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Abstract. Reverse engineering is usually the stepping stone of a vari-
ety of attacks aiming at identifying sensitive information (keys, creden-
tials, data, algorithms) or vulnerabilities and flaws for broader exploita-
tion. Software applications are usually deployed as identical binary code
installed on millions of computers, enabling an adversary to develop
a generic reverse-engineering strategy that, if working on one code
instance, could be applied to crack all the other instances. A solution
to mitigate this problem is represented by Software Diversity, which
aims at creating several structurally different (but functionally equiv-
alent) binary code versions out of the same source code, so that even
if a successful attack can be elaborated for one version, it should not
work on a diversified version. In this paper, we address the problem of
maximizing software diversity from a search-based optimization point of
view. The program to protect is subject to a catalogue of transforma-
tions to generate many candidate versions. The problem of selecting the
subset of most diversified versions to be deployed is formulated as an
optimisation problem, that we tackle with different search heuristics. We
show the applicability of this approach on some popular Android apps.
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1 Introduction

The latest BSA Global Software Piracy Study1 states that 39 % of software
installed on computers around the world in 2015 is not properly licensed, amount-
ing to $52 billion in losses due to unlicensed software; the same study shows that
malware often spreads through unlicensed software distributed on the internet,
causing a wider number of security attacks and consequent revenue losses. In
particular, the 98 % of mobile apps lack binary code protection and they can be

1 BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/.
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easily reverse engineered and modified2. Software vendors need effective solutions
to contrast Man-At-The-End attacks [11], where the end user is the attacker,
owning the device running the software, and able to reverse engineer and modify
the code, in order to use and spread unlicensed copies.

Obfuscation is a common protection against reverse engineering, and it con-
sists of semantic-preserving code transformations that make a program more
difficult to understand by changing its structure, while keeping the original func-
tionalities. A multitude of techniques to perform code obfuscation have been
proposed [8]. From a security viewpoint, obfuscation can help software diversity
so that an attacker can find more difficult to map critical code in one release to
another one.

Diversified updates is a software protection technique that aims at mitigating
the risk of such attacks. When a program is frequently updated with a different
version, then an available crack can be used for a limited amount of time, until a
diversified update is pushed. The deployed versions should be pairwise different
from the ones previously deployed, such that an attack available for one version
cannot be easily replayed on another version.

The open problem we want to tackle is how to determine whether the subse-
quent diversified version maximizes its own diversity with respect to the previous
versions, mitigating the security risks by maximizing diversity.

In this paper, we propose a novel approach to generate diversified versions
of the program to protect. These can be used in an update strategy aimed at
limiting the time available to an attacker to be successful. Given the availability
of a catalogue of transformations, first of all we propose a novel strategy to filter
those that are not effective in achieving diversification. These transformations
that remain after filtering are combined in all the possible permutations, to form
the complete set of the candidate versions. Then, our second novel contribution
is to formulate the identification of diversified versions as a clustering problem,
to be addressed with search based optimization heuristics.

The paper is structured as follows. Section 2 presents our approach to gener-
ate diversified versions for updates. Then, in Sect. 3 we introduce our setting for
the empirical validation, while Sect. 4 presents and comments the experimental
results. Section 5 compares our approach to the related literature while Sect. 6
concludes the paper.

2 Automatic Generation of Maximally Diversified
Versions

Software diversity aims at distribution of unique binaries, so that it become
much less likely that a single attack will affect large numbers of targets, and as
a consequence the impact of reverse engineering attacks will be reduced. The
distribution of unique binaries also has the effect that attackers cannot simply

2 State of Application Security: https://www.arxan.com/resources/state-of-
application-security/.

https://www.arxan.com/resources/state-of-application-security/
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analyse their own software copies to locate critical code in certain binary code
sections, because such code might have been relocated in different sections due
to binary code diversity.

2.1 Approach Overview

Our code protection technique based on diversified updates, consists in gen-
erating several structurally different (but functionally equivalent) binary code
versions out of the same source code such that they maximise their pairwise
diversity. This protection strategy aims at reducing the exploitation of reverse
engineering attacks: a successful attack on one code instance cannot be easily
replayed on a diversified update.

