
Exploiting Code Mobility for Dynamic Binary Obfuscation

Paolo Falcarin1, Stefano Di Carlo2, Alessandro2 Cabutto2, Nicola Garazzino2, Davide Barberis2

University of East London Computing, United Kingdom1
Politecnico di Torino, Torino, Italy2

falcarin@uel.ac.uk, stefano.dicarlo@polito.it, cabutto@polito.it, nicola.garazzino@polito.it,
davide.barberis@polito.it

�

Abstract

Software protection aims at protecting the
integrity of software applications deployed on un-
trusted hosts and being subject to illegal analysis.
Within an un-trusted environment a possibly
malicious user has complete access to system
resources and tools in order to analyze and tamper
with the application code. To address this research
problem, we propose a novel binary obfuscation
approach based on the deployment of an
incomplete application whose code arrives from a
trusted network entity as a flow of mobile code
blocks which are arranged in memory with a
different customized memory layout. This paper
presents our approach to contrast reverse
engineering by defeating static and dynamic
analysis, and discusses its effectiveness.

1. Introduction

Software protection aims at protecting the
integrity of data and software applications
deployed on un-trusted hosts and being subject to
illegal analysis. Software Protection is an important
requirement for software companies as many of
them are increasingly adopting tools with the in-
tention of defending their intellectual property from
unauthorized reuse by competitors, i.e. to protect
their products against unauthorized reverse
engineering, software cracks and piracy.

The attacker has no restriction on the tools and
techniques to use to reverse-engineer and then to
tamper with the application (e.g., super-user
privileges are assumed to be available to the
attacker). He/she can install any software on the
target machine (e.g., debuggers, emulators), to read

and write every memory location, processor
registers and files. Being in control of the target
computer, the attackers can mount environmental
attacks in which the program will be executed.
System libraries and general purpose libraries are
controlled by the attackers, along with the
operating system. As a consequence, the attackers
can use system calls, the input/output subsystem,
the network stack, and the memory management
subsystem for their purposes.

Attackers possess tools for manipulating binary
files at a higher conceptual level than strings of
bits, tools that understand file formats and
relationships between files. They are assumed to
use tools that enable them to transform programs
between different formats and between different
levels of abstraction (disassemblers, decompilers).

To contrast such attacker goals, it is important to
defeat both tools used to perform static analysis
(disassemblers, decompilers) and debuggers used
for dynamic analysis. To reach this objective, this
work exploits the use of code mobility to increase
reverse engineering complexity in order to make
harder for an attacker understanding the application
structure and behaviour. To address this research
problem, we propose a novel binary obfuscation
approach based on the deployment of a mainly
incomplete application whose code arrives from a
trusted network entity as a flow of mobile code
blocks which are disposed at run-time in memory
with a different customized memory layout. The
trusted server placed over the network is
responsible of deciding the customized memory
layout of the binary code that will be sent, block
after block, to the application. This paper presents
our approach to contrast reverse engineering by
defeating static and dynamic analysis, and

978-0-9564263-7/6/$25.00©2011 IEEE 114

discusses its effectiveness. The paper is organized
as follows: first we describe the problem and state
of the art solutions are introduced; then we describe
how to enforce software protection with mobile
code; finally the effectiveness of our approach is
discussed and compared with related works before
we draw our conclusions.

2. State-of-the-art

The problem of executing software in an un-
trusted computing environment has recently gained
considerable attention. The literature can be
divided into either hardware-based or software-
based solutions. The Trusted Computing Group is
defining a set of standards to address the problem
of executing software in a trustworthy computing
environment from a hardware perspective. Sailer et
al. [15] build software protections on top of a
tamper-proof hardware component, e.g., the
Trusted Platform Module [4], which is situated
locally on the motherboard. The problem with
hardware components is that they cannot be
replaced in case of design errors and they may
require an expensive . The trustworthiness they
provide, covers the machine as a whole (including
BIOS and OS) and cannot be granted at a fine-
grained level, e.g., for selected applications.
Moreover, the integrity verification method is
performed off-line and it reacts after the fact.

Many software-based protection techniques
have been proposed in latest years both to prevent
reverse engineering and code analysis (like
obfuscation), or to detect at run-time if the program
integrity has been violated by means of additional
code bundled in the application. These techniques
aim at producing tamper-resistant applications.

Obfuscation aims at increasing the attack
complexity by making it hard for the attacker to
comprehend the behavior of a decompiled program
[9].

Obfuscation techniques are based on the
addition of complexity to the source code structure
(without changing its behavior) through different
kinds of code transformations both regarding
program’s control flow and/or data structures [9].
However, Barak et al. [6] showed that some
functions cannot be obfuscated, and other papers
claim that perfect obfuscation is impossible. In
most cases, breaking obfuscation is just a matter of
time and attacker’s skills.

