Ai(t)]). Transmission chains fueled by the initial seeding of infected people decline rapidly
over time. c Temporal dynamics of the system output, defined as the Euclidean norm of the vector whose components correspond to the infection
subsystem (wX= 1, with X∈ {E, P, I, A}). All trajectories are characterized by a monotonic decline in the system output. d–f As in (a–c), for a parameter
combination (βP1 ¼ βP2 ¼ 4:2´ 10�1 days−1) resulting in R0 < 1 and e0 > 0. In this case too, all trajectories converge to the DFE (d), but disease prevalence
exhibits a peak, later declining slowly over time (e). Also, for suitable initial conditions, a transitory increase of the system output following a pulse
perturbation is possible (f). g–i As in (a–c), for a parameter combination (βP1 ¼ βP2 ¼ 7:0´ 10�1 days−1) resulting in R0 > 1 and e0 > 0. In this case,
trajectories exponentially diverge from the DFE (g), and a large outbreak is observed in both disease prevalence (h) and the system output (i). In these
examples, the population size of the first community (N1= 106) is twice as large as the size of the second (N2= 5 × 105), and the people of the first
community are less mobile than those of the second (MS;E;P;A

12 ¼ 1=10, MS;E;P;A
21 ¼ 2=3; symptomatic individuals are assumed not to move from either

community, MI
12 ¼ MI

21 ¼ 0). See “Methods” for details and Table 2 for other parameters.
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epidemicity (e0 > 0), by which transient epidemic flare-ups are
possible even when R0 < 1. Similar results are obtained for
spatially heterogeneous values of the local basic reproduction

numbers, as shown in Supplementary Fig. 2. Finally, ifR0 > 1 and
e0 > 0 (Fig. 1g–i), system trajectories exponentially diverge from
the unstable DFE, thus giving rise to evident epidemic curves in
terms of both disease prevalence and system output.

To integrate the examples shown in Fig. 1, it is possible to
perform a systematic classification of the different types of disease
dynamics produced by the two-community SEPIAR for different
values of the local reproduction numbers R01 and R02, i.e., the
values of the reproduction number in the two local communities
evaluated as if neither outbound nor inbound mobility were
allowed (Fig. 2). Local reproduction numbers can be obtained
from the general expression (Eq. (1), which accounts for human
mobility) considering all connections as local (i.e., replacing the
spatially explicit contact matrices with identity matrices). The
shaded regions correspond to: (i) endemic establishment (red,
R0 > 1, which by construction gives e0 > 0); (ii) transient
subthreshold epidemic (gray, R0 < 1, e0 > 0); and (iii) rapid
waning of the epidemic (blue, e0 < 0, which normally also implies
R0 < 1, save for nongeneric output transformations). As a
reference, we also plot (black solid line) the parameter
combinations where the population-weighted average ~R0 of the
local reproduction numbers equals unity ( ~R0 ¼ 1). Local
reproduction numbers appear to be only loosely related to the
dynamics of the spatially explicit system. In regions ① and ② of
the parameter space in Fig. 2, both local reproduction numbers
are below one; however, while no epidemic waves are expected for
the coupled spatial system in ①, the opposite is true in ②, where
small outbreaks may in fact occur. By contrast, in region ③, one
local reproduction number exceeds unity, yet neither endemicity
nor outbreaks are expected for the connected system as a whole.
In regions ④ and ⑤, one local reproduction number is above one
—with a population-weighted average value ~R0 either below one
(region ④) or above one (region ⑤). Outbreaks are expected, but
no endemicity. In regions ⑥ and ⑦, one of the two local
reproduction numbers is below one—with either ~R0 < 1 in ⑥ or
>1 in ⑦—but large outbreaks and endemic persistence are
possible in the spatial system. Finally, in region ⑧, both local
reproduction numbers are above one, and large outbreaks are
indeed possible in the spatially explicit model. Evidently, conclu-
sions based on local reproduction numbers (or their average) would

Fig. 2 The inadequacy of local reproduction numbers in spatially explicit
systems. A catalog of dynamical behaviors for the two-community system
of Fig. 1 (red: large outbreaks and endemic transmission are possible
because R0 > 1; gray: transient epidemic waves may be possible because
e0 > 0, but transmission fades away eventually because R0 < 1; blue: no
epidemic waves because e0 < 0). See text for an explanation of the specific
dynamical outcomes in different parameter subregions (① to ⑧). Note that
points ①, ②, and ⑧ correspond to the parameter combination used in Fig. 1
for (a–c), (d–f), and (g–i), respectively. The two communities are

characterized by different values of the local basic reproduction number

R0 i ¼ δE

μþδE
δP

μþδP
βPi
δP
þ σ βIi

μþαþηþγI þ ð1� σÞ βAi
μþγA

h i
because of differences in the

local values of the transmission rates. Parameters and other details as in Fig. 1.

Table 2 Parameters and controls of model (Eq. (3)).

Parameter Definition Units Value

μ Baseline mortality rate days−1 3.65 × 10−5

βPi Transmission rate from post-latent individuals days−1 9.38 × 10−1

βIi Transmission rate from symptomatic individuals days−1 2.06 × 10−2

βAi Transmission rate from asymptomatic or paucisymptomatic individuals days−1 2.06 × 10−2

δE Exit rate from the exposed class days−1 2.17 × 10−1

δP Exit rate from the post-latent class days−1 5.00 × 10−1

σ Fraction of symptomatic infections – 0.25
α Disease-associated extra-mortality rate for symptomatic infections days−1 4.00 × 10−2

η Hospitalization rate of symptomatic individuals days−1 2.00 × 10−1

γI Recovery rate for symptomatic infections days−1 7.14 × 10−2

γA Recovery rate for asymptomatic or paucisymptomatic infections days−1 1.43 × 10−1

rX Fraction of mobility-associated contacts for class X∈ {S, E, P, A, R} – 5.00 × 10−1

rI Fraction of mobility-associated contacts for class I – 0

Control Definition Units Value

ϵi Contact rate reduction in community i – [0, 1]
ξij Travel restriction between communities i and j – [0, 1]
χXi Isolation rate for infected class X ∈ {E, P, I, A} in community i days−1 ≥0

Parameter values (median estimates at the beginning of the epidemic, when no controls were assumed to be in place) are taken from Bertuzzo et al.14. Control values are left free to vary within suitable
ranges.
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often provide wrong indications about not only short-term
epidemic dynamics, but also long-term disease-transmission
patterns. The behavior of the two-community system for different
configurations of population distribution and human mobility is
shown in Supplementary Fig. 3.