Our approach is composed of the subsequent steps:

– A catalogue of code transformations are applied separately to the program to
protect, so as to generate several distinct versions of the initial program;

– These versions are analysed, to filter out transformations that do not work
well on the current program;

– The remaining transformations are combined together (in all the possible com-
binations) to generate many versions candidate for updates;

– We measure the similarity among all the pairs of versions;
– Candidate versions are subject to clustering, to group in the same cluster all

the versions that are very similar to one another;
– We select one version from each distinct cluster. Since the version selected in

this way are different from one another, they can be used to support diversified
updates.

2.2 Program Transformations

Code obfuscation aims at transforming a program such that it becomes much
harder to understand and reverse engineer, while its observable behaviour
remains the same.

Code obfuscation represents an available approach to generate versions with
a high level of diversity, with the added value of thwarting code comprehension.

We adopted Zelix KlassMaster3 a commercial obfuscation tool for Java and
Android. Zelix KlassMaster provides several activation points for obfuscating
Java classes. It also provides a way to prevent methods, classes and packages from
being obfuscated, or to identify the portion of code to protect with obfuscation.
The tool can be streamlined by the use of scripts, which make it very easy to
automate.

Zelix KlassMaster supports 15 distinct configuration parameters to control
which transformations are activated and how they are configured. Among them,
8 parameters supports binary values, other 3 parameters have three possible
values each, and the other two parameters allow four values each. This means

3 http://www.zelix.com/klassmaster/.

http://www.zelix.com/klassmaster/
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that, potentially, a total of 28 * 33 * 42 = 110,592 distinct obfuscated versions
can be generated using this tool, just by resorting to its different configurations.
Moreover, the number of versions can be further increased by selecting the subset
of methods and/or classes on which to apply the obfuscation (instead of the whole
application), but this dimension is not investigated in this study.

2.3 Similarity Metric

To quantify the similarity between two versions, we rely on the Normalized
Compression Distance (NCD [14])4. The formula used to compute similarity is
shown in Eq. 1, where NCD is the Normalized Compression Distance and Crzip

5

is the size of the compressed text.

S(v1, v2) = 1−NCD(v1, v2) = 1−Crzip(v1v2) − min(Crzip(v1), Crzip(v2))
max(Crzip(v1), Crzip(v2))

(1)

This metric is based on rzip, a lossless compression algorithm, to estimate
the amount of common information shared among two documents. In fact, size
reduction is achieved by removing repeated sub-sequences of bits.

If two versions v1 and v2 are very similar, the compression of the concatena-
tion v1v2 will not bring additional information and it will result in a size closer
to the smaller of the two versions. Thus, the NCD distance will tend to zero and
similarity (that is 1 − NCD) will be close to 1.

Conversely, when v1 and v2 are different the size of the compression of the
concatenation would tend to reach the sum of the sizes of v1 and v2, the distance
will tend to one and similarity will tend to 0.

We base similarity computation on the textual representation of the Java
code, obtained by executing the javap disassembler. We drop irrelevant infor-
mation for disassembled code, such as constant headers, compilation info, com-
ments, white lines and we replace the identifiers with labels. Eventually, we
compute the similarity as specified in Eq. 1 using rzip as compression algorithm.
We used NCD metric implementation with rzip algorithm because its history
buffer is wider than gzip, which is limited to 32 Kbytes [5].

2.4 Filtering Twin Obfuscations

Many versions can be generated by blindly combining all the available code
obfuscation transformations. However, some of these distinct transformations in
the catalogue could generate programs that are not so different, so they should
be detected and excluded.

Since transformations can be combined, let’s call the transformations in the
catalogue the atomic obfuscations. If we consider m atomic obfuscations, we
can elaborate n = 2m distinct combinations of atomic obfuscations to deliver n

4 Our approach is general, and it is compatible with any other pairwise similarity
metric.

5 https://rzip.samba.org/.

https://rzip.samba.org/
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candidate versions for updates. Since the number of versions n is exponential in
the number of atomic obfuscations m, we need to carefully select the m atomic
obfuscation to keep, i.e. only the relevant ones.

When two atomic obfuscations are just small variations of the same trans-
formation algorithm, or when they are two different algorithms that emit very
similar obfuscated code (for example an atomic obfuscation only targeting and
rewriting exception handling code may have little effect on an original applica-
tion with few exception code blocks), it does not make sense to consider both
of them for diversity. Including one of the two similar variants is enough, and
the other can be considered redundant: we propose to apply a preliminary fil-
tering to drop some of the m atomic obfuscations from the search space, when
they are not promising as a diversifier component for the application. When two
atomic obfuscations a and b are very similar to each other, we call a and b twin
obfuscations.