Binary obfuscation techniques have been
recently proposed to increase reverse engineering

complexity: Linn et al. [14] proposed a tool for
inflating binary code with redundant and/or
garbage instructions to defeat disassemblers or to
produce a very complex assembly code: they evalu-
ate obfuscation strength with their confusion factor,
as the percentage of instructions not correctly
disassembled because of binary obfuscation.
Kanzaki et al. [13] used self-modifying binary code
to defeat static analysis and disassembling, while
Birrer et al. [7] provide metamorphic binary code
by means of program fragmentation.

Code obfuscation transformations are also
employed to hide other kind of protections
embedded in the software (like tamper-resistant
code) so that it cannot be easily detected and
removed. Tamper-resistant code aims at identifying
attacks like unexpected binary modifications and
typically react by stopping the application. Some of
these protections rely on an external source of trust,
like a locally bundled secure hardware or a trusted
network server.
Protection schemes going beyond obfuscation have
been proposed but no one so far provides absolute
protection. It is therefore highly recommended to
complement each protection technique with
obfuscation, to increase the expected expiration
time of a protected version of a program.

The pioneering work of Aucsmith [5] was
proposed to resist to code observation: his
technique to break a binary program into
individually encrypted segments, so that the hash
value of a block is the secret key for decrypting the
next block; if the program was altered the hash
value is changed and then the next block cannot be
decrypted properly and the program cannot
continue to run. In this case finding the first key
allows to recover the full chain of keys.
Other techniques that can be strengthen by obfusca-
tion include: integrity self-checking, customization,
self-modifying code and mobile code.

Customization creates many different copies
from an initial version of a program. Each copy of
the protected program is different in its binary
shape, but is functionally equivalent to other copies
[5]. Thus, attacks designed to work with one
version might not work with other customized
versions. This kind of protection discourages dif-
fusion of cracks but it does not aim at detecting and
reacting to tampering. More recent research works
use self-modifying code, or mobile code to thwart
static analysis. Self-modifying code [5, 11], at
binary level, defeats static analysis and increases
the difficulty of dynamic analysis.

978-0-9564263-7/6/$25.00©2011 IEEE 115

Mobile code approaches are only applicable on
client-server applications where parts of the binary
code (containing both application logic and
protection code) are downloaded at run-time from a
trusted server: some works provide remote integrity
attestation using mobile code on modified JVMs
with dynamic AOP [10] or by natively extending
JVM 5 through its JVM Tool Interface [16].

3. Software Protection by Mobile Code

To counter reverse engineering, current
protections often rely on obfuscation and/or on
software-based tamper-resistance techniques
relying on code checkers whose position is hidden
in the application. However, we observe that any
technique that allows the attacker using static
analysis is not robust enough. Indeed, code-
checkers can be eventually identified and inhibited
by an attacker with enough knowledge, time, and
reverse engineering tools. Even in presence of
binary obfuscation some tools [2] can transform
and clean the binary code to remove protections in
few days, as shown by the T2 challenge proposed
yearly to the reverse engineering community [3].
To overcome the drawbacks of local protection
techniques, network-based techniques can be
applied. In this scenario a trusted entity placed on
the network, and out of the control of the attacker,
is in charge of monitoring the execution of the
application to protect, and together with dynamic
code replacement, reverse engineering attempts can
be made more complex by forcing the attacker to
continuously face different versions of the
program.

The main idea, highlighted in this paper, is to
use code mobility to make it more difficult for an
attacker to tamper with the code. In particular, code
mobility is exploited to create different customized
versions of a given program. These versions can be
different in space for their different binary structure
and in time since during
the execution, in a particular point in time, only a
subset of the binary code is actually stored in the
client host’s memory. Mobility can be therefore
used to reduce the visibility on the whole binary
code thus limiting the attacker’s knowledge and
contrasting static analysis.
Code mobility shows many features which are
helpful to improve tamper resistance:
• Protection of code against static and dynamic
analysis, as the whole code is not completely
available when running on the hostile host;

• Application structure behavior is not-predictable
as it is decided by the trusted server and
customized for every execution;
• Single instance dependency: it is unfeasible to
create a custom crack for each different installed
copy;
• Easy possibility of extending the architecture with
new protection techniques.

The Figure 1 depicts a possible application of code
mobility to implement a tamper-proofing
architecture.