Effect of various control strategies in Italy. We apply our
methodology to the Italian COVID-19 epidemic (“Methods”).
Model parameters are shown in Table 2 and were estimated in a
Bayesian framework14 for the early phase of the epidemic, when
the disease was spreading largely unnoticed and no containment
measures were yet in place (ϵi= 0, χXi ¼ 0, and ξij= 0 for all i’s,
j’s, and X∈ {E, P, I, A}). Transmission rates, βi, were reasonably14

assumed to be spatially homogeneous over the whole country at the
beginning of the epidemic (βi= β for all i’s). We also assume no
pre-existing immunity within all communities (Si(0)=Ni for every
node i). The estimated value of the basic reproduction number is
R0 ¼ 2:7, while the epidemicity index is e0= 0.44 day−1. These
figures are in line with the rapid spread of the COVID-19 epidemic
in large portions of Italy after the first identified foci of infection7.
Relying on its own database, Istituto Superiore di Sanità (ISS)
released estimates of local reproduction numbers38. Thus, we also
provided crude estimates of spatially heterogeneous transmission
rates (Supplementary Table 1).

The model allows us to analyze the effects of containment
strategies that might have prevented the occurrence of endemicity,
based on the estimated threshold quantityRc. Key results are given

in Fig. 3. Therein, a significant reduction of the transmission rate
(ϵi= ϵ= 0.60 for all i’s) is required to prevent endemic transmis-
sion if social distancing, use of personal protective equipment, and
local mobility restriction are the sole control measures in action (a).
Conversely, uniform travel restrictions (ξij= ξ for all i’s and j’s) can
progressively reduce Rc, but alone do not suffice to control it
below one (b). As for the isolation of infected individuals, a
spatially uniform removal rate (χXi � χ for all i’s and X∈ {E, P, I,
A}) of ≈0.20 days−1, corresponding to the daily isolation of ≈18%
(i.e., 1− e−0.20) of all infected individuals, is needed to achieve
Rc < 1 if no other measures are simultaneously enforced (c).
When applied together, different controls act synergistically toward
long-term endemicity suppression, as suggested earlier14. As an
example, the combination of a 40% transmission reduction with
an isolation rate of 0.05 days−1 turns out to be as effective as a
20% transmission reduction combined with an isolation rate of
0.11 days−1, provided that these measures are coupled with a 50%
travel restriction (d).

The same measures used for long-term control can be applied
also to preventively curtail short-term epidemic outbreaks that
might arise if ec were larger than zero. If individually deployed,
strong (>80%) transmission reductions (Fig. 3a) could theoreti-
cally achieve ec < 0, differently from travel restrictions (b).
Isolation of infected individuals (c) might also succeed in
preventing positive epidemicity, although the whole sequence of
actions (from testing of suspected cases to removal from the
community) must occur rapidly (i.e., at a rate of 0.45 days−1,

Fig. 3 The effects of spatially homogeneous control measures on long-term endemicity and short-term epidemicity of COVID-19 in Italy. a Plot of the
relation betweenRc (left axis, red), ec (right axis, blue), and the spatially uniform transmission rate reduction (ϵi= ϵ for all i’s). b Same as (a) for the effects
of travel restrictions (ξij= ξ for all i’s and j’s). c Same as (a) for the effects of the isolation of infected individuals (χXi ¼ χ for all i’s and X∈ {E, P, I, A}).
d Simultaneous deployment of controls leading to Rc ¼ 1 (solid curves) or ec= 0 (dashed) for three values of ξ, the imposed travel restriction. The DFE is
asymptotically unstable (Rc > 1) for parameter values below the solid curves and endowed with negative epidemicity (ec < 0) above the dashed curves. In
all panels, wX= 1 (X∈ {E, P, I, A}, see “Methods”). Colors at the bottom of a, c specify the ranges of endemicity/epidemicity conditions (red: Rc > 1; gray:
Rc < 1; ec >0; blue: Rc < 1; ec <0). Parameters as in Table 2.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22878-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2752 | https://doi.org/10.1038/s41467-021-22878-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


which corresponds to isolating about 36% of the total infected
cases in one single day). Simultaneous deployment of control
measures (d) thus seems like a promising pathway also toward
the suppression of short-term epidemicity. As an example, a 40%
transmission reduction combined with an isolation rate of
0.15 days−1 (namely isolating 14% of the cases in one day) and
50% travel restrictions would prove effective in bringing the
short-term epidemicity index below zero.

Quantitatively different results (Supplementary Fig. 4) are
obtained if spatially heterogeneous transmission rates38 are used
(Supplementary Table 1). In particular, travel restrictions are
more effective at reducing both Rc and ec, yet still insufficient to
prevent the occurrence of endemic transmission and positive
epidemicity, if enforced alone. Heterogeneous transmission can
be harnessed to prioritize the spatial deployment of preventive
containment strategies, thereby highlighting trade-offs between
dispersing containment efforts over large areas vs. focusing them
on smaller ones (Supplementary Fig. 5). This analysis suggests
that reduction of inter-individual transmission, e.g., by using
personal protective equipment, enforcing social distancing, and
limiting local-scale mobility, is best applied at large (e.g., country-
wide) scales, while mass-testing and isolation of infected
individuals can also be effective if enforced within the most-at-
risk areas (e.g., province scale).

Subthreshold epidemic containment. A subthreshold epidemic
during containment phases is a surge in the number of infections
generated by seeding new cases when Rc < 1 and ec > 0 (“Meth-
ods”). Flare-ups simulated by SEPIAR typically exhibit unimodal
shapes similar to those shown in Fig. 1e, f. Whether or not these
epidemic waves prove dangerous depends on the location and
size of the initial hotbed, and on the chances of possible coales-
cence with neighboring foci. For the Italian case, Fig. 4 shows the
effect of the location of the initial seeding (100 exposed indivi-
duals) and containment measures (subsumed by three different
values of ϵ, coupled with assigned isolation rate and travel
restriction) on subthreshold epidemic dynamics. Depending on
the strength of the containment measures, outbreaks where only
one province is initially affected may either grow considerably
over time and last long or wane rapidly without resulting in a
large number of country-wide total infections (Fig. 4a). The
cumulated number of cases, evaluated over a fixed time span of
three months, depends on the seeding location (b), and is affected
by both the total magnitude and the duration of an outbreak (in
this respect, Fig. 4b represents an underestimation of the total
case counts associated with the outbreaks, as many of them may
still be ongoing at the end of the simulation period). The epi-
demic trajectories obtained when the outbreak starts from the
busiest Italian airports (“Methods”), e.g., via incoming infected

