
The Journal of Systems and Software 150 (2019) 3–21

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A meta-model for software protections and reverse engineering

attacks

Cataldo Basile

a , Daniele Canavese

a , Leonardo Regano

a , Paolo Falcarin

b , ∗, Bjorn De Sutter c

a Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
b Department of Computing and Engineering, University of East London, London, E16 2RD, United Kingdom

c Computer Systems Lab, Department of Electronics and Information Systems, Ghent University, Belgium

a r t i c l e i n f o

Article history:

Received 15 April 2018

Revised 9 October 2018

Accepted 21 December 2018

Available online 22 December 2018

Keywords:

Software protection

Security knowledge base

Decision support

Attack modelling

Reverse engineering

Meta-model

a b s t r a c t

Software protection techniques are used to protect valuable software assets against man-at-the-end at-

tacks. Those attacks include reverse engineering to steal confidential assets, and tampering to break the

software’s integrity in unauthorized ways. While their ultimate aims are the original assets, attackers

also target the protections along their attack path. To allow both humans and tools to reason about the

strength of available protections (and combinations thereof) against potential attacks on concrete appli-

cations and their assets, i.e., to assess the true strength of layered protections, all relevant and available

knowledge on the relations between the relevant aspects of protections, attacks, applications, and assets

need to be collected, structured, and formalized. This paper presents a software protection meta-model

that can be instantiated to construct a formal knowledge base that holds precisely that information. The

presented meta-model is validated against existing models and taxonomies in the domain of software

protection, and by means of prototype tools that we developed to help non-modelling-expert software

defenders with populating a knowledge base and with extracting and inferring practically useful infor-

mation from it. All discussed tools are available as open source, and we evaluate their use as part of a

software protection work flow on an open source application and industrial use cases.

© 2019 Elsevier Inc. All rights reserved.

1

e

g

b

o

n

t

M

p

k

c

o

G

o

(

b

i

t

w

c

t

t

M

o

t

t

F

s

b

i

h

0

. Introduction

In so-called man-at-the-end (MATE) software attacks, attack-

rs target assets embedded in software. By means of reverse en-

ineering they try to steal confidential information, such as em-

edded cryptographic keys or intellectual property in the form

f algorithms (Falcarin et al., 2011). They also use reverse engi-

eering techniques as a preparatory step towards tampering with

he software to break its integrity, e.g., to break license checks.

ATE attackers can mount sophisticated attacks, as they can tam-

er with software and data in their labs, where they have all

inds of software aids, such as debuggers, tracers, emulators, and

ustomized operating systems; and hardware aids such as devel-

per boards with (JTAG-based) hardware debuggers. The latest BSA

lobal Software Piracy Study 1 states that 39% of software installed

n computers worldwide is not licensed, amounting to $52 billion
∗ Corresponding author.

E-mail addresses: cataldo.basile@polito.it (C. Basile), daniele.canavese@polito.it

D. Canavese), leonardo.regano@polito.it (L. Regano), falcarin@uel.ac.uk (P. Falcarin),

jorn.desutter@ugent.be (B.D. Sutter).
1 BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/ .

t

t

(

s

ttps://doi.org/10.1016/j.jss.2018.12.025

164-1212/© 2019 Elsevier Inc. All rights reserved.
n losses; in particular, 98% of mobile apps lack binary code pro-

ection and they can be easily reverse engineered and tampered

ith

2 .

Software protection techniques transform code and inject new

ode to hamper reverse engineering and tampering. Perfect pro-

ection being impossible (Barak et al., 2001), the techniques aim

o raise the cost for attackers and the time needed to perform the

ATE attacks. When they attack protected software, attackers not

nly target the original assets in the code, but also the protections

hemselves. To undo, overcome, bypass, and work around them,

hey reverse engineer the protections and they tamper with them.

rom the perspective of the defender, the protections become as-

ets as well.

Recently, some critical steps have been set in modelling the

ehaviour of MATE attackers (Ceccato et al., 2017; 2018), includ-

ng how they reason about code under attack, about protections

hey encounter, about assets they target, and about attack steps

hey conduct. There also exist formal models such as attack graphs

 Sheyner et al., 2002) and Petri Nets to model concrete attack
2 State of Application Security: https://www.arxan.com/resources/

tate- of- application- security/ .

https://doi.org/10.1016/j.jss.2018.12.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.12.025&domain=pdf
mailto:cataldo.basile@polito.it
mailto:daniele.canavese@polito.it
mailto:leonardo.regano@polito.it
mailto:falcarin@uel.ac.uk
mailto:bjorn.desutter@ugent.be
http://globalstudy.bsa.org/2016/
https://www.arxan.com/resources/state-of-application-security/
https://doi.org/10.1016/j.jss.2018.12.025

4 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

r

n

e

t

A

m

p

p

a

d

m

e

f

p

a

s

o

a

a

f

m

r

o

c

o

r

m

r

o

r

m

f

b

s

i

t

s

a

t

t

s

m

i

t

c

w

i

2

l

t

a

c

s

a

a

g
paths on concrete assets (Wang et al., 2013b; Chen et al., 2011).

We are still lacking overall models, however, that allow the repre-

sentation of the relevant relations between (i) assets, (ii) the soft-

ware those assets are embedded in, (iii) deployed protections, (iv)

individual attack steps and tools and methods to perform attacks

on those protections and on the assets, (v) possible paths of attack

that start from scratch and through which attackers can reach their

ultimate reverse-engineering end goal, i.e., stealing the original as-

set. Moreover, these models must support an inferential system

that allows reasoning about the data represented with the model.

That is, we need to build a Knowledge Base (KB), which is essential

to perform a complete risk analysis of software applications and to

decide on protections to mitigate reverse-engineering and tamper-

ing risks.

In related fields, such as network security, models exist that

are consistently used in practice to assess the overall level of pro-

tection. Some models, like the Common Vulnerability Scoring Sys-

tem (CVSS) (Mell et al., 2007), Common Weaknesses Enumeration

(CWE) 3 , and Common Vulnerability Exposure (CVE) (Mann and

Christey, 1999), are used to model software weaknesses and vul-

nerabilities, attacks against them (exploit), as well as estimation

of likelihood, expertise needed by hackers, and ease of repli-

cation on a large scale (severity). Others depict the landscape

where attacks may exploit vulnerabilities, like Common Config-

uration Enumeration (CCE). 4 These models are used in a more

complex ecosystem where defenders can perform their assess-

ment, implement their mitigations, and have a precise snapshot

of the system to protect with ad hoc tool and language sup-

port, e.g., with the Open Vulnerability and Assessment Language

(OVAL) (Wojcik et al., 2003) or Security Content Automation Pro-

tocol (SCAP) (Radack and Kuhn, 2011) and Open Checklist Inter-

active Language (OCIL) (Waltermire et al., 2011). Researchers have

also defined KBs, as OWL ontologies, that represent relations be-

tween network vulnerabilities and attacks and have been used to

assess attacks against corporate assets. Moreover, there are tools

that can automate attack replication, like Metasploit. Clearly, the

complexity of the network security scenario is limited compared

to the target of this paper, i.e., the MATE context, where building

the landscape also requires to dig into the semantics and internals

of the software to protect.