Our approach to detect twin obfuscations and filter them out is as follows:

– We consider only the atomic obfuscations, i.e. each version is obtained by
applying only an atomic obfuscation from the catalogue: in this way, we only
obtain m versions;

– We compute the pairwise similarity of these m versions. Similarity values are
stored in a similarity matrix of size mxm. A value in the similarity matrix in
the i-th row and j-th column represents the similarity between version i and
version j;
For each atomic obfuscation a, the a-th row in the similarity matrix represents
the signature vector Xa. The signature vector contains the similarity values
between a and all the other m − 1 obfuscated versions. The b-th element of
this vector, namely Xa(b), represents the similarity between code obfuscated
with a and code obfuscated with b.

– Two atomic obfuscations are twins when their signature vectors are very simi-
lar, i.e. the two transformations generate code with the same values of similar-
ity when compared with the same alternative versions. We compute the twin
value ta,b between atomic obfuscation a and b as the square of the distance
between their signature vectors Xa and Xb with the sum of squared residuals:

ta,b =
∑

i=1..n,i �=a,i�=b

(Xa(i) − Xb(i))2

– When all the pairwise twin values tx,y are available (one for each obfuscation
pair (x, y)), we sort them in ascending order to detect the most likely twins;

– We exclude the twins by excluding the atomic obfuscations with lowest twin
values. Let us say that ta,b is the smallest value among all the twin values (first
value in the sorted set). At this stage, we can exclude either a or b. To decide
which one to exclude, we consider the next twin value tx,y (in the sorted twin
values in ascending order). There could be three cases:
• (x = a) ∨ (y = a): we make the decision to exclude a;
• (x = b) ∨ (y = b): we make the decision to exclude b;



164 M. Ceccato et al.

• (x �= a) ∧ (y �= a) ∧ (x �= b) ∧ (y �= b): we make no decision at this point and
we iterate. We consider the next twin value tw,z in the sorted list, and we
compare a and b with w and z.

There are multiple strategies to decide when to stop excluding twin obfusca-
tions. A possible strategy is to set a threshold and exclude atomic obfuscations
whose twin values are below the threshold. Alternatively, we can set a target size
mmax for the number of atomic obfuscations and stop filtering when this target
is met, i.e. when m ≤ mmax.

In this work, we opted for the second strategy. We set the upper limit to the
number of versions nmax to 500. Therefore, the number of atomic obfuscations
m is approximately6 9(29 = 512). Eventually, the number of pairwise similarity
values k to measure is 130,816, in fact the distinct pairs of n versions are k =
n(n − 1)/2.

Anyway, this filtering strategy is required to keep the number of versions
to generate and the number similarity values to measure limited to a tractable
size. Anyway, the exact solution to the clustering problem is still intractable (see
Sect. 2.5).

2.5 Clustering Based on Similarity

We formulate the problem of computing the set of maximally dissimilar versions
as a clustering problem, as shown in the example in Fig. 1. Clustering is used to
partition the available versions into groups that contain very similar versions,
three groups in the example. Versions from the same cluster (e.g., in C1) are
very similar to each other, so they cannot be used in the same update plan. The
final set of versions to be used as updates is selected by taking just one element
from each high-similarity group, they are the black elements in Fig. 1. In this
way, very similar versions are never used in the update plan. Clustering is driven
by the similarity metric defined in Eq. 1.

Given a partition of all the available versions into similarity clusters, we
define the intra-similarity Ai of the cluster i as the average similarity of all the
pairs of elements in the cluster:

Ai =

∑
v1,v2

S(v1, v2)
|Ci|(|Ci| − 1)/2

, ∀v1, v2 ∈ Ci (2)

Fig. 1. Diversified updates based on clustering for similarity.

6 The number of atomic obfuscations m can be actually larger, because some combi-
nations cause an error in the obfuscation tool, or simply do not work. Thus, more
atomic obfuscations are required to meet the target number of versions n.