An application P is deployed to the final user as
an almost empty box, containing an empty code
section where to place blocks of code and a Binder
able to receive these blocks and to map them into
the code section thus managing the overall program
execution. The trusted entity is a complete secure
machine or device placed somewhere on the
network. With completely secure we intend that an
attacker has no way to tamper with this machine,
and moreover it does not know anything about the
services running in it.

The network communication between the
trusted server and the program to be protected
(running on the remote host), created through a
network socket, includes two log¬ical channels: a
bidirectional control channel used to ex¬change
control information, and a unidirectional channel

Figure 1. Tamper-resistant architecture
with Mobile Code and Replacement

used to send blocks of code to the program. We
reuse and adapt the ISO Symmetric Key Three-
Pass Mutual Authentication [12] protocol to
guarantee mutual authentication between the
trusted server and the un-trusted client during start-
up phase. When the connection is established with
this protocol, the trusted and the un-trusted node
can start to communicate. In order to encrypt the
communication between the two nodes, and
therefore to prevent man¬in-the-middle attacks, the
channel have been secured using the AES
encryption algorithm. The message is finally signed

978-0-9564263-7/6/$25.00©2011 IEEE 116

through the MD5 algorithm for better performance.
With the signature of the message, the receiver (the
trusted server) can be sure that the message was
sent by the correct node. If the signature is
incorrect, then the message has been hacked and
the flow of code blocks should be interrupted.

The clean program (on the trusted node) will be
split in code blocks. The Figure 2 shows an
example of code block. Any time the application
needs to jump outside the block, either because the
execution reaches the end of the block or, control
flow instructions need to modify the sequential
execution flow, a call to the binder is inserted.

Figure 2. Program block example

In order to continue the execution, each time it is
called the binder has to:
• Retrieve the position inside the block where the
call was issued (this is always possible looking at
the application stack);
• Send this information to the trusted entity that
will in turn calculate the next block, and the
position in the next block where the execution
should restart;
• Wait for the transmission of the target block if not
already present. Every time a block is sent to the
binder, its target location in the code section is
decided by the trusted host (e.g., randomly) and
sent to the program through the control channel.
This step is crucial to make sure that, for every
execution of the application, and for multiple
executions of the same block during a single
execution of the application, the memory layout
will be continuously different thus reducing the
effectiveness of both static and dynamic analysis.
This translates into the fact that the binder does not
contain any fixed information about the structure of
the program that can be statically analyzed by an
attacker. All information are dynamically generate
by the server at run-time.

Bogus blocks can be periodically sent to the
program in order to continuously confuse the
attacker, and to overwrite portions of the empty
code section thus reducing the time the attacker has
to understand a given portion of code. Bogus block

may include, unelectable blocks that generate
errors when executed (e.g., they contain illegal
microprocessor instructions), and no-effect blocks
containing code performing computations that do
not produce any useful result for the program.

3.1. Binary Code Instrumentation

In order to implement the proposed program
execution schema it is mandatory to be able to split
a program binary into a set of different blocks, and
to instrument each block in order to insert calls to
the binder. The Figure 3 shows the automated
instrumentation flow able to start with a standalone
application and to automatically generate the
related pool of code blocks. The generation is tuned
by a set of parameters aiming at defining the
optimal length of the blocks to avoid the generation
of blocks that are too small or too big.

To instrument a program we first need to
interpret its assembly code. This is particularly
important to identify control flow instructions that
need to be properly managed. This first step can be
efficiently performed using a disassembler tool.
Disassemblers provide a text description of a
binary application easier to be processed. In this
work we considered the Intel instruction set
architecture.

Given the disassembled code of the program we
need to split it into Code Blocks (CBs). A code
block is a sequence of contiguous assembly
instructions. We can define different approaches to
split the code segment into CBs. Each block may
represent a function/method in the original
program, CBs can be defined by splitting the code
into portions of the same size, and CBs can be
defined by splitting the original code into portions
with a random size. Among the three possibilities,
the first one is less effective since it gives a direct
correlation between code lines and program
functions that can be exploited by an attacker to
reverse engineer the program. The other two
possibilities can both be applied in an easy way.
Once we have the code blocks, we need to
properly instrument these blocks in order to make it
possible to easily relocate them everywhere in the
code section. This means that all control flow
instructions (i.e., jump, call, etc.) need to consider
the new location where the code is mapped. The
Figure 4 shows a typical example. It reports a
single code block including two unconditioned
jump instructions. We distinguish between two
situations. The first situation, represented by the
first jump is what we call Intra CB jump, i.e., the
program execution jumps to a memory location that

978-0-9564263-7/6/$25.00©2011 IEEE 117

is still contained in the same code line. This is the
easiest situation.