In the domain of software protection, we also desperately need

such models and similar levels of standardization to collect knowl-

edge. The reason is simple: deploying protections is highly com-

plex. All protections come with overhead in different forms (band-

width, throughput, size, performance, real-time behavior, ...) and

with different levels of expected effectiveness. All protections af-

fect the software development life cycle in different ways (debug-

ging capabilities, testing needs, integration issues, updatability, ...).

Furthermore, multiple assets with different security requirements

often need to be protected within the same application. Finally,

combining multiple protections as needed to build a layered de-

fence against all possible attacks, is hampered by both fundamen-

tal and practical composability issues. As a result, defenders face

the difficult task of selecting the best combinations of protections

to protect their software assets.

To help them in making the right decisions, a modelling frame-

work, an inferential system, and a toolbox (i.e., a KB) are necessary

that cover all of the relations between software, assets, protections,

and MATE attacks. Such a KB has wider value however. It can also

help researchers to identify those areas where more research is

needed because satisfactory protections are still missing, and they

can help software architects to identify which types of assets and
3 See http://cwe.mitre.org .
4 See https://cce.mitre.org/ .

t

h

elated security requirements are safe in certain deployment sce-

arios, and which are not. Risk assessment and methodologies for

valuating protection strength are other interesting research areas

hat can benefit from the definition of appropriate meta-models.

n additional long term objective would be developing an auto-

atic decision support system for software protection, i.e., an ex-

ert system that may help software developers with limited ex-

ertise in software protection to select the best way to protect the

ssets embedded in their applications without the need of a team

evoted to this task. A KB represents facts about a particular do-

ain (e.g. software protection and reverse engineering), while an

xpert system can reason about those facts and use rules and other

orms of logic to deduce new facts or spot inconsistencies. An ex-

ert system requires structured data, not just tables with numbers

nd strings, but references to other objects. A KB stores complex

tructured information and the ideal representation for a KB is an

bject model or an ontology as a graph linking classes, subclasses

nd object instances. A meta-model (similarly to a grammar for

 programming language) describes the structure of such model,

ormally defining its syntax and rules. This paper presents a new

eta-model in support of a formalized KB on the aforementioned

elations. Moreover, it describes an inferential system that builds

n the meta-model to perform the risk analysis of software appli-

ations.

The research into this meta-model and related tools was carried

ut in the European FP7 research project ASPIRE. 5 This modelling

esearch was done in conjunction with the design and execution of

ultiple penetration test experiments and with proof-of-concept

esearch into tool-supported, composable, multi-layered protection

f multiple industrial use cases, i.e., on software and assets of

eal-world complexity. Moreover, ASPIRE researched an evaluation

ethodology for software protection strength, including a metrics

ramework, and decision support to automate the selection of the

est combinations of software protections. Consequently, a major

trength of the presented meta-model and the corresponding tools

s that they have been evaluated and to a large extent validated in

he context of all those other research activities.

This paper’s main contributions are the following: (i) A discus-

ion of the requirements of a MATE software protection KB and

 corresponding meta-model in Section 2 ; (ii) the presentation of

he meta-model that can be instantiated to populate a KB that cap-

ures the necessary information to reason about and assess MATE

oftware protections in Section 3 ; (iii) a validation of that meta-

odel against existing models and taxonomies from the literature

n Section 4.1 ; (iv) a validation of the meta-model by means of

ools that demonstrate its practical applicability on concrete use

ases in Section 4.2 . After those contributions, we discuss related

ork in Section 5 and draw conclusions and discuss future work

n Section 6 .

. Requirements and scope

As already motivated in the introduction, we need a way to col-

ect and represent knowledge regarding MATE attacks and protec-

ions, i.e, to model the relations between the already mentioned

spects of assets, applications, protections, and attacks. More pre-

isely, we put forward the following requirements.

Requirement R1: We need a way to capture the application

tructure. This is important for two reasons. First, to relate attacks

nd protections to real software parts (e.g., functions and variables)

nd not entire applications or whole components, allowing a finer

ranularity and in turn more expressiveness. Second, it is impor-

ant to have a way to model not only the various application parts,
5 Advanced Software Protection: Integration, Research, and Exploitation -

ttps://www.aspire-fp7.eu.

http://cwe.mitre.org
https://cce.mitre.org/

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 5

b

y

t

b

t

t

t

r

2

a

t

p

s

v

o

t

h

c

i

w

c

t

t

t

o

n

a

a

a

p

s

a

s

C

t

e

i

a

t

f

c

i

i

a

v

w

f

r

l

d

f

a

o

O

p

t

i

b

b

t

r

a

u

o

i

e

t

p

l

d

s

d

p

C

a

t

t

m

c

g

t

p

p

w

a

1

p

o

2

p

K

v

a

t

i

f

p

h

o

f

d

a

w

m

c

a

6 https://www.arm.com/products/silicon- ip- security .
ut also their relationships (e.g., variable x is contained in function

 or function y calls function z) and possibly abstract interpreta-

ions involving these parts (e.g., control flow graphs). This is key to

uild a KB system where to perform meaningful inferences about

he security of an application, not in the least because attackers

ypically dedicate quite some effort reverse engineering the rela-

ion between application components and zooming in on the most

elevant components in the application under attack (Ceccato et al.,

018).

Requirement R2: We need a way to formalize the concept of

ssets. Original assets are the application parts that have value for

he developer, so it is important to represent them in the most

recise fashion. In addition, it is important to define which asset

ecurity properties the defender should try to protect and, vice-

ersa, the attacker will try to breach. In this regard, not only the

riginal assets hold value. So do artifacts in the application code

hat help attackers to execute complete attack strategies, such as

ooks where they can attach their tools, and code patterns they

an easily identify and that lead them towards the original assets,

.e., that allow them to zoom in the most relevant parts of the soft-

are. We call such artifacts intermediate assets . Furthermore, we

onsider protection assets , which are artifacts of the deployed pro-

ections that either allow the identification of the deployed pro-

ections (thus allowing the attacker to pick a strategy to defeat

he protection) and protection artifacts that can become the target

f individual attack steps to defeat the protections. Unlike origi-

al assets, which come with security requirements defined by the

pplication developer, intermediate and protection assets become

ssets only because they are the target of attack steps. Reasoning

bout original assets and automatically inferring intermediate and

rotection assets would be an important task to demand to a KB

ystem.

Requirement R3: We need a way to formally describe attacks

nd relate them to the various application parts. Even if there are

ome effort s in the security world to represent attacks (e.g., CWE,

VE), we are still lacking a formal way to represent a complete at-

ack in an unambiguous way in a MATE scenario. This is important,

specially since we are interested in building a KB system whose

nferences allow performing various kinds of automated security

nalyses that need to cover all possible attack paths in order to be

ruly useful.

Requirement R4: We need a way to formally describe the ef-

ects of protections when applied to code and data. A protection

an be abstracted as a specialized tool that transforms code or

njects new code for the purpose of hampering attacks on (orig-

nal, intermediate, or protection) assets. Several protection tools

re available on the market, each one offering support for specific

ersions of multiple protection techniques, configurable in various

ays. Therefore, we are interested in modelling protections both

rom the perspective of the attacks they prevent or delay, and with

espect to the performance overhead and software development

ife cycle impact they have. Modelling what a protection effectively

oes is vital for a KB system able to perform automatic inferences

or a protection assessment of a software application. Moreover,

 KB system to suggest mitigations strongly relies on the ability

f the meta-model to represent relationships among protections.

n the one hand, a defender may be interested in knowing when

rotections cannot be applied on the same piece of code, or on

he same applications. On the other hand, he could be interested

n knowing when applied protections strengthen each other either

ecause one renders defeating another protection more complex or

ecause they work in synergy against the same attack.