Fig. 4 The effect of initial conditions and of containment measures on subthreshold epidemics in Italy. The SEPIAR model has been numerically
integrated for a timespan τ= 90 days starting from different initial conditions, while assuming that spatially homogeneous containment measures are in
place from the beginning of the epidemic. a Total number of infected individuals in the community, evaluated as ZðtÞ ¼ ∑n

i¼1 EiðtÞ þ PiðtÞ þ IiðtÞ þ AiðtÞ, for
outbreaks started by seeding one by one each of the 107 Italian provinces (solid lines: across-province median; shadings: min-max envelope) with an initial
number of exposed individuals Ei(0)= 100, assuming an otherwise fully susceptible population (Si(0)= Ni− Ei(0)). b Provinces in the map are color-coded
according to the cumulated number of cases over the whole national territory up to the end of the simulation timespan for a subthreshold epidemic seeded
in the considered province and for the intermediate-control scenario (yellow) of (a). c Same as (a) for a simulated outbreak obtained by seeding the
provinces where the ten busiest Italian airports are located (“Methods”). A total number of 100 exposed individuals has been allocated proportionally to
the total passenger flux at the beginning of the simulation. dMap of the projected infections in each province up to the end of the simulation period for the
intermediate-control scenario (yellow) of (c). Parameters as in Table 2, with ϵi= ϵ (numerical values are given in c), ξij= 0.5, and χXi ¼ 0:1 days−1 for all i’s,
j’s, and X∈ {E, P, I, A}. For the three combinations of the control parameters shown in a and c, we find Rc � 0:99, 0.90, and 0.67 for ϵ= 0.26, 0.33, and
0.50, respectively, with ec (evaluated for wX= 1, X∈ {E, P, I, A})≈ 0.13, 0.099, and 0.017 day−1.
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passengers, are shown in Fig. 4c, and may also result in a sig-
nificant number of cases with respect to the initial seeding. In this
case, infections tend to concentrate in the provinces closest to the
airports (d), owing to mobility matrices that largely reflect daily
commuting.

The roles of spatially homogeneous transmission reduction (ϵ)
and isolation rate (χ) on the size of subthreshold epidemics are
considered in detail in Fig. 5 for given (halved) mobility (travel
restrictions prove less effective than other measures, Fig. 3d).
Gray scale codes the country-wide number of cases 90 days after
the beginning of the outbreak, evaluated as the median of the
values obtained for all subthreshold epidemics starting from
single-province seeding (i.e., the same initial condition as in
Fig. 4a, b). The closer the combination of parameters brings to the
frontier Rc ¼ 1, the steeper is the increase in total infections (up
to around 2000 cases generated by the initial seeding of 100
exposed individuals—which again represents a lower-bound
estimate for outbreaks that are not yet over three months after
they started), reflecting the transcritical bifurcation of the DFE.
Cost–benefit analysis based on combinations of interventions
should always include the differential costs of isolation rates
versus transmission reductions. Benefits of isolation would be
negligible for transmission reductions beyond 80%. The same
would occur for transmission reductions, should isolation rates be
larger than 0.38 days−1.

Effective reproduction number and epidemicity index. The
spatially explicit structure of SEPIAR allows us also to analyze
containment strategies aimed at breaking transmission if
deployed once the epidemic has already started. To that end,
numerical simulations can be usefully complemented by the
evaluation through time of the effective reproduction number,
RðtÞ, and of the effective epidemicity index, e(t) (“Methods”).
These two indices are computed by updating the fraction of
susceptible individuals and the epidemiological parameters at
time t in the general expressions for Rc and ec. Supplementary
Figures 6–9 indicate that both contact reduction and isolation of
infected individuals can significantly reduce disease transmission,
with a clear spatial gradient whereby country-scale interventions
are the most effective while province-scale interventions are the
least effective. Indeed, only a strong, large-scale deployment of
containment measures can bring RðtÞ below one and, possibly, e
(t) below zero.

Finally, Fig. 6 shows the results of the computation of the
effective epidemicity index for the first wave of the COVID-19
pandemic in Italy, which peaked at the end of March 2020 (a). A
time-varying parameterization of SEPIAR14, accounting for the
progressive tightening of containment measures and reduction of
human mobility (“Methods”), shows how RðtÞ and e(t) varied
over time—mostly as a response to the change in the transmission
parameters induced by the application of control measures,
echoing modeling results concerning the effectiveness of control
measures on early transmission dynamics7,39. By contrast, only
marginally did the dynamics of the susceptible compartment
affect RðtÞ and e(t), consistently with model-based estimates
suggesting that the depletion of the susceptible pool during the
first wave of the pandemic has been small to negligible in
northern Italy, and basically null in the south of the country14.
The model suggests that RðtÞ has been below the threshold value

Fig. 5 The effect of spatially homogeneous controls on subthreshold
epidemic size. The SEPIAR model has been simulated seeding one by one
each of the 107 Italian provinces with an initial abundance of exposed
individuals Ei(0)= 100 (details as in Fig. 4a), for parameter combinations
resulting in Rc < 1 (above the red solid curve) and ec > 0 (below the blue
dashed curve). Gray shading represents the total number of cases over the
whole national territory c(τ) up to the end of the simulation timespan (τ=
90 days), evaluated as the median of the values obtained with different
initial conditions (i.e., outbreaks starting from each of the different
provinces). Parameters as in Table 2, with ϵi= ϵ, ξij= 0.5, χXi ¼ χ for all i’s,
j’s, and X∈ {E, P, I, A}, and wX= 1 (X∈ {E, P, I, A}).

Fig. 6 Effective reproduction number RðtÞ and epidemicity index e(t) for
the first wave of the COVID-19 pandemic in Italy. a Hospital admissions
(March to November 2020). Green empty dots represent the curated data
that has been used14 to calibrate the SEPIAR model (the black line and
black shading are the median and the 95% confidence interval, respectively,
of 2000 simulations with parameter values drawn from a posterior
distribution estimated from data). The SEPIAR model has been run until the
end of July for validation. Purple shading shows data not used for
calibration. b Temporal dynamics of the effective reproduction number
obtained from SEPIAR (red curve: median; red shading: 95% confidence
interval). Also shown (yellow dots) is the timeseries of effective
reproduction numbers and their confidence interval (yellow shading) as
published by ISS51. c Effective epidemicity index (blue curve: median; blue
shading: 95% confidence interval) computed from SEPIAR (“Methods”).
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of one for several months, starting a few weeks after the country
went into full lockdown and well into the summer (b). These
modeling results agree well with data-based estimates of the
effective reproduction number made available by ISS, which
confirm that RðtÞ has been below the critical threshold (or close
to it) until the end of September 2020. However, during August to
September, cases were already on a rise that culminated with a
peak in late November 2020 (see again a). On the other hand, the
effective epidemicity index always remained positive despite all
containment efforts, signaling a continuing risk of subthreshold
epidemic recurrence.