Figure 3. Instrumentation flow

If the target address is expressed as a code
displacement (as possible in the Intel IA32
architectures) no modification of the block is
required. The second situation is represented by the
second jump that we call extra CB jump. It
identifies all situations where the program needs to
jump to instructions contained in a different code
block (the same situation happens in Figure 4 at the
end of the execution of the code block).

Figure 4. Code Block example

In this case we need to be able to replace this
instruction with a call to the binder. Since the target
address not always is explained as an immediate
value, but can also be contained into a register, this
operation must be performed at runtime. Actually,
since the trusted node has all the information
regarding where the different code blocks are
mapped, calculating the target address is a trivial
task.

In order to insert the call to the binder we first
have to make space for this instruction. We
perform this operation by inserting NOP operations
(one byte operation) before the target jump to get
enough space for the call. In the IA32 architecture
the call instruction can be encoded with 5 or 6
bytes, we always consider the worst case.

Figure 4. Code Block example

Every time a NOP is inserted all intra CB jumps
become inconsistent. Their target address has to be
fixed (address rearranging phase) in order to keep
the consistency of the block. This operation may
present side effects. In particular relative jumps
(most of them) can be encoded with addresses on 8,
16 or 32 bits. Injecting NOP operations may lead to
the situation where a short jump, i.e., 8 bits
address, has to jump to a location outside its
maximum range. This in turn requires modifying a
short jump into a longer jump. But this operation
will lead again to a modification of the code that
may in turn require another code inspection to
readjust the addresses. This operation must be
reiterated until a stable situation is generated.

4. Discussion

An attacker usually tries to reach his goal by
disassembling the executable file with tools like
IDA [1] and then identifying and removing

978-0-9564263-7/6/$25.00©2011 IEEE 118

software protections using debuggers. Our main
contribution is exploiting code mobility and
continuous dynamic binary code replacement in
memory. Indeed, using mobile code blocks extends
the control of software providers over released
applications beyond the deployment phase. After
the release, software is no more at complete mercy
of possibly hostile users. In fact, after deployment,
the provider retains control of (parts of) the
application and is able to apply changes by means
of code blocks replacements. Additionally,
replacement not only increases the power of
software providers, but also lessens the resources
of an adversary by capping the attack time. While
obfuscation is performed before deployment, our
approach takes place during deployment (when the
application’s memory layout is rebuilt) and even
during run-time (when code blocks are stored
and/or replaced).

Another important contribution of our approach
is providing code splitting at binary level, by using
a disassembler during the instrumentation phase
before deployment, and the usage of network to
continuously transfer a code blocks flow. Moreover
in our case the code blocks layout can be
customized for different hosts and such information
is decided at the server-side and then applied by the
Binder. This strongly improves similar approaches
such as Binary Fragmentation proposed by Birrer et
al. [7]. In this approach fragment locations are
chosen at the source code level, thus simplifying
the implementation of their metamorphic engine.
The problem with this approach is that the binary
program layout can be obtained after analyzing the
metamorphic engine and it is not customized by the
server as in our case. When compared to existing
obfuscation techniques, our approach extends prior
art in several directions. First, it provides program
fragmentation at binary code level and it uses a
trusted server to decide a different memory layout
for each program instance. Second, and more
important, the program is deployed incomplete and
binary code blocks are sent by the trusted server to
the Binder who executes server commands and
actually insert/withdraw code blocks into/from
memory. Such quality improves the overall
strength of the technique we propose since
attackers have limited time resources to check the
application’s memory layout for each run of the
application.

From the attacker viewpoint, disabling code
blocks insertion, and thus avoiding correct
installation of code blocks, is useless, because the
running application would be still incomplete. On

the other hand, once the binder is identified among
the rest of garbage or useless binary code, the
attacker could decompile it, understand its
behavior, and replace it with a forged copy. It is
unlikely that such a complex attack can be
completed manually because the actual layout of
blocks is decided by the trusted server and contin-
uously sent at run-time. Moreover, forging the
binder does not assure the possibility of mounting
useful attacks. The functionality of the binder is
limited to the installation of blocks into memory,
and no protection tasks are devoted to this element.

To establish how effective our approach is at
thwarting reverse-engineers, we applied it to a
simple cars-race game with a very simple user
interface. The protected program was analyzed
using IDA Pro, a popular disassembler/debugger
[1]. IDA has difficulty in correctly handling the
program: as the program is deployed incomplete,
the empty section is filled with random data bytes,
and it is not disassembled correctly. The random
bytes causes disassembler to shift instruction
boundaries (which have variable length in Intel
architecture), and displays wrong assembly
instructions to the attacker.