Search Based Clustering for Protecting Software with Diversified Updates 165

We define the inter-similarity between two clusters Ci and Cj as the average
similarity of the versions from the two clusters:

Ei,j =

∑
v1,v2

S(v1, v2)
|Ci| |Cj | v1 ∈ Ci, v2 ∈ Cj (3)

Considering that our objective is to search for a clustering configuration
whose clusters contains elements as similar as possible (high intra-similarity)
and low similarity between elements from different clusters (low inter-similarity),
we define the overall similarity quality among the clusters as the average intra-
similarity minus the average of all the inter-similarity:

SQ =
1
nc

nc∑

i=1

Ai − 1
nc(nc−1)

2

k∑

i,j=1

Ei,j (4)

where nc is the number of clusters in the partition to evaluate.
At this stage, the software diversity problem can be expressed as a search

problem, aiming at finding the clustering partition that maximize the similarity
quality SQ.

2.6 Search Strategies

The analytic solution of clustering is intractable [24], because the number of
potential solutions to the clustering problem is exponential in the number of ele-
ments to cluster. Considering that the number of candidate versions for update
are hundreds of thousands, we adopt search heuristics. They are Greedy agglom-
erative clustering, Hill climbing and Single objective genetic algorithm.

Greedy agglomerative clustering: Agglomerative clustering is a greedy algo-
rithm to find a candidate good partition in the search space. This algorithm
starts from an initial configuration, where each element is assigned to a different
cluster. At each step, inter-/intra-similarity are computed and the two most sim-
ilar clusters (those with the highest inter-similarity) are merged to form a single
cluster. This process is iterated and, at each step, the total number of cluster
decreases by 1. The iteration terminates when all the clusters are merged in a
single final big cluster.

During this process, we record the similarity quality SQ of all the visited
configurations, and the one with the highest value represents the final optimal
solution.

This algorithm produces candidate clustering configurations with decreasing
number of clusters, in the interval [0, n]. However, solutions with too few clusters
are not relevant to solve our problem, even if their similarity quality SQ would
be very high, because not enough versions would be available for updates. Thus,
we consider interesting only those clustering configurations with a number of
clusters above a threshold, that we set to 10.
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Hill climbing: Hill-climbing starts from an initial random configuration of
clustering. At each step, neighbour solutions are considered and one of them is
randomly chosen among those that improve the fitness function SQ of the current
clustering configuration. This process is iterated until no better solution can be
found in the neighbourhood. However, given the huge space of the neighbour
configurations, only a subset of it is probed, and this subset is selected choosing
100 configuration with uniform probability among all the neighbour cases.

Neighbour solutions consist of all the clustering configurations that can be
obtained from the current clustering configuration with an atomic change. An
atomic change consists of applying one of these mutation operators:

(i) Moving one element from a cluster to another cluster; and
(ii) Removing one element from a cluster and create a brand new cluster with

just this element;

The search stops when no neighbour can be found that improve the fitness
function or the search budget is consumed.

Single objective genetic algorithm: Genetic algorithms are a family of opti-
mization heuristics inspired by biological evolution. A population of solutions is
evolved by giving higher probability of recombining to solutions with higher val-
ues of a fitness function. The aim is to push the population to evolve and explore
the part of the solution space with better and better values of fitness function. In
particular, we adopt a steady state genetic algorithm. In this variant, offspring
replace the parents at each iteration regardless of their fitness function [2].

In our case, the population of solutions is represented by clustering configu-
rations. For a clustering configuration, the fitness function is represented by the
similarity quality SQ.

The initial population is represented by 100 versions, including random clus-
tering configuration. At each evolution iteration, we select 70 % of the popu-
lation, using linear ranking selection with a selection pressure sp of 1.5. The
selected versions are paired randomly. Each of these pairs of solutions undergoes
crossover with rate of 0.5.

Crossover, consists in elaborating two brand new solutions (offspring), based
on the two selected solutions (parents). Let’s assume that the two parents,
namely clustering C1 and clustering C2, contain respectively n1 and n2 clus-
ters. Two cross points r1 and r2 are randomly selected, such that r1 < n1 and
r2 < n2. Then, r1 clusters are randomly selected from C1 and r2 clusters from
C2 to form the new C3 offspring configuration. The remaining n1 − r1 clusters
from C1 and n2 − r2 clusters form C2 are used to create the new C4 offspring
configuration.