Discussion
Most emerging infectious diseases are zoonoses40, suggesting
overarching themes connecting ecology to epidemiology. The
theory of epidemicity, which we have developed here for COVID-
19 metapopulation models7,14, is elemental to linking the reac-
tivity of transient species dynamics in ecology24,25 with the
control of human infectious diseases, a valuable ecosystem service
arising from biodiversity conservation41. The definition of epi-
demicity indices specifically allows to establish necessary condi-
tions for the occurrence of subthreshold outbreaks, i.e., for the
development of epidemic transmission when the reproduction
number is below unity.

Some affinities exist between epidemicity analysis and the lit-
erature on so-called stuttering transmission chains42, which are
typical of pathogens spreading inefficiently in a population. In
that case, however, the estimation of quantities like the total size
of an outbreak is typically done under the hypothesis that the
average number of cases (evaluated over different observations of
the process) declines monotonically over time when R0 < 143,44.
Thus, the possibility of subthreshold yet non-negligible outbreaks
is left unexplored. The same observation holds as well with
respect to the vast body of literature devoted to the study of
epidemic dynamics in stochastic settings, which is mostly focused
on the case R0 ≥ 1, under the assumption that an epidemic would
shrink exponentially otherwise45–50. By contrast, containment
strategies aimed at breaking the transmission chain of subthres-
hold epidemics find in our theory an objective tool to rank the
efficacy of collective responses to recurrent spatial foci of infec-
tion that may synchronize into large-scale infection outbreaks.
However, open issues remain toward a general characterization of
epidemicity. One is the operational definition of the geographical
boundaries of the community where scenarios of disease spread
can be made. Multi-scale approaches may help to that end. They
are of routine use in other branches of science—like limited area
models in meteorology, climatology, and oceanography, which
use larger-scale models to impose boundary conditions. In a
pandemic context, this approach may be particularly useful to
assess international travel as a means of infection propagation.

Concerning the application to the Italian case study, Fig. 6
conveys an important message, because it provides an example of
a large-scale epidemic where the effective reproduction number,
RðtÞ, was below one for a sizable portion of the epidemiological
trajectory (at least four months), while the effective epidemicity
index, e(t) remained positive. The agreement between the sub-
threshold values of RðtÞ estimated from either modeling (with
SEPIAR) or data (by ISS, the Italian agency in charge of COVID-
19 epidemiology51) is substantial and, given the broad differences
in the methodological assumptions, noteworthy per se. Positive
values of e(t), evaluated by means of SEPIAR and the metho-
dology proposed here, indicated the extant danger of flare-ups
allowing subthreshold circulation of the virus. From a disease-
control perspective, the persistence of positive values of the epi-
demicity index should have prompted a preventive employment
of stricter control measures during the summer. All these

considerations suggest that the reproduction number, a funda-
mental long-term diagnostic indicator, may actually bear little
prognostic power when its value is below the critical threshold
and should be complemented with the evaluation of the epide-
micity index, which reveals to be key in detecting the short-term
reactivity of the core disease-transmission system. Had e(t) < 0
been achieved (implying Rt < 1), even short-term, subthreshold
epidemics would have been prevented, thus curtailing the spatial
transmission of the pathogen—with possible implications for the
second, nation-wide epidemic wave that Italy experienced in
the fall.

The temporal dynamics of the effective reproduction number
and epidemicity index suggest that a continuous monitoring of
these quantities may be crucial to capture the effects of con-
tainment measures. In this respect, a promising linkage between
ex-post, calibration-based vs. data-based estimates could be
represented by data assimilation schemes (e.g., Ensemble Kalman
Filter), in which state and model parameters are jointly and
repeatedly re-evaluated over time. These techniques have been
recently used to analyze cholera transmission in Haiti52 in con-
junction with spatially explicit metapopulation models not unlike
SEPIAR (albeit representing different underlying epidemiological
dynamics). Joint, frequent updates of parameter values and state
variables may allow, on one hand, the reliable evaluation of the
effective reproduction number and the epidemicity index, as well
as their temporal (and possibly seasonal) dynamics; and, on the
other, the production of reasonable epidemiological projections
with a lead time of at least a few weeks. An integrative approach
like the one just outlined here would clearly represent an
important extension to our modeling framework.

Growing pandemic figures require reliable assessments of real-
time control measures, and the epidemicity index is suggested to
be a useful addition to the tools currently shaping emergency
management policies—specifically, as a synthetic measure that,
based on the epidemiological parameters and their variations,
may signal the risk of possible subthreshold epidemics. The
examples presented here illustrate how the epidemicity index can
be used to complement and specialize the variety of existing
reproduction numbers by highlighting control measures that are
effective for both short- and long-term controls. We thus con-
clude that the epidemicity index should find many applications in
the epidemiology of emerging infectious diseases, and should be
included in cost–benefit analysis of alternative intervention
options.

Methods
Data and data processing. The modeling tools described in the following sections
are applied to the Italian COVID-19 epidemic at the scale of second-level
administrative divisions, i.e., provinces and metropolitan cities (as of 2020,
107 spatial units). Official data about resident population at the provincial level are
produced yearly by the Italian National Institute of Statistics (Istituto Nazionale di
Statistica, ISTAT; data available at http://dati.istat.it/Index.aspx?QueryId=18460).
The January 2019 update has been used to inform the spatial distribution of the
population.

The data to quantify nation-wide human mobility prior to the pandemic come
from ISTAT (specifically, from the 2011 national census; data available online at
https://www.istat.it/it/archivio/139381). Mobility fluxes, mostly reflecting
commuting patterns related to work and study purposes, are provided at the scale
of third-level administrative units (municipalities)53,54. These fluxes were upscaled
to the provincial level following the administrative divisions of 2019, and used to
evaluate the fraction pi of mobile people and the fraction qij of mobile people
between i and all other administrative units j (see Supplementary Material in Gatto
et al.7).