Requirement R5: We need a way to formally describe a pro-

ected application. Assessing the security of protected applications

equires to model with precision where and how the protections

re deployed. Since the application of protections can be config-
red and tuned based on a set of configuration parameters (e.g.,

paque predicates of different levels of complexity can be inserted

nto the code at different frequencies based on an integer param-

ter) we need a model that is expressive enough to capture all

he possible ways protections may be applied on each application

art. Note that, while R4 concerns reporting how protections re-

ate to each other and how they change an application, R5 is about

escribing how protections are applied to application parts. A KB

ystem that can reason on this information, can be used to pre-

ict the effect of protections when applied on specific application

arts, both in terms of overheads and reached protection strength.

learly, this is a necessary step to build an expert system that can

ssist defenders when they have to select the best way to protect

he assets in their applications.

Requirement R6: Besides the qualitative relations that we need

o model between protections and attacks, it is also useful to

odel the relation quantitatively where possible. This can fa-

ilitate more accurate evaluations of the strength of protections

iven an application, its assets, and potential attacks. In litera-

ure, many metrics to measure that strength have already been

roposed. For example, software complexity metrics have been

roposed to quantify the potency of obfuscations, i.e., the extent

ith which obfuscations make manual code comprehension tasks

nd automatic de-obfuscation techniques harder (Collberg et al.,

997; 1998; Schrittwieser et al., 2016). Other authors have pro-

osed combining many different metrics for assessing the strength

f a wider range of protections (Anckaert et al., 2007; Tonella et al.,

014; Ceccato, 2016) or have evaluated which metrics are better

redictors of obfuscation quality (Ceccato et al., 2015).

Requirement R7: We need a way to help users populate the

B, without requiring them to be modelling experts, i.e., by using

isual model editors or textual data that can be easily translated

nd imported. Similarly we need a way to help users in extending

he model by importing new information from different sources

nto a unique format.

In these requirements, we observe the need to model three

orms of information:

• Generic a priori information describes features of and relations

between aspects that holds invariably for a defender, such as

the available attack tools and protection tools and their capa-

bilities, which do not depend on the exact software to be pro-

tected;
• A priori use case information describes features of and relations

between the application, its assets, and their security require-

ments;
• A posteriori information describes features of and relations be-

tween a concrete application and its assets, applicable protec-

tions, and possible attacks on protected and unprotected ver-

sions. This is mostly information that can be inferred from the

two other forms of information.

The scope of our model is currently limited to software-only

rotections. We exclude protections that depend on advanced

ardware security features such as Intel’s enclaves (Intel, 2014)

r TrustZone 6 or Sancus or SOFIA-like cryptography-based en-

orcement of integrity and confidentiality (Noorman et al., 2013;

e Clercq et al., 2016). Furthermore, the attacks we envision

re limited to man-at-the-end attacks. Man-in-the-middle attacks,

hich focus on attacking distributed systems by intercepting com-

unications and by tampering with the communications, are ex-

luded. And so are system penetration attacks. In MATE scenarios,

ttackers are assumed to have, in their own lab, all the access they

https://www.arm.com/products/silicon-ip-security

6 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

f

i

3

m

a

m

a

s

a

p

a

r

S

A

q

t

t

a

i

t

s

i

t

q

t

t

s

f

t

c

b

b

h

A

t

a

b

c

want to the software under attack, they do not need to penetrate

systems in order to get that access.

Furthermore, the scope of our work is limited to native soft-

ware, i.e., code that is distributed to end users and attackers in the

form of stripped executable binaries that can be either main ex-

ecutables of applications, or dynamically linked libraries. This ex-

cludes threats from insiders such as any developers with access to

the source code or intermediate formats. It also excludes hardware

descriptions in any source, intermediate, or binary format.

Finally, it is important to point out that the models, inferences,

and tools we propose are created first and foremost to aid de-

velopers and users of software protections, i.e., the defenders. We

approach the link between protections and attacks from the de-

fender’s perspective. Individual attackers approach an application

and its assets one attack step at a time, and consider alternatives

and directions for their next steps after each step, thus executing

one sequence of attack steps, i.e., one attack path. Each attacker’s

path depends on his experience, his access to tools, the exact pre-

cision with which their specific tool versions and tool customiza-

tions analyse particular deployments of protections, and even sheer

luck, such as when they decide to spend limited amount of time

on searching for clues through an unordered set of information,

and it hence depends on luck whether or not they bump onto

the most relevant elements before their time runs out. Defenders

cannot reason in terms of individual attack paths and luck, how-

ever. They instead have to make worst-case assumptions, including

the assumption that multiple attackers may be attempting multiple

different attack paths at any point in time, and the assumption that

all potentially successful attack steps will actually be successful. In

other words, they have to assume that all potentially successful at-

tack paths will be attempted in parallel. Our models reflect this

worst-case scenario. For example, they do not contain the notion of

failed attack steps. However, not all companies and developers may

want or be able, to protect their application against all the possible

attacks. They may lack access to the most powerful protection tools

because of their cost and expertise needed to use them success-

fully, or their applications maybe cannot suffer from the perfor-

mance overhead that invariably comes with stronger protections.

Also the application domain matters. While it is reasonable to pro-

tect software for critical infrastructure also against sophisticated

attacks mounted by very motivated and skilled attackers, several

applications (e.g., low-cost games for smartphones) just need to be

protected against automated attacks launched by script kiddies. We

hence differentiate between different levels of attacker expertise,

but in our worst-case analysis, we assume that all the attacks that

can be mounted by attackers with a certain expertise are all per-

formed in parallel and successful.

3. Meta-model

We will now introduce our meta-model that, for the sake of

readability, is split in four smaller meta-models:

• the core meta-model contains the most important classes and

relationships, from our perspective;
• the application meta-model details the concepts and associations

related to a generic application and its code;
• the protection meta-model describes the notions that link to-

gether the protections and the protected areas of an applica-

tion;
• the attack meta-model finally introduces the attack classes and

their relationships with the various application parts.

In the UML class diagrams shown in the rest of the paper, we

have adopted a colour code to help the reader in understanding

the effort to fill in the meta-model instance:
• Red classes with a double border represent generic a-priori

concepts. Instances of these classes are populated by security

experts when preparing the KB. It is not expected from defend-

ers to change these instances when they have to protect their

applications, unless they are experts in formal models and want

to add new features (e.g., inferences, reasoning) that cannot be

built with the data in the existing meta-model.
• Blue classes with a double border relate to the a-priori use case

information. Instances of these classes are expected to be ob-

tained from the application to protect. These data can be ob-

tained automatically, e.g., name of functions and their relations,

i.e., a call graph, can be obtained with static analysis tools, or

manually, e.g., to report that a function or a piece of code dis-

covered automatically is an asset and requires the enforcement

of specific security requirements.
• The yellow classes with a single border model the a-posteriori

knowledge. All a-posteriori data is, by definition, obtained auto-

matically with the inferences performed in the KB system, thus

defenders have not to care about their collection.