At this stage C3 and C4 could be invalid clustering configurations, because
they could contain repeated elements or they could miss elements, so they should
be fixed. In case an element is repeated, one instance of the repeated element is
randomly selected and removed. Conversely, if an element is missing, it is added
to a random cluster.
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In steady state GA, when crossover takes place, only offspring survives for
the next generation while parents do not [23]. Otherwise, if there is no crossover,
the parents survive for the next generation. The offspring is subject to mutation
with a rate of 0.03. Mutation operators are the same operators used to visit the
neighbourhood in hill climbing search strategy.

The search stops when the search budget is consumed or when a plateau is
reached, i.e. no improvement in the population after 100 iterations.

3 Experimental Settings

3.1 Research Questions and Variables Selection

Our experimental investigation aims at answering the following research ques-
tions:

– RQ0: What is the interval of validity of the normalized compression distance?
– RQ1: What is the distribution of Similarity among all the version pairs?
– RQ2: Is filtering effective in discarding useless obfuscations?
– RQ3: How many diversified versions can be identified by the search heuristics?

RQ0 is a sanity check, to verify that we are using the metric in the correct
interval of validity. RQ1 aims at studying how values of Similarity are spread.
Then, RQ2 is intended to validate the filtering procedure that we proposed. We
adopted a filtering procedure to control the (exponential) number of versions
to consider, by excluding those obfuscations that are not effective in generating
diversified versions. Eventually, the last research question RQ3 directly compares
the search strategies, to identify the most effective to solve the software diversity
problem.

To answer these research questions, we measure and collect the following
variables:

– Similarity: the similarity among version pairs based on the compression size
(as defined in Sect. 2.3);

– Similarity Quality: the fitness function (as defined in Sect. 2.5) to compare
clustering configurations; and

– Number of Clusters: how many clusters are in a clustering configuration. This
number corresponds to the number of diversified versions that can be used as
diversified updates.

3.2 Experimental Procedure

The empirical investigation is conducted according to the following experimental
procedure:

– The original version of an app (as it is distributed by the apps market) is
subject to all the atomic obfuscation transformations available in Zelix Klass-
Master (no combinations of obfuscations);
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– Twin obfuscations are then detected and excluded for this particular app;
– The remaining atomic obfuscation transformations are applied to the app, in

all the possible combinations, resulting in the versions candidate for diversified
updates;

– Pairwise similarity is computed among all the pairs of these versions;
– The search heuristics (agglomerative clustering, hill climbing and genetic algo-

rithm) are applied to compute optimal clustering based on similarity.

Agglomerative clustering is a deterministic algorithm and it requires a fixed
number of fitness function evaluations, that is equal to the number of versions
to group into the clusters. Conversely, hill climbing and genetic algorithm are
non-deterministic, so we set a search budget: in particular, they are stopped
after 100.000 fitness function evaluations or when a plateau (a local optimum)
is detected.

3.3 Subject Apps

We apply the experimental procedure on several real world Android apps. We
select 10 from the most popular apps as ranked in the official Android store,
namely Google Play (data collected in 2013). They spread on different categories
(utility, social network, games, voip, internet browser) and their popularity goes
from half a million to 500 millions of downloads. Their size is between 100 kB
to almost 10 MB. The smallest apps contain about 200 classes, while the largest
apps contain about 10,000 classes.

Despite we selected popular apps from different categories, they could be
prone to the app sampling problem [22]. This represents a threat to the external
validity of our results. Only replications of this study with more apps would
confirm or disprove our findings.

4 Results

4.1 RQ0: Validity of the Normalized Compression Distance

As shown by Cebrián et al. [5], metrics based on the Normalized Compression
Distance provide reliable results in an limited interval. In particular, NCD met-
rics give unreliable results when size of the file to compress is lager than the
sliding window used by the compression algorithm. For example, Cebrián et al.
reports that gzip can be used for files up to 32 Kb.

Here we adopt a validation procedure similar to the one used by Cebrián
et al., i.e. we study the idempotency property of NCD based on rzip that requires
NCD(x, x) = 0. We take a large text file and we truncate it to have a shorter
file x. Then we plot NCD(x, x) for increasing size of x, from 0 to 1 GB with
steps of 16 MB.

Results are shown in Fig. 2, left-hand side plot. The most interesting region is
highlighted in yellow and detailed in the right-hand side plot. The idempotency
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Fig. 2. Interval of validity of the Normalized Compression Distance. (Color figure
online)

property (zero distance between x and x) is satisfied when the size of files is
lower than 448 MB. NCD values are not reliable for larger files.