Airport traffic data for year 2019, used to inform the simulation shown in
Fig. 4c, d, are from the Italian Airports Association (Assaeroporti; data available at
http://assaeroporti.com/statistiche_201912/). Note that airports have been assigned
to the main Metropolitan Area they serve, rather than to the province where they
are geographically located (e.g., Malpensa Airport has been assigned to the
Metropolitan City of Milano, rather than to the neighboring Varese province,
where it actually lies).
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Model parameters are taken from a paper by Bertuzzo et al.14, where they were
inferred in a Bayesian framework on the basis of the official epidemiological
bulletins released daily by Dipartimento della Protezione Civile55 (data available
online at https://github.com/pcm-dpc/COVID-19) and the bulletins of Epicentro,
at ISS51,56. The parameters estimated for the initial phase of the Italian COVID-19
epidemic14, during which SARS-CoV-2 was spreading unnoticed in the population,
reflect a situation of unperturbed social mixing and human mobility, absent any
effort devoted to disease control. This parameterization, in which all parameters
(including the transmission rates) are spatially homogeneous, is reported in Table 2
and has been used to produce all the results presented in the main text, except for
those of Fig. 6. In this case, to account for the containment measures put in place
by the Italian authorities and their effects on transmission rates and mobility
patterns during the first months of the pandemic, a time-varying
parameterization14 for the period February 24 to May 1, 2020 has been used. In this
parameterization, the transmission rates were allowed to take different values over
different time windows, corresponding to the timing of the implementation of the
main nation-wide restrictions, or lifting thereof. Specifically, the effect of the
containment measures was parameterized by assuming that the transmission
parameters had a sharp decrease after the containment measures announced at the
end of February and the beginning of March, and that they were further reduced in
the following weeks as the country was effectively entering full lockdown. As a by-
product, these time-varying transmission rates can also at least partially account for
seasonal effects on disease transmission. Due to the emerging nature of the
pathogen, seasonality has not been given further consideration in this work;
however, it may become a key component of future modeling efforts aimed at
studying post-pandemic SARS-CoV-2 transmission dynamics3, i.e., if/when the
pathogen establishes as endemic. Spatial connectivity too was modified with respect
to the baseline scenario to reflect the disruption of mobility patterns induced by the
pandemic and the associated containment measures14. Specifically, between-
province mobility was progressively reduced as the epidemic unfolded according to
estimates obtained through mobility data from mobile applications53,57.

Spatially explicit SEPIAR with distributed controls. We consider a set of n
communities connected by human mobility fluxes. In each community, the human
population is subdivided according to infection status into the epidemiological
compartments of susceptible, exposed (latently infected), post-latent (incubating
infectious, also termed pre-symptomatic7), symptomatic infectious, asymptomatic
infectious (including paucisymptomatic), and recovered individuals. The present
model utilizes previous work aimed to describe the first wave of COVID-19
infections7,14. In particular, it allows us to account for three widely adopted types of
containment measures: reduction of local transmission (as a result of the use of
personal protections, social distancing, and local mobility restriction), travel
restriction, and isolation of infected individuals. To describe the effects of isolation,
each infected compartment (exposed, post-latent, symptomatic and asymptomatic)
is actually split into two, which allows keeping track of the abundances of infected
individuals who are still in the community vs. those who are removed from it (i.e.,
either in isolation at a hospital, if symptomatic, or quarantined at home, if exposed,
post-latent, or asymptomatic). The state variables of the model are summarized in
Table 1. Supplementary Figure 1 recapitulates the structure of the model.

COVID-19 transmission dynamics are thus described by the following set of
ordinary differential equations:

_Si ¼ μðNi � SiÞ � λiSi
_Ei ¼ λiSi � ðμþ δE þ χEi ÞEi

_Pi ¼ δEEi � ðμþ δP þ χPi ÞPi

_Ii ¼ σδPPi � ðμþ αþ γI þ ηþ χIi ÞIi
_Ai ¼ ð1� σÞδPPi � ðμþ γA þ χAi ÞAi

_E
q
i ¼ χEi Ei � ðμþ δEÞEq

i

_P
q
i ¼ χPi Pi þ δEEq

i � ðμþ δPÞPq
i

_I
h
i ¼ ðηþ χIi ÞIi þ σδPPq

i � ðμþ αþ γI ÞIhi
_A
q
i ¼ χAi Ai þ ð1� σÞδPPq

i � ðμþ γAÞAq
i

_Ri ¼ γI ðIi þ Ihi Þ þ γAðAi þ Aq
i Þ � μRi:

ð3Þ

Susceptible individuals are recruited into community i (i= 1…n) at a constant
rate μNi, with μ and Ni being the average mortality rate of the population and the
size of the community in the absence of disease, respectively, and die at rate μ. In
this way, the equilibrium size of community i without disease amounts to Ni.
Susceptible individuals get exposed to the pathogen at rate λi, corresponding to the
force of infection for community i (detailed below), thus becoming latently infected
(but not infectious yet). Exposed individuals die at rate μ and transition to the post-
latent, infectious stage at rate δE. If containment measures including mass testing
and preventive isolation of positive cases are in place, exposed individuals may be
removed from the general population and quarantined at rate χEi . Post-latent
individuals die at rate μ, progress to the next infectious classes at rate ηP,
developing an infection that can be either symptomatic—with probability σ—or
asymptomatic, including the case in which only mild symptoms are present—with
probability 1− σ, and may be tested and quarantined at rate χPi . Symptomatic

infectious individuals die at rate μ+ α, with α being an extra-mortality term
associated with disease-related complications, recover from infection at rate γI, may
spontaneously seek treatment at a hospital at rate η, and may be identified through
mass screening and hospitalized at rate χIi . Asymptomatic individuals die at rate μ,
recover at rate γA, and may be quarantined at rate χAi . Infected individuals who are
either hospitalized or quarantined at home are subject to the same epidemiological
dynamics as those who are still in the community, but are considered to be
effectively removed from it, thus not contributing to disease transmission.
Individuals who recover from the infection die at rate μ, and are assumed to have
permanent immunity to reinfection. This last assumption is not fundamental, as
loss of immunity can be easily included in the model. However, immunity to SARS-
CoV-2 reinfection is reported to be relatively long-lasting (a few months at least),
hence its loss cannot alter transmission dynamics over epidemic timescales14.