The reader may have noticed that the effort required by the de-

ender to build the KB for protecting a specific application is lim-

ted to part of the a-priori use case information and associations.

.1. The core meta-model

The core meta-model formalizes the relationships between the

ain concepts involved in assessing an application’s vulnerabilities

nd protecting its valuable assets. Fig. 1 depicts the main meta-

odel’s UML class diagram. It includes the classes to model the

pplication itself, the assets that must be protected, the available

oftware protections, the attacker, and the potential attacks on the

ssets’ security requirements.

The main class is Application , whose instances abstract the ap-

lications or libraries that must be protected. An Application is

 composition of one or more ApplicationPart instances, which

epresent functions, code regions (as defined by the developer, see

ection 4.2.2 for more details), and global and local variables. An

sset is an ApplicationPart instance with a set of security re-

uirements, such as confidentiality or integrity, targeted by an at-

acker and that must be enforced by means of some protection. All

he Asset objects must then have at least one hasRequirement

ssociation with the SecurityRequirement enumeration, contain-

ng all the security requirements an asset can have.

The AttackTarget class represents a possible target of an at-

acker, who aims at breaking the security requirements of the as-

ets, as explained before. In our meta-model each AttackTarget

nstance will be associated with one and only one Asset via the

hreatens association and with one and only one SecurityRe-

uirement element via the affects relationships. If an attacker can

arget multiple asset requirements, then several AttackTarget on

he same asset are instantiated.

Attacks can be typically subdivided in an ordered sequence of

teps. For example, if the attacker wants to break the integrity of a

unction in the application, such as in a license check, he will need

o disassemble/decompile the application’s binary, find the license

heck function that forms the asset, and then modify it in order to

reak its integrity, being its security requirement. We model such

asic steps via the class AttackStep . Instances of this class may

ave one or more hasTarget relationships with instances of the

ttackTarget class. Note that some attack steps may not have any

arget, since they model some preparatory actions needed by the

ttacker to mount the following attack steps (e.g., attaching a de-

ugger to the application before dynamically changing a function

ode).

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 7

Fig. 1. Core meta-model UML class diagram.

a

a

i

t

T

A

t

t

t

t

t

c

u

o

j

v

j

s

P

s

t

n

2

b

d

t

c

a

n

t

I

t

s

p

d

w

f

f

t

a

o

i

e

a

r

A

P

l

p

p

f

t

3

f

d

a

m

c

t

h

p

c

p
Attacks are modelled via the AttackPath class, whose instances

re ordered sequences of attack steps. Note that not only the last

ttack step will breach the security requirement of an asset. For

nstance, an attack step that threatens the confidentiality of a par-

icular asset can lead to another step breaching the asset integrity.

o formally enforce the attack step order, we introduced the class

ttackStepItem , whose instances are associated with a single At-

ackStep object via the refersTo association and the next step in

he attack path through the isFollowedBy association. Each At-

ackPath instance is related, through the startsWith relationship,

o one AttackStepItem instance representing the starting point of

he attack path.

Generic protections types are represented via the Protection

lass. A protection enforced with a specific tool and with a partic-

lar configuration is represented in the meta-model as an instance

f the ProtectionInstance class. Every ProtectionInstance ob-

ect has two importation relationships. The first one is represented

ia the hasType association that binds a ProtectionInstance ob-

ect with its generic protection, that is a Protection instance. The

econd one is the isEnforcedWith association, used to relate a

rotectionInstance object with one or more ProtectionTool in-

tances, modelling all the tools needed to actually deploy the pro-

ection. For instance, the control flow flattening obfuscation tech-

ique is represented as a Protection class instance (Wang et al.,

0 0 0).

To slow down an attacker, various protection instances must

e applied to the assets in the application. Therefore, we intro-

uced the AppliedProtectionInstance class, representing a pro-

ection instance applied to a generic application part. This asso-

iation is directed towards the application part class, and not the

sset concept, since a security expert can choose to protect also

on-assets in order to confuse (and hence slow down) the at-

acker (see Section 4.2 for more information about this subject).

nstances of the AppliedProtectionInstance class are bound via

he hasInstance and isAppliedOn associations to a ProtectionIn-

tance and ApplicationPart objects, respectively representing the

t
rotection instance and the application part where the former is

eployed.

The global set of applied protection instances is represented

ith the Solution class. Different solutions in the same model, i.e.,

or the same application, are obviously possible. For example, dif-

erent solutions may be devised to find the best trade-off between

he level of security achieved and the introduced overhead. When

pplying more than one protection to the same asset, the order

f application is important, since it could lead to different results

n terms of security and even to incoherent cases. Therefore, we

nforced an ordering between the applied protection instances in

 solution by means of the AppliedProtectionInstanceItem class,

epresenting an applied protection instance inside a solution. Every

ppliedProtectionInstanceItem object is linked with a Applied-

rotectionInstance object via the refersTo association. Each So-

ution instance will have an association startsWith with an Ap-

liedProtectionInstanceItem instance to represent the first ap-

lied protection instance. The ordering in the solution is then en-

orced between the AppliedProtectionInstanceItem instances via

he isFollowedBy relationship.

.2. The application meta-model

The meta-model depicted in Fig. 2 defines the fundamental in-

ormation about the application needed to protect its assets, in or-

er to preserve the security requirements of the latter from the

ttacks mounted by the attacker, allowing us to satisfy the require-

ents R1 and R2.

The class used to model the various components of an appli-

ation is ApplicationPart . Each application part has a name at-

ribute and it is contained into a source file represented with an

omonym class, specifying its location in a file system with the

ath element. All the ApplicationPart instances can be assets,

ode or data, represented by three distinct sub-classes.

The Datum sub-class represents a generic variable or function

arameter. Each datum is characterized by its type (e.g., string, in-

eger variable, cryptographic key or ciphertext), modelled by the

8 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

Fig. 2. Application meta-model UML class diagram.

r

o

n

i

t

t

f

a

t

3

c

u

t

m

c

t

v

a

F

t

d

B

a

b

f

a
DatumType class and hasType association. Knowing this informa-

tion is useful for at least two reasons. First, data protections usu-

ally are only applicable to specific data types. For instance, in the

prototype protection tools developed in the ASPIRE project, XOR

masking (Collberg et al., 1997) can only be deployed to protect

an integer variable or array of integers. Second, some attacks can

only be mounted against some kind of data. For example, differen-

tial cryptanalysis (Biham and Shamir, 1993) is only meaningful for

some kind of encrypted data.