For the subsequent experiments, the size of decompiled code will be lower
than 20 MB, so the NCD metric is used in its interval of validity.

4.2 RQ1: Distribution of Similarity

First of all, we examine the distribution of the values of similarity. Figure 3 show
the histogram of Similarity for Skype. The histogram contains all the versions,
after filtering twin obfuscations, for approximately 130,000 pairs.

As we can see, values of similarity are clustered in two groups. A first group
that contains quite dissimilar pairs is centred in 0.4, ranging mostly in the inter-
val [0.1, 0.5]. The second group contains quite similar pairs and it is centred in
0.8. Probably, diversified updates will be selected among versions whose similar-
ity falls in the first group.

4.3 RQ2: Effectiveness of Filtering

Table 1 shows which atomic obfuscations remain after applying filtering, more
precisely, which atomic obfuscations are combined to diversify the code. A check
mark shows when an atomic obfuscation (column) passes filtering and so it is
used to generated candidate diversified versions for a case study (row). The last
row summarizes on how many apps each obfuscation has been applied. As we can
see, the set of obfuscations that passes filtering is quite different among different
apps. Some obfuscations are applied to most of the case studies (two obfuscations
are applied to all 10 apps, an obfuscation to 9 apps and four obfuscations are
applied to 8 apps), while others are used less frequently (one obfuscation is
applied on 2 apps and two obfuscations are applied to 3 apps).

This suggests that the filtering step is quite app dependent, because the effec-
tiveness of atomic obfuscation transformations in diversifying the code indeed
depends on the code to transform. Thus, there is no universal rule on what atomic
obfuscations to adopt in general when diversifying the code. The filtering step
shall be repeated for each app that we want to diversify.
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Fig. 3. Histogram of similarity in Skype.

Table 1. Obfuscation transformations that pass filtering.

App Atomic obfuscations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

airdroid
√ √ √ √ √ √ √ √ √ √ √ √

chrome
√ √ √ √ √ √ √ √ √ √

contacts
√ √ √ √ √ √ √ √ √ √ √

esx-filexplorer
√ √ √ √ √ √ √ √ √ √

facebook
√ √ √ √ √ √ √ √ √ √

gotetris
√ √ √ √ √ √ √ √ √ √ √

opera
√ √ √ √ √ √ √ √ √ √

skype
√ √ √ √ √ √ √ √ √ √ √

twitter
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

wordfriends
√ √ √ √ √ √ √

Tolal 10 6 9 7 7 2 7 3 3 7 8 8 8 4 8 10

It should be noted that this filtering step is fully automatic, based on the
algorithm presented in Sect. 2.4.

Due to the fact that the obfuscation tool Zelix KlassMaster (that we do not
control) fails to generate certain configurations, the number N of the atomic
obfuscations required to reach nmax combinations is different for different case
study apps.

4.4 RQ3: Diversified Versions

After filtering twin obfuscations, we applied the three search heuristics to the
subject apps, to see how many diversified versions they are able to identify.

Table 2 compares the results of the three search heuristics on the 10 apps,
relevant values are highlighted in boldface. We observe negative values of simi-
larity quality SQ when, according to Eq. 4, the inter-similarity term Ei,j prevails
on the intra-similarity term Ai.
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Table 2. Results of clustering.

App Agglomerative clust. Hill climbing Genetic algorithm

SQ N SQ N SQ N

airdroid 0.3533 13 0.3377 24 0.2093 35

chrome 0.4547 10 0.4148 28 0.2332 35

contacts 0.5431 15 0.4786 23 0.2447 34

esx-filexplorer 0.1637 11 0.3193 27 0.2068 107

facebook −0.5674 14 0.0017 17 −0.1105 27

gotetris 0.3927 12 0.3711 32 −0.0346 34

opera 0.2934 16 0.3854 26 0.2360 41

skype 0.4351 10 0.4287 32 0.2502 96

twitter 0.4337 13 0.4255 24 0.2562 41

wordfriends −0.5792 12 0.0011 10 −0.1991 15

Average 0.1923 13 0.3164 24 0.1292 46

Agglomerative Clustering was able to elaborate the most diversified versions
for the majority of the cases (for 6 out of 10 apps), because the correspond-
ing clustering configurations score the highest values of Similarity Quality. Hill
climbing elaborated configurations that were always more diversified in the other
four cases.