The cornerstone of model (Eq. (3)) is the force of infection, λi, which in a
spatially explicit setting must account not only for locally acquired infections but
also for the role played by human mobility. We assume that, at the spatiotemporal
scales of interest for our problem, human mobility mostly depicts daily commuting
flows (also coherently with the data available for parameterization; see above) and
does not actually entail a permanent relocation of individuals. We thus describe
human mobility (and the associated social contacts possibly conducive to disease
transmission) by means of instantaneous spatial-mixing matricesMX

c;ij (with X∈ {S,
E, P, I, A, R}), i.e.,

MX
c;ij ¼

rXpiqijð1� ξijÞ if i≠ j

ð1� piÞ þ ð1� rX Þpi þ rXpiqijð1� ξijÞ if i ¼ j;

(
ð4Þ

where pi (0 ≤ pi ≤ 1 for all i’s) is the fraction of mobile people in community i, qij
(0 ≤ qij ≤ 1 for all i’s and j’s) represents the fraction of people moving between i and
j (including j= i, ∑n

j¼1 qij ¼ 1 for all i’s), rX (0 ≤ rX ≤ 1 for all X’s) quantifies the
fraction of contacts occurring while individuals in epidemiological compartment X
are traveling, and ξij (0 ≤ ξij ≤ 1 for all i’s and j’s) represents the effects of travel
restrictions that may be imposed between any two communities i and j as a part of
the containment response. Therefore, the probability that residents from i have
social contacts while being in j (independently of with whom) is assumed to be
proportional to the fraction rX of the mobility-related contacts of the individuals in
epidemiological compartment X, multiplied by the probability pi that people from i
travel (independently of the destination) and the probability qij that the travel
occurs between i and j, possibly reduced by a factor 1− ξij accounting for travel
restrictions. All other contacts contribute to mixing within the local community
(i in this case). Note also that if ξij= 0 for all i’s and j’s, then MX

c;ij reduces to MX
ij ,

i.e., to the mixing matrix in the absence of disease-containment measures. In this
case, ∑n

j¼1 M
X
ij ¼ 1 for all i’s and X’s. It is important to remark, though, that the

epidemiologically relevant contacts between the residents of two different
communities, say i and j, may not necessarily occur in either i or j; in fact, they
could happen anywhere else, say in community k, between residents of i and j
simultaneously traveling to k. On this basis, we define the force of infection as

λi ¼ ∑
n

j¼1
MS

c;ij

ð1� ϵjÞ βPj ∑
n
k¼1 M

P
c;kjPk þ βIj ∑

n
k¼1 M

I
c;kjIk þ βAj ∑

n
k¼1 M

A
c;kjAk

� �
∑n

k¼1 MS
c;kjSk þME

c;kjEk þMP
c;kjPk þMI

c;kjIk þMA
c;kjAk þMR

c;kjRk

� � ;

ð5Þ

where the parameters βXj (X∈ {P, I, A}) are the community-dependent rates of
disease transmission from the three infectious classes, ϵj (0 ≤ ϵj ≤ 1 for all j’s)
represents the reduction of transmission induced by social distancing, the use of
personal protective equipment, and local mobility restrictions if such containment
measures are in fact in place, and the terms MX

c;ij (with X∈ {S, E, P, I, A, R})
describe the epidemiological effects of mobility between i and j in the presence of
disease-containment measures. Note that transmission has been assumed to be
frequency-dependent.

The parameters μ, δX (X∈ {E, P}), σ, α, η, γX (X∈ {I, A}), and rX (X∈ {S, E, P, I,
A, R}) are assumed to be community-independent, for they pertain to population
demography at the country scale or the clinical course of the disease. By contrast,
the transmission rates βXi (X∈ {P, I, A}) and the control parameters, namely the
isolation rates χXi (X∈ {E, P, I, A}), the reductions of transmission due to personal
protection, social distancing, and local mobility restriction ϵi, and the travel
restrictions ξij, are assumed to be possibly community-dependent, thereby
reflecting spatial heterogeneities in disease transmission prior to the
implementation of containment measures (βXi ), testing effort and/or strategy (χXi ),
local transmission reduction (ϵi), and travel restriction (ξij).

Derivation of the basic and control reproduction numbers. Close to the DFE, a
state in which all individuals are susceptible to the disease (Si=Ni, with Ni being
the baseline population size of community i) and all the other epidemiological
compartments are empty (Ei ¼ Pi ¼ Ii ¼ Ai ¼ Eq

i ¼ Pq
i ¼ Ihi ¼ Aq

i ¼ Ri ¼ 0 for
all i’s), the dynamics of model (Eq. (3)) is described by the linearized system

_x ¼ Jcx, where x ¼ ½Si;Ei;Pi; Ii;Ai;E
q
i ;P

q
i ; I

h
i ;A

q
i ;Ri�

T
(where i= 1…n and the
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superscript T denotes matrix transposition) and Jc is the spatial Jacobian matrix

Jc ¼

�μI 0 �θPc �θIc �θAc 0 0 0 0 0

0 �ϕE
c θPc θIc θAc 0 0 0 0 0

0 δEI �ϕP
c 0 0 0 0 0 0 0

0 0 σδPI �ϕI
c 0 0 0 0 0 0

0 0 ð1� σÞδPI 0 �ϕA
c 0 0 0 0 0

0 χE 0 0 0 �ðμþ δEÞI 0 0 0 0

0 0 χP 0 0 δEI �ðμþ δPÞI 0 0 0

0 0 0 ηIþ χI 0 0 σδPI �ðμþ αþ γI ÞI 0 0

0 0 0 0 χA 0 ð1� σÞδPI 0 �ðμþ γAÞI 0

0 0 0 γII γAI 0 0 γII γAI �μI

2
66666666666666666664

3
77777777777777777775

;

ð6Þ

where I and 0 are the identity and null matrices of size n, respectively, ϕX
c (X∈ {E,

P, I, A}) are diagonal matrices whose non-zero elements are μþ δE þ χEi (for ϕE
c ),

μþ δP þ χPi (for ϕP
c ), μþ αþ ηþ γI þ χIi (for ϕ

I
c), and μþ γA þ χAi (for ϕA

c ), and
the matrices θXc (X∈ {P, I, A}) are given by

θXc ¼ NMS
c ðI� ϵÞβXðΔcÞ�1ðMX

c Þ
T
; ð7Þ

where N is a diagonal matrix whose non-zero elements are the population sizes Ni,
MX

c ¼ ½MX
c;ij� (X∈ {S, P, I, A}) are sub-stochastic matrices representing the spatially

explicit contact terms in the presence of containment measures, ϵ is a diagonal
matrix whose non-zero entries are the transmission reductions ϵi, βX (X∈ {P, I, A})
are diagonal matrices whose non-zero elements are the contact rates βXi , and Δc is a
diagonal matrix whose non-zero entries are the elements of vector uNMS

c , with u
being a unitary row vector of size n.