The Code sub-class is used to model functions, class meth-

ods and any generic code region. A code region can be thought

of as a container of other application parts (e.g., a function con-

tains variables, but also other smaller code snippets) and this fact

is modelled via the containment relationship between the Appli-

cationPart and Code classes. A piece of code can also access a

(local or global) variable, fact represented by the accesses associ-

ation. In addition, storing also the call graph of the application may

prove useful, especially when inferring attacks. Each call to a func-

tion is modelled as an instance of the Call class. The caller code

is bounded to the call via the hasCall 1-to-1 association, while

the call is related to the callee with the hasCallee 1-to-1 associ-

ation. Each call object contains also to the ordered list of param-

eters passed to the called function. A parameter in this ordered

list is modelled via the DatumItem class, related to the correspon-

dent Datum instance with the refersTo association and the next

item via the isFollowedBy relationship. If the called function has

at least one parameter, the Call instance will contain a startsWith

association with a DatumItem instance modelling the first call pa-

rameter. Note that when it is relevant to consider multiple calling

sites to the same callee in some caller function, this can be done

by considering multiple ApplicationPart s in the function, and by

associating each of them to the callee with hasCallee .

As introduced in the core meta-model, assets are represented

as instances of the Asset concept, a sub-class of ApplicationPart ,

and are related with their security requirement with the associa-

tion hasRequirement to items of the SecurityRequirement enu-

meration. In this context, we limited the list of security require-

ments to the following values:

• Confidentiality , indicating that an asset should not be compre-

hensible for the attacker (e.g., patented algorithms) or that it

should remain hidden completely (e.g., crypto key);
• Execution correctness , specifying that a code asset must be

called and executed as intended, and should not be bypassed

by the attacker (e.g., license checks) or be executable outside

the context of the given application (e.g., a white-box crypto

algorithm);
• Integrity , applicable to an asset that must not be modifiable by

the attacker (e.g., a hard-coded PIN number);
• Privacy , suitable when the disclosure of an asset could lead to

personal data leakage (e.g., credit card numbers).

Note that the meta-model does not restrict the usage of these

equirements, but allows the security expert to add additional

nes, if needed. Also note that although these requirements can

ever be met completely (as full protection against MATE attacks is

mpossible as explained in the introduction), it is useful to express

hem because the aim of the protections is to delay the attackers

hat aim for violating the requirements. Thus the expected attacks

ollow in part from these requirements.

Since filling this meta-model with meaningful instances can be

 long process, especially for big applications, we developed some

ools to perform this action automatically (see Section 4.2.2).

.3. The protection meta-model

The protection meta-model, depicted in Fig. 3 , contains the

lasses and relationships related to the protections that can be

sed to protect the security requirements of the assets against

he actions performed by the attacker. This meta-model allows to

odel not only the protection relationships (requirement R4), but

an be also used to precisely describe how an application was pro-

ected (requirement R5).

The Protection class is associated with SecurityRequirements

alues by means of the enforces association. This association char-

cterises the abilities and purposes of applying a given protection.

urthermore, the Protection class has several association loops

hat are useful to model protection synergies and forbidden prece-

ences. In particular, the shouldBePrecededBy and shouldNot-

ePrecededBy associations are respectively used to specify that

n applied protection instance should or should not be preceded

y another applied protection instance of a given kind. This is use-

ul when choosing the best solution since one protection can make

nother, previously applied protection stronger (e.g., software re-

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 9

Fig. 3. Protection meta-model UML class diagram.

m

i

o

fl

a

t

c

s

l

r

a

t

c

T

i

t

a

t

v

c

c

t

t

t

t

t

l

c

a

3

i

s

a

t

n

t

t

h

a

c

t

t

i

p

i

a

m

r

fi

i

f

S

m

r

a

d

i

a

o

h

t

A

f

a

‘

g

r

t

t

b

f

A

c

t

t

u

(

b

r

t

s

a

b

m

D

c

d

w

W

t

t
ote attestation (Viticchié et al., 2018) can be made more robust

f coupled with anti-debugging (Abrath et al., 2016)), but applying

ne protection can also make a later one weaker (e.g., a control

ow obfuscation applied first can negatively impact the data flow

nalysis that checks preconditions for applying a data obfuscation),

hus affecting the aggressiveness with which the data obfuscation

an be applied. Furthermore, the cannotBePrecededBy relation-

hip is used to model impossible sequences of protections that can

ead to incoherent or non-compilable applications (e.g., software

emote attestation is usually the last protection to be put, since

ltering the code after its deployment will trigger an invalid attes-

ation).

The ProtectionTool class contains all the available tools that

an be used to deploy a protection on an asset or application part.

he supported protection instances are linked to their tool via the

sEnforcedWith association.

Finally, the Metric class instances represent the value of a cer-

ain complexity metric computed over an application part (usu-

lly a code) (Tonella et al., 2014). The value attribute represents

he numerical value of the metric, while the kind is modelled

ia the hasType association towards an enumeration MetricType

ontaining all the available metric categories (e.g., Halstead length,

yclomatic complexity). The refersTo and the hasMetric associa-

ions direct towards respectively the relative application part and

he current protection solution. Complexity metrics can be useful

o quantitatively measure certain security features of an applica-

ion, as we also discuss in Section 4 . Together, these classes allow

he meta-model to meet requirement R6.

We developed several tools that enable us to assess the security

evel of a protected application (see Section 4.2) and further in-

rease the attack effort by strategically protecting some non-asset

pplication parts (see Section 4.2.7).

.4. The attack meta-model

The attack meta-model, whose UML class diagram is sketched

n Fig. 4 , contains all the classes and relationships used to repre-

ent the attacker, his attacks and their effects on the application

nd the protections. These classes allow us to model with precision
he effects of the attacks on a generic application and its compo-

ents, thus meeting the requirement R3.

The attackers are modelled via the Attacker class, related with

he hasExpertise association to the AttackerExpertise enumera-

ion, representing the various levels of expertise an attacker may

ave. We envision four levels of increasing expertise (i.e., geek,

mateur, professional and guru). Note that this enumeration set is

ompletely customizable and adaptable according to the scenario

hat needs to be modelled. In addition, the solution itself is related

o a specific attacker via the hasAttacker relationship to explic-

tly indicate that it was generated to counteract a specific attacking

rofile.

Attack steps usually refers to an application part (not necessar-

ly an asset). This is modelled through the refersTo association

nd the fact that an attack step can threaten a security require-

ent of an asset is modelled via the AttackTarget class and its

elationships. For instance, if the variable ‘x’ is an asset whose con-

dentiality must be enforced, the attack step ‘locate the variable x

n the function y’ refers to the function ‘y’ and has an attack target

or the confidentiality of the asset ‘x’.

The requiresExpertise association represents that an Attack-

tep may need a minimum level of attacker expertise to be

ounted, thus representing its base difficulty level. This should

epresent a best-case scenario from the attacker point-of-view

nd can be useful to perform additional inferences on the global

ifficulty of an entire attack path. Analogously, the meta-model

ncludes the requiresExpertise association between AttackTool

nd AttackerExpertise instances, which allows the classification

f tools based on the minimum level of skills the attacker should

ave to use it.

Each attack step belongs to a specific type such as dynamic

ampering or static analysis. This fact is formalized through the

ttackStepType class and the hasType association. As stated be-

ore, we stress that an attack step does not necessarily need to be

 full fledged attack, but it can also be a preparatory step such as

setup a web server’, thus the AttackStepType instances mix to-

ether both proper attacks and non attack types. Furthermore, the

equiresExpertise association models the fact that an attack step

ype requires a minimum expertise level to be mounted by an at-

acker.