Considering the number of clusters, the Genetic Algorithm was able to iden-
tify the largest set of diversified versions in almost all the apps (9 out 10 apps).
In two of them, the number of diversified versions was quite impressive (107
versions for esx-filexplorer and 96 versions for skype) however the correspond-
ing Similarity Quality was low, but still comparable with the values obtained
with the other two approaches. Hill Climbing elaborated optimal configurations
with many clusters for the remaining app (i.e., opera). Eventually, the greedy
algorithm elaborated large sets of diversified versions for no app.

5 Related Work

The concept of software diversity has interested researchers for many years [12],
but only recently software diversity has become practical due to cloud computing
enabling the computational power to perform massive diversification [19]. In the
existing literature [1,10,13,17], software diversity relied on random generation of
different diversified copies, starting from the same source code. A recent survey
from Larsen et al. [20] compares the different approaches for software diversity
in terms of performance and security.

Most of the past software diversity approaches have been based on some form
of obfuscation [7], load-time binary transformation [18], virtualization obfusca-
tion based on customized virtual machines [16], or operating system randomiza-
tion [31]. Current software diversity approaches exploit the intrinsic randomness
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of compiler optimizations, extending the initial idea of Forrest et al. [12] of
compiler-guided code variance. Other approaches rely on binary transformation
based on a random seed [27], or multi-compilers and cloud computing [13] to
create a unique diverse binary version of every program, and they apply such
diversification for mobile apps [17]. The XIFER framework [10] randomly diver-
sifies Android apps at load-time by means of a binary rewriter. However, such
diversifier can be disabled or tampered with because it is running on the Android
device and because the original app is available to the attacker before it is loaded
and diversified by the XIFER framework.

A previous work by Anckaert et al. [1] applied regular compiler transforma-
tions (e.g., optimizations) in a stochastic manner to generate diversified binary
code versions, with random seeds to vary compiler parameters. However, there
is no guarantee that two versions generated with different random seeds will not
converge to “similar” code. Anckaert et al. do not tackle the problem of measur-
ing the diversity among the different versions, which is necessary for performing
a diversity evaluation. Coppens et al. [9] apply binary diversification changing a
random seed and they iteratively compare it with the previous one till they get
a new version different enough from the previous version; however they search
just one version, and not the best subset of versions like in our approach. Diver-
sity has also been applied to improve security in different research lines: code
randomization has been used to defend against code-reuse attacks [26], return-
oriented programming attacks [15], code injection attacks [29].

The novelty of our approach is that we are the first to tackle the problem of
searching the most diversified versions with meta-heuristics, to guarantee that
the deployed versions will be effectively different from one another, basing on the
similarity metric chosen. Similarity can be measured with source code metrics
to detect plagiarism in text and programs [14], or binary metrics in antivirus
systems [30]. Other approaches using search-based heuristics, like genetic pro-
gramming, to achieve code transformation [21,28], but with a different goal, i.e.
to automatically find patches to fix bugs. Portions of the programs are replaced
by their mutated versions that convey different semantics: mutation continues
until the bugs are fixed and all test cases pass. In software diversity instead, we
do not change the semantics of the program, but only its structure. Interesting
developments can investigate the use of similarity metrics based on clone detec-
tion [3], which detects code shared by two software versions, or software birth-
mark [25], which compares intrinsic software properties rather than binary code
structure. Other works [4,6] evaluated the code complexity introduced by differ-
ent obfuscation algorithms by using structural metrics, that should be instead
kept low in refactoring.

6 Conclusion

In this work, we tackle the problem of maximizing software diversity by searching
the best subset of diversified code versions to be deployed in parallel or within
an update plan. Many candidate diversified versions are generated using combi-
nations of off-the-shelf obfuscation transformations, which can generate a huge
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number of possible versions; we proposed an algorithm to reduce the number
of versions to generate, by discarding redundant obfuscations for the particu-
lar application code, and then we use clustering to identify the most different
versions to deploy. The empirical assessment shows that our approach works in
diversifying 10 popular Android apps.

As future work, we intend to investigate alternative metrics to compute sim-
ilarity in a way that approximate more appropriately program difference from
an attacker point of view. Moreover, we intend to conduct a user study where
we measure the actual learning effect when attacking two consecutive versions.
The aim of this study would be to quantify for real the effort required to adapt
an attack when receiving an update.
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