Because of its block-triangular structure, it is immediate to see that Jc has 6n
strictly negative eigenvalues, namely −μ, with multiplicity 2n, and −(μ+ δE),
−(μ+ δP), −(μ+ α+ γI), and −(μ+ γA), each with multiplicity n. Therefore, the
asymptotic stability properties of the DFE of model (Eq. (3)), which determine
whether long-term disease circulation in the presence of controls is possible, are
linked to the eigenvalues of a reduced-order spatial Jacobian associated with the
infection subsystem, i.e., the subset of state variables directly related to disease
transmission, in this case {E1, …, En, P1, …, Pn, I1, …, In, A1, …, An}. Note that
introducing waning immunity would not change the spectral properties of the
Jacobian matrix evaluated at the DFE. The reduced-order Jacobian J�c thus reads

J�c ¼

�ϕE
c θPc θIc θAc

δEI �ϕP
c 0 0

0 σδPI �ϕI
c 0

0 ð1� σÞδPI 0 �ϕA
c

2
6664

3
7775: ð8Þ

The asymptotic stability properties of the DFE can be assessed through a NGM
approach22,37. In fact, the spectral radius of the NGM provides an estimate of the
so-called control reproduction number58, Rc, which can be thought of as the
average number of secondary infections produced by one infected individual in a
completely susceptible population in the presence of disease-containment
measures. Clearly, if Rc > 1 the pathogen can invade the population in the long
run, and endemic transmission will eventually be established despite the
implementation of disease-containment measures. To evaluate Rc for model (Eq.
(3)), the Jacobian of the infection subsystem can be decomposed into a spatial
transmission matrix

Tc ¼

0 θPc θIc θAc
0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; ð9Þ

and a transition matrix

Σc ¼

�ϕE
c 0 0 0

δEI �ϕP
c 0 0

0 σδPI �ϕI
c 0

0 ð1� σÞδPI 0 �ϕA
c

2
6664

3
7775; ð10Þ

so that Jc= Tc+ Σc. The spatial NGM with large domain KL
c , including variables

other than the states-at-infection59 (i.e., the exposed individuals Ei) thus reads

KL
c ¼ �TcðΣcÞ�1 ¼

K1
c K2

c K3
c K4

c

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; ð11Þ

with

K1
c ¼ δE θPc þ σδPθIcðϕI

cÞ
�1 þ ð1� σÞδPθAc ðϕA

c Þ
�1

h i
ðϕE

c Þ
�1ðϕP

c Þ
�1

K2
c ¼ θPc þ σδPθIcðϕI

cÞ
�1 þ ð1� σÞδPθAc ðϕA

c Þ
�1

h i
ðϕP

c Þ
�1

K3
c ¼ θIcðϕI

cÞ
�1

K4
c ¼ θAc ðϕA

c Þ
�1
:

ð12Þ

Because of the peculiar block-triangular structure of KL
c , the spatial NGM with

small domain (Kc, accounting only for Ei) is simply K1
c (see again Diekmann

et al.59). The control reproduction number can thus be found as the spectral radius
of the NGM (with either large or small domain), i.e.,

Rc ¼ ρðKL
c Þ ¼ ρðKcÞ ¼ ρðGP

c þ GI
c þ GA

c Þ; ð13Þ
where

GP
c ¼ δEθPc ðϕE

cϕ
P
c Þ

�1

GI
c ¼ σδEδPθIcðϕE

c ϕ
P
c ϕ

I
cÞ
�1

GA
c ¼ ð1� σÞδEδPθAc ðϕE

cϕ
P
c ϕ

A
c Þ

�1

ð14Þ

are three spatially explicit generation matrices describing the contributions of post-
latent infectious people, infectious symptomatic people, and asymptomatic/
paucisymptomatic infectious people to the next generation of infections in a
neighborhood of the DFE in the presence of disease-containment measures.

In the absence of controls, i.e., if the isolation rates χXi (X∈ {E, P, I, A}), the
transmission reductions ϵi, and the travel restrictions ξij are equal to zero for all i’s
and j’s, then the control reproduction numberRc reduces to the basic reproduction
number R0, defined as the average number of secondary infections produced by
one infected individual in a population that is completely susceptible to the disease
and where no containment measures are in place. R0 can be evaluated as the
spectral radius of matrix GP+GI+GA, where

GP ¼ δEθPðϕEϕPÞ�1

GI ¼ σδEδPθIðϕEϕPϕIÞ�1

GA ¼ ð1� σÞδEδPθAðϕEϕPϕAÞ�1
:

ð15Þ

In the previous set of expressions, ϕX (X∈ {E, P, I, A}) are diagonal matrices
whose non-zero elements are μ+ δE (for ϕE), μ+ δP (for ϕP), μ+ α+ η+ γI (for
ϕI), and μ+ γA (for ϕA), while matrices θX (X∈ {P, I, A}) are given by

NMSβXðΔÞ�1ðMXÞT , with MX ¼ ½MX
ij � (X∈ {S, P, I, A}) and MX

ij ¼ MX
c;ij evaluated

with ξij= 0 for all i’s and j’s, and Δ is a diagonal matrix whose non-zero entries are
the elements of vector uNMS.

Derivation of basic and control epidemicity indices. The concept of
epidemicity26 extends previous work24,25 where a reactivity index was defined and
applied to study the transient dynamics of ecological systems characterized by
steady-state behavior. To explain, in physical terms, the meaning of reactivity and
of the Hermitian matrix used to derive it, consider a linear system dx/dt=Ax,
where x ¼ ðx1; ¼ ; xnÞT is the state vector and A is a n × n real state matrix. The
system is subject to pulse perturbations x(0)= x0 > 0. Reactivity is defined as the
gradient of the Euclidean norm jjxjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2n

p
¼

ffiffiffiffiffiffiffiffi
xTx

p
of the state vec-

tor, evaluated for the fastest-growing initial perturbation, and corresponds to the
spectral abscissa ΛRe

maxð�Þ of the Hermitian part (A+AT)/2 of matrix A24. Following
Mari et al.25, an asymptotically stable equilibrium is characterized by positive
generalized reactivity if there exist small perturbations that can lead to a transient
growth in the Euclidean norm of a suitable system output y=Wx, with matrix W
describing a linear transformation of the system state.