An attack step type (e.g., a debugging attack) can be performed

y one or more different attack tool types (e.g., a debugger). This

act is represented by the isImplementedBy relationship with the

ttackToolType enumeration, in turn related with the AttackTool

lass, via the hasType association, containing the known attack

ools (e.g., IDA Pro).

The hasMitigation property is used to represent that a pro-

ection can mitigate an attack step type. For instance, this allows

s to express that the opaque predicates obfuscation technique

 Collberg et al., 1997) can be used to decrease the feasibility of

oth static and dynamic analysis attacks. The Mitigation class rep-

esents the protection mitigation. It is linked with the softened at-

ack step type through the mitigates association and also allows to

pecify a non-numeric level of effectiveness by using the hasLevel

ssociation and the Level enumeration. Vice-versa, an attack can

e used to partially or completely remove a protection. This is

odelled via the hasDisruption relationship with one or more

isruption class instances. Analogously to the mitigation case, this

lass specifies the protection that is affected by an attack via the

isrupts association and the effectiveness level of the disruption

ith the hasLevel relationship.

Risk analysis is an important phase in the software life cycle.

e hence created a tool that allows us to automatically discover

he attacks that can be mounted against a protected or not pro-

ected application (see Section 4.2.5) and another one that per-

10 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

Fig. 4. Attack meta-model UML class diagram.

t

c

a

o

t

p

4

4

t

2

r

a

t

c

c

c

c

(

(

(

(

ing, bypassing or working around protections.
forms various kind of assessments on attack paths and steps via

Petri nets (see Section 4.2.8).

The meta-model can indeed represent several simple yet use-

ful inferences. For instance, information about expertise is useful

to reduce the complexity of the attack discovery tool. If one wants

to protect just against a certain category of attackers, the tool has

not to consider all the attack steps and tools, which is an advan-

tage with backward reasoning. As an example, if we consider the

AttackerExpertise values as an ordered set (GEEK < AMATEUR <

PROFESSION < GURU), an attack path can be considered feasible

by an attacker of a given expertise (e.g., AMATEUR) if and only if

all the attack steps needed to mount it require at most the same

expertise (i.e., AMATEUR or GEEK). As another example, attack step

types can be associated to the expertise based on the information

about the tools needed to mount them. That is, if an attack step

can only be implemented by attack tools that require a minimum

expertise, the attack step type cannot be performed by attackers

having expertise less than the minimum expertise required by the

tools needed to mount it.

4. Validation

Several taxonomies and surveys of software protections and re-

verse engineering techniques have been presented in literature.

In the first part of this section, we discuss to what extent our

meta-model covers concepts and relations presented in that litera-
ure, thus validating that our models can capture the information

onsidered relevant in literature. In the second part, we discuss

 number of tools we developed to populate a KB system using

ur meta-models and to make practical use of the information in

hat KB system. With these tools, we validate that the models have

ractical use.

.1. Validation against models from the literature

.1.1. Reverse engineering taxonomy and models

Recently, Ceccato et al. developed models to capture the activi-

ies of attackers that target protected software (Ceccato et al., 2017,

018). On the basis of penetration test reports and public challenge

eports produced by professional and amateur hackers, they cre-

ted a taxonomy of the concepts that were used by the attackers

o describe their attack methods and corresponding reasoning pro-

esses. This taxonomy is a hierarchy of concepts, in which sub-

oncepts are refinements and concrete instances of higher-level

oncepts. They also presented four models that capture causal,

onditional, temporal and instrumental relations between

a) The attackers’ high-level comprehension activities;

b) Their attack strategy building activities;

c) Their attack tool selection, creation and customization activi-

ties;

d) Their selection processes to choose between undoing, overcom-

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 11

o

t

m

M

c

j

p

S

t

o

w

a

k

d

p

a

s

(

t

p

e

a

m

o

s

o

a

r

(

a

a

c

p

e

F

t

c

c

t

t

a

w

t

t

p

P

c

d

a

t

r

e

f

e

c

a

t

a

g

f

T

t

t

i

p

s

d

s

i

t

o

f

t

A

d

s

s

a

m

w

c

b

i

c

m

d

p

i

p

m

c

a

m

a

T

m

u

a

o

a

t

t

t

h

t

o

m

v

o

s

f

l

p

(

It is interesting to study how our meta-model covers the tax-

nomy concepts and models from Ceccato’s work. With regards to

he taxonomy, we observe that all top-level concepts can either be

apped onto the classes of our meta-model, or are irrelevant to it.

ore in detail, we observe the following regarding these top-level

oncepts:

Asset . Assets map directly to our Asset class.

Attack strategy . Attackers mention generic attack strategies as

ustification for how they spend their attack effort. Concrete attack

ath models in a KB, (through instances of the AttackStep , Attack-

tepItem and AttackPath classes in our meta-model) represent

he result of concrete, executed attack strategies, i.e., the sequence

f steps executed as a result of implementing an attack strategy. So

hile the current meta-model does not directly support modelling

ttack strategies, it supports concrete instances.

Background knowledge . Attackers rely on their background

nowledge for making decisions. Since different attackers have a

ifferent background knowledge, they can choose the most dis-

arate attack paths. Remember, however, that a defender reasoning

bout the protections most often needs to consider the worst-case

cenario in which the attackers at the considered level of expertise

as incorporated in our attack meta-model, see Section 3.4) have all

he possible knowledge available to the experts at that specific ex-

ertise level. The relevance of their combined background knowl-

dge is determined by the attack paths that this knowledge en-

bles. Hence, the relevant information can be incorporated in the

eta-model by populating it with all the attack paths that are built

n that knowledge. The attack-related classes in our meta-model

upport this representation, as discussed for the previous concept

f attack strategies.

Workaround . In the taxonomy by Ceccato et al., workarounds

re a specific class of attacks to defeat protections. They map di-

ectly to the AttackStep class.

Analysis / Reverse engineering . These concepts are techniques

e.g., diffing, debugging, profiling, pattern matching) to analyse

nd reverse engineer different aspects of the software under

ttack. Those concepts map directly onto the AttackStepType

lass.

Difficulty . Attackers face all kinds of practical issues in their ex-

erimental environment. That is the case because their concrete

nvironments are not perfected a-priori for the attacked software.

rom a defender’s perspective, these are best-case scenarios. On

he other hand, in worst-case scenarios, such difficulties do not oc-

ur, so there is no strict need to cover them in our meta-model. In

ase the issues are not mere practical ones, but fundamental limi-

ations (e.g., related to non-scaling analysis and decidability issues)

he impact these difficulties have on attacks will be reflected in the

bsence of certain attack paths in the KB. So, by populating the KB

ith the relevant attack paths, and excluding the irrelevant ones,

his concept can also be covered.

Obstacle . Ceccato et al. consider two kinds of obstacles that at-

ackers face when trying to execute attack strategies. The first are

rotections, which are clearly covered in our meta-model (by the

rotection , ProtectionInstance and AppliedProtectionInstance

lasses). In addition, also the effects that they have on enabling or

isabling certain attack steps can be modelled via the Mitigation

nd Disruption concepts. The second kind of obstacles are addi-

ional limitations to the attack environment (e.g., impossibility to

un the protected application, lack of knowledge in the application

xecution environment), to which the aforementioned discussion

or the concept of difficulties applies.