Our approach also prevents breakpoints from
working as expected in both the free memory area
of the program and on the part of it actually filled
by code blocks located by the Binder. In the free
memory area, if the user places a breakpoint on one
of the random data bytes, thinking it is a valid
instruction, the breakpoint is never met and does
not stop the execution. In addition, placing
breakpoints in a code block often cause the
program to crash.

The Binder determines the code block to be
executed depending on information coming from
the trusted server; attackers may try to reconstruct
the control flow and the current memory layout by
looking at binder behavior but as they need run-
time information and debuggers cannot be used
properly, reconstructing the control flow is really
hard. Every new execution of the program causes
the creation of a new session with the server and a
new customized memory layout is decided and then
disposed by the binder.

The communication with the trusted server can
be mediated by software that the attacker controls.
Thus the communication can be read and changed
by the attacker. Nevertheless, if the attacker breaks
or alters the code blocks flow coming from the
server he/she cannot use the application.

978-0-9564263-7/6/$25.00©2011 IEEE 119

5. Conclusions

The main contribution of our work is the definition
of a new kind of binary obfuscation relying on code
mobility and binary code splitting. With our
dynamic obfuscation, dynamic analysis is thwarted,
as a full binary version of the program is not
present in memory at run-time.
Our solution shows that splitting program in code
blocks transmitted via network by a trusted server
is a suitable and low-cost software protection that
can be useful in defending software programs from
reverse-engineering. Our protection creates
problems for common reverse engineering tools
and makes the code comprehension task more
difficult for the attacker. By making reverse-
engineering more difficult, this technique can help
to not disclose proprietary code to competitors.
Further research will be devoted to integrate
program splitting with other techniques like self-
modifying code and remote attestation in order to
integrate tamper-detection techniques to improve
the level of protection; furthermore we plan to
evaluate the increased effort necessary to reverse
engineer a binary-obfuscated program (with respect
to the effort necessary for a non-obfuscated one) by
means of empirical experiments, extending a
previous work [8] made on source-code
obfuscation.

6. Acknowledgements

This work has been partially funded by the
Promising Researcher Award of the University of
East London, and by the the European Commission
with the project RE-TRUST, which was part of the
Future Emerging Technology (FET) program,
contract IST-021186. The authors want to thank
Prof. Yoram Ofek, the project coordinator, who
passed away in the end of 2009; the au¬thors are
deeply honored to have worked with him and they
will always remember his outstanding contribution
to sci¬ence and technology.

7. References

[1] Ida-pro disassembler, http://www.hex-ray.
com/idapro/ (Access Date: 12 December, 2010).

[2] Metasm assembly manipulation, http://met
asm.cr0.org/ (Access Date: 12 January, 2010).

[3] T2 information security conference challenge.
http://www.t2.fi/challenge/ (Access Date: 12 January,
2010).

[4] Trusted computing platform. http://www.trust
edcomputing.org/.

[5] D. Aucsmith. Tamper resistant software: An
implementa¬tion. In Proceedings of the First
International Workshop on Information Hiding, volume
1174 of LNCS, pages 317–333. Springer-Verlag London,
UK, 1996.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sa¬hai, S. Vadhan, and K. Yang. On the (im)
possibility of soft¬ware obfuscation. In Crypto 2001,
pages 1–18, 2001.

[7] B. D. Birrer, R. A. Raines, R. O. Baldwin, B. E.
Mullins, and R. W. Bennington. Program fragmentation
as a metamorphic software protection. In 3rd Int.
Sympsium on Information Assurance and Security. IAS
2007., pages 369–374, 2007.

[8] M. Ceccato, M. DiPenta, J. Nagra, P. Falcarin, F.
Ricca, M. Torchiano, and P. Tonella. The effectiveness
of source code obfuscation: an experimental assessment.
In IEEE International Conference on Program
Comprehension (ICPC 2009). IEEE CS Press, 2009.

[9] C. S. Collberg and C. Thomborson. Water- marking,
tamper-proofing, and obfuscation -tools for software
protection. IEEE Transactions on Software Engineering,
28(8):735– 746, August 2002.

[10] P. Falcarin, R. Scandariato, and M. Baldi. Remote
trust with aspect oriented programming. In IEEE
Advanced Information and Networking Applications
(AINA-06). IEEE, 2006.

[11] J. T. Giffin, M. Christodorescu, and L. Kruger.
Strengthening software self-checksu- mming via self-
modifying code. In ACM 21st Annual Computer
Security Applications Conference, pages 23–32. ACM,
2005.

[12] Y.-J. He, and M.-C. Lee. Towards a secure mutual
authentication and key exchange protocol for mobile

978-0-9564263-7/6/$25.00©2011 IEEE 120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