In epidemiological applications, W should include the variables of the infection
subsystem26. Therefore, a suitable output transformation for the problem at hand is

W ¼

0 wEI 0 0 0 0 0 0 0 0

0 0 wPI 0 0 0 0 0 0 0

0 0 0 wII 0 0 0 0 0 0

0 0 0 0 wAI 0 0 0 0 0

2
6664

3
7775; ð16Þ

where wE, wP, wI, wA are the weights assigned to the variables of the infection
subsystem in the output
y ¼ ½wEE1; ¼ ;wEEn;w

PP1; ¼ ;wPPn;w
II1; ¼ ;wIIn;w

AA1; ¼ ;wAAn�T .
Generalized reactivity for the DFE of system (Eq. (3)) is positive if the spectral
abscissa of a suitable Hermitian matrix (either H0 or Hc, depending on whether the
spread of disease is uncontrolled or some containment measures are in place) is
also positive. In SEPIAR, the expressions of matrices H0 and Hc are far from trivial,
as shown below, and the evaluation of spectral abscissae typically requires
numerical techniques. Note also that, since recovered individuals are not accounted
for in the system output, including waning immunity would not alter the
epidemicity properties of the DFE.

Let us consider the most general case of disease-containment measures being in
place (which includes as a limit case also uncontrolled pathogen spread). If we note
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that kerðWÞ ¼ kerðWJcÞ, with Jc being the Jacobian of SEPIAR at the DFE in the
presence of controls, matrix Hc can be defined25,27 as the Hermitian part of
WJc(W)+, i.e.,

Hc ¼ HðWJcðWÞþÞ ¼ 1
2

WJcðWÞþ þ ½ðWÞþ�T ðJcÞT ðWÞT
n o

; ð17Þ

where (W)+ is the right pseudo-inverse (a generalization of the concept of inverse
for non-square matrices) of W, and can be evaluated as

ðWÞþ ¼ ðWÞT ½WðWÞT ��1
: ð18Þ

Matrix

Hc ¼

�ϕE
c

wP

2wE δ
EIþ wE

2wP θ
P
c

wE

2wI θ
I
c

wE

2wA θ
A
c

wP

2wE δ
EIþ wE

2wP θ
P
c �ϕP

c
wI

2wP σδ
PI wA

2wP ð1� σÞδPI
wE

2wI θ
I
c

wI

2wP σδ
PI �ϕI

c 0
wE

2wA θ
A
c

wA

2wP ð1� σÞδPI 0 �ϕA
c

2
666664

3
777775 ð19Þ

is Hermitian, hence real and symmetric. Therefore all eigenvalues are real and the
spectral abscissa ec ¼ ΛRe

maxðHcÞ coincides with the largest eigenvalue, which
corresponds to the fastest-growing perturbation in the system output. Thus, ec can
be interpreted as a control epidemicity index: if ec > 0, there must exist some small
perturbations to the DFE that are temporarily amplified in the system output, thus
generating a transient, subthreshold epidemic wave.

Absent any containment measures, the control epidemicity index, ec, reduces to
the basic epidemicity index, e0 ¼ ΛRe

maxðH0Þ, where

H0 ¼ HðWJ0ðWÞþÞ ¼ 1
2

WJ0ðWÞþ þ ½ðWÞþ�T ðJ0ÞT ðWÞT
n o

ð20Þ

and the Jacobian matrix J0 can be obtained from Jc by setting equal to zero the
isolation rates χXi (X∈ {E, P, I, A}), the transmission reductions ϵi, and the travel
restrictions ξij for all i’s and j’s.

The effective reproduction number and the effective epidemicity index. The
reproduction numbers and the epidemicity indices defined above can be rigorously
applied only to characterize the spread of disease in a fully naïve population (Si=
Ni ∀ i). As soon as the pathogen begins to circulate within the population, the state
of the system gradually departs from the DFE. Under these circumstances, it is
customary19,21 to define a time-dependent, effective reproduction number, RðtÞ, to
track the number of secondary infections caused by a single infectious individual in
a population in which the pool of susceptible individuals is progressively depleted,
and control measures are possibly in place58. Similarly, it is possible to define an
effective epidemicity index, e(t), to evaluate the likelihood that transient epidemic
waves may occur even if RðtÞ< 1.

The definition of these time-dependent metrics requires to update the
expressions of the spatially explicit infection matrices θXc (X∈ {P, I, A}) in a time-
varying fashion, i.e.,

θXc ðtÞ ¼ SðtÞMS
c ðtÞ½I� ϵðtÞ�βX½ΔcðtÞ��1½MX

c ðtÞ�
T
; ð21Þ

where ϵ(t) is a diagonal matrix whose non-zero elements represent the reduction of
local transmission rates at time t, ϵi(t), ΔcðtÞ ¼ diagðu∑X2fS;E;P;I;A;RgXðtÞMX

c ðtÞÞ,
MX

c ðtÞ are spatially explicit contact matrices including time-varying travel
restrictions, ξij(t), and S(t), E(t), P(t), I(t), A(t), and R(t) are diagonal matrices
whose non-zero elements are the time-varying abundances of susceptible (Si(t)),
exposed (Ei(t)), post-latent (Pi(t)), symptomatic (Ii(t)), asymptomatic (Ai(t)), and
recovered (Ri(t)) individuals in each community i= 1...n. The evaluation of RðtÞ
and e(t) also mandates an update of the transition matrices ϕX

c to include time-
dependent testing and isolation rates, χXi (X∈ {E, P, I, A}).

Computing the θXc and ϕX
c matrices thus requires updating the state variables

and epidemiological parameters of SEPIAR, i.e., to numerically solve Eq. (3) as the
epidemic progresses and control strategies are put in place. The definition of time-
varying transmission and transition terms gives rise to time-varying Jacobians and
NGMs. In turn, the use of these matrices in the computation of reproduction
numbers and epidemicity indices allows the evaluation of the time-varying
threshold quantities RðtÞ and e(t). Clearly, this type of argument works best if the
depletion of the susceptible pool is relatively slow, i.e., if the initial perturbation is
sufficiently small and the divergence of the epidemic trajectory from the DFE is not
too large60,61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Secondary data were obtained from a variety of publicly accessible sources. The resident
population at the provincial level is available at http://dati.istat.it/Index.aspx?
QueryId=18460. The data to quantify nation-wide human mobility prior to the
pandemic are available at https://www.istat.it/it/archivio/139381. Airport traffic data are
available at http://assaeroporti.com/statistiche_201912. Surveillance data are available at

https://github.com/pcm-dpc/COVID-19. All the necessary data to evaluate the basic
reproduction numbers and the epidemicity indices for the Italian case study are available
at https://github.com/COVID-19-routes/epidemicity-paper62.

Code availability
All numerical analyses have been performed with MATLAB R2020b. The code to
evaluate the basic reproduction numbers and the epidemicity indices for the Italian case
study are available at https://github.com/COVID-19-routes/epidemicity-paper62.
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