Weakness . Weaknesses are features of application parts that

ase attacks on corresponding assets, be it original assets with se-

urity requirements or protections that are attacked or intermedi-

te assets that attackers target on their way along a complete at-

ack path. The fact that an application part is weak against some
ttack step can be modelled in our KB by means of the AttackTar-

et class and the hasTarget , threatens and affects associations

rom our meta-model.

Tool . Concrete attack tools map directly to the AttackTool class.

heir abstractions (i.e., sets of similar tools with similar capabili-

ies) map onto the AttackToolType class.

Attack step . Ceccato et al. identified a wide range of attack ac-

ivities at a fine granularity. These steps, such as “locate a variable

n a function”, have explicit or implicit objects, i.e., targets. For the

revious example, these are the function and the variable them-

elves. These steps map directly to the AttackStep class. In ad-

ition, the relationships with the objects is handled by the refer-

To association and the AttackTarget class (and its relationships),

f the object is an asset.

Analyze attack result . Ceccato et al. noted that while executing

he attack paths, the analysis of their results (in particular whether

r not attempted attack steps succeeded) is an important aspect

or attackers to decide on the next attack steps to try, i.e., to es-

imate the path of least resistance that they will try to execute.

s our meta-model aims to model worst-case scenarios from the

efender’s perspective, it is not relevant to represent such steps

eparately. As discussed above, attack paths in our KB model all

uccessful attacks.

Attack failure . Being the outcome of an attempted, but failed

ttack step, this concept is not relevant in the context of our meta-

odel.

Software element . Ceccato et al. listed a wide range of soft-

are artifacts that are targeted in individual attack steps be-

ause they serve either as ultimate targets of the attacks or

ecause they serve as clues while the attacker is still search-

ng for the ultimate assets. These artifacts or elements in-

lude both code and data, and static ones (e.g., code frag-

ents, global data, API definitions and invocations) as well as

ynamic ones (e.g., variables being assigned values during the

rogram execution, system calls being executed, code patterns

n traces). In all cases, they relate directly to the application

arts that are covered by the ApplicationPart class in our

eta-model.

As for the four inferred models of relationships between con-

epts in the work of Ceccato et al., we note that these reflect how

ttack paths are constructed by attackers. The knowledge in those

odels is not stored directly in the KB, but the constructed paths

re, as already discussed above for some of the top-level concepts.

hus, the relevant conclusions to be drawn from Ceccato et al.’s

odels can be represented in a KB based on our meta-model.

In our prototype tools (see Section 4.2) that populate a KB built

pon our meta-model, the inferred models from Ceccato et al.

re present but in a strongly simplified form. More specifically,

ne of the so-called enrichment modules hard-codes some causal

nd temporal relations between attack steps to infer relevant at-

ack paths starting from a set of attack steps. For simple cases,

his module allows us to populate a KB with straightforward at-

ack paths relevant to the use case at hand, i.e., the application at

and with its deployed protections and embedded assets. In fu-

ure work, we plan to extend our meta-model to cover concepts

f attack strategies as well as the relationships in the relational

odels of Ceccato et al. The relevant information to infer rele-

ant attack paths for a given (protected) application with a set

f given constraints from a set of generic, a-priori available attack

teps can then all be stored in the meta-model, at which point we

oresee that more interesting inference can be performed to popu-

ate the KB with attack paths, thus avoiding the need to insert a-

osteriori complex attack paths manually with the Petri Net tools

see Section 4.2.8).

12 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

(

t

s

t

L

t

w

n

a

a

t

“

t

t

b

a

a

S

c

t

u

y

m

R

r

4

r

e

e

o

o

c

o

w

m

o

t

a

t

a

v

a

d

t

t

b

c

t

t

f

t

a

M

o

b

(

c

i

w

f

g

From this discussion, we conclude that requirements R3-R4-R5

are met with respect to the concepts and relations considered rel-

evant by Ceccato et al.

4.1.2. Obfuscation taxonomy

Collberg et al. presented the first taxonomy of obfuscation

techniques in a seminal paper on software protection against re-

verse engineering (Collberg et al., 1997). The obfuscation taxon-

omy includes layout obfuscations, data obfuscations, control obfus-

cations, and preventive transformations, and discusses several de-

obfuscation attacks. The paper also puts forward potency, cost, and

resilience as aspects to consider during the evaluation of protec-

tions.

The obfuscation techniques discussed in the paper are mostly

covered by our protection meta-model: data and control obfusca-

tions operate on code and data; both those forms of application

parts are covered by the meta-model. Layout obfuscations are not

but they are also outside the scope of our model: they concern

source-code aspects such as comments and names of variables,

which are mostly irrelevant in stripped binaries. Those binaries,

be it main binaries or dynamically linked libraries, are the form

in which native software, the focus of our work, is distributed and

hence attacked. The sole exception is when identifiers identify ex-

ternal APIs. As discussed in the previous section, API definitions

and invocations are covered by the ApplicationPart class. Preven-

tive obfuscations, i.e., obfuscations that do not hide assets but that

prevent analysis techniques from providing (very) useful results,

are modelled as well, and the Mitigation class and its relations

in the attack meta-model enables us to model which protections

prevent which attack steps.

To evaluate the potency of obfuscations, Collberg et al. propose

to use software complexity metrics that need to be computed on

the relevant application parts. Others later extended on this idea,

including some of us (Anckaert et al., 2007; Tonella et al., 2014;

Ceccato, 2016). Our protection meta-model contains the relevant

classes and relations to express the necessary information regard-

ing such metrics and application parts. To evaluate the cost of pro-

tections, specific metrics can be used, such as the static number

of instructions to measure code size, and the dynamic number of

instructions (i.e., the number of executed instructions for some in-

puts) to approximate performance overhead. To evaluate resilience,

Collberg et al. propose a discrete scale with five levels of resilience:

trivial, weak, strong, full, and one-way. In the attack model, the

Mitigation and Level classes can capture three levels of resilience

of protections against attacks. We opted for only three techniques

because the level “trivial” is mostly useless when considering only

worst-case scenarios, and because one-way is theoretically possi-

ble, but in practice not yet achieved in MATE scenarios where at-

tackers have white-box access to the software and assets under

attack. When considering resilience, Collberg et al. distinguish be-

tween programmer effort, i.e., the effort needed to build or cus-

tomize tools to perform an attack, and de-obfuscator effort, i.e.,

the time and resources needed to deploy the thus built tools. In

our models, we do not make this distinction explicitly. However,

the individual attack steps that our meta-model covers can be both

preparatory steps, such as customizing a tool, and actual attack

steps, such as deploying a tool. Thus our meta-models are expres-

sive enough to capture all the concepts and relations put forward

by Collberg et al.

From this discussion, we conclude that requirements R3-R4-R5-

R6 are met with respect to the concepts and relations considered

relevant by Collberg et al.

4.1.3. Obfuscations versus program analyses

Much more recently, Schrittwieser et al. surveyed the state

of the art in software obfuscation vis-à-vis code analyses
 Schrittwieser et al., 2016). The latter are used as attack techniques

o directly attack obfuscations, i.e., if obfuscations lack the neces-

ary resilience, and to work around obfuscations, i.e., if obfusca-

ions are not potent with respect to some reverse engineering task.

ike the concrete obfuscation techniques surveyed by Ceccato et al.

he concrete ones surveyed by Schrittwieser et al. can be modelled

ith our protection model. Furthermore, the code analysis tech-

iques surveyed by Schrittwieser et al. can be modelled with our

ttack model.

Schrittwieser et al. provide a taxonomy that partitions concrete

ttack techniques in categories based on (i) the attack goal, (ii)

he generic, abstract technique used to reach that goal, such as

locating code through static analysis”, and (iii) whether or not

he technique is fully automated or performed with human assis-

ance (or even completely manually). Each of the different com-

inations they consider can be modelled with multiple instanti-

tions (one for each concrete technique) of the AttackStepType

nd AttackToolType classes from our attack meta-model. Finally,

chrittwieser et al. analyse the resilience and potency of the obfus-

ations with respect to different attack classes, and label them in

hree categories, ranging from “minor increase of costs”, over “not

nbreakable, but makes analysis more expensive”, to “breaks anal-

sis fundamentally”. These labels map well onto the three levels of

itigation in our attack meta-model.

From this discussion, we conclude that requirements R3-R4-R5-

6 are met with respect to the concepts and relations considered

elevant by Schrittwieser et al.

.1.4. Integrity protection taxonomy

An interesting taxonomy of software integrity protections has

ecently been published by Ahmadvand et al. (2019) . It covers sev-

ral concepts that are also represented in our meta-model. How-

ver, we noticed two major differences that are related to the goal

f the two works. Whereas our approach started from the need

f representing the information needed when protecting an appli-

ation from tampering (to break software integrity requirements

r to defeat anti-reverse-engineering protections in MATE scenario

ith software-only protections), the classification presented by Ah-

advand et al. aims at describing integrity protections. Therefore,

ur attack meta-model is more precise than their taxonomy. While

hey define generic attacks, which can be roughly mapped to our

ttack step types, we also have the possibility to define precise at-

ack steps that refer to the original, intermediate, and protection

ssets, to group them in paths and associate attack tools on indi-

idual attack steps. Moreover, their taxonomy lacks the concept of

 deployed protection and of the solutions that are needed when

eciding how to protect an application.

On the other hand, they expanded the high-level classifica-

ion of protections with intermediate concepts that group pro-

ections in a way that is interesting for categorisation purposes,

ut is unnecessary for our goals. Moreover, their classification in-

ludes information about the life cycle, which describes informa-

ion about management and production stages of the application

o protect. It will be certainly interesting to study how that in-

ormation can be integrated in our model, as life cycle informa-

ion can be useful when protecting libraries or when protecting

pplications without having the possibility to access source code.

oreover, the proposed taxonomy includes high-level concepts like

verhead (which we have explicitly avoided as too coarse grained

y resorting to a broader concept of metrics), and trust anchor

which defines hardware security mechanisms that we have ex-

luded by hypothesis). Moreover, in their work, authors explic-

tly defined the granularity of representation of the assets, which

e can avoid as our application meta-model conveys precise in-

ormation on the application parts that allows us to infer the

ranularity.

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 13

4

j

p

A

m

s

4

M

n

p

E

t

t

h

q

4

T

t

c

t

p

t

b

e

o

r

i

t

i

t

(

t

a

4

f

c

i

c

c

s

t

i

i

a

c

b

g

t

t

f

t

t

o

e

a

4

c

p

o

p

t

m

2

m

n

o

H

u

s

n

t

t

e

t

a

t

t

a

m

4

t

r

t

s

a

c

f

r

s

s

a

are:
.2. Validation with practical tools

The meta-model presented in Section 3.2 has been used in con-

unction with various tools to support the process of analysis and

rotection of an application.

These tools have been developed and used in the context of the

SPIRE project. Here they are introduced to demonstrate that our

eta-model is able to convey information useful to perform real

oftware protection tasks.

.2.1. Integration with Eclipse EMF

The meta-model has been implemented using the Eclipse

odeling Framework (EMF) 7 , allowing its manipulation and

avigation directly in Java applications. EMF is a well sup-

orted standard in the Eclipse world and several tools (e.g.,

clipse Epsilon

8) are available to perform various modelling

asks, such as validation and model-to-model transforma-

ion. The code of our meta-model is publicly available at

ttps://github.com/SPDSS/adss/tree/master/eu.aspire_fp7.adss.akb.

This implementation contributes to the coverage of the R7 re-

uirements, as it concerns the usability of our meta-model.

.2.2. Automatic analysis of the application to protect

We developed a tool based on the Eclipse C Development

oolkit (CDT) 9 that is able to parse a set of C/C++ source files, iden-

ifies the functions, their parameters, reconstruct the call graph, lo-

ate the local and global variables, and to translate such informa-

ion into appropriate instances of our EMF-based meta-model, in

articular the application meta-model. The fact that we were able

o correctly and properly represent all the information extracted

y CDT about an application that we deemed important for attack

valuation and protection purposes validates the effectiveness of

ur meta-model in meeting the requirement R1.

Moreover, the CDT tool is also used to parse annotations, di-

ectly applied to the code by software developers or analysts, that

ndicate which parts of the applications are assets and which are

heir security requirements. The ASPIRE tools support annotations

n the form of pragmas to identify and annotate code regions of in-

erest and attributes to identify and annotate variables of interest

 Basile et al., 2016). Using this approach, we were able to validate

he capability of our meta-model to represent what constitutes an

sset, thus fulfilling requirement R2.

.2.3. Text to OWL conversion

We developed a text2OWL tool 10 for developers who are not

amiliar with the OWL formalism and tools. It was developed to

reate or update a valid OWL ontology out of a text file contain-

ng a taxonomy of reverse engineering attacks. The input text file

onsists of two parts: the first one contains the taxonomy of con-

epts, while the second part consists of additional rules between

uch concepts. In the first part the taxonomy is made of a set of

rees of concepts whose hierarchy is defined by the indentation, as

n the following excerpt of the textual taxonomy:
7 See https://www.eclipse.org/modeling/emf/ .
8 See https://www.eclipse.org/epsilon/ .
9 https://www.eclipse.org/cdt/ .

10 Online at https://github.com/uel-aspire-fp7/text2owl
The number of = characters indicates the sub-concepts’ nest-

ng depth. This tool generates the same class hierarchy in OWL via

n axiom for each tree edge as a triplet of ‘concept, relationship,

oncept’ (e.g., ‘Diffing isSubConceptOf StaticAnalysis’).

A list of similar triplets forms the second part of the text file,

ut with different types of relationships (e.g., ‘Analysis-Reverse En-

ineering usedTo IdentifySensitiveAssets’), that actually transform

he taxonomy in a thesaurus (a graph of concepts, not bound by a

ree structure like a taxonomy). Furthermore, the tool also checks

or inconsistencies among the concepts defined in the rules and

he taxonomy (e.g., concepts in the rules that do not appear in the

axonomy). This tool has been specifically developed for, and tested

n, the taxonomy and models of Ceccato et al. that were discussed

xtensively in Section 4.1.1 . This tool also helps us to meet the us-

bility requirements of R7.

.2.4. Integration with OWL ontologies

Given the huge amount of information required to perform se-

urity analysis of software applications in MATE scenarios, sup-

orting the KB enrichment with automatic inferences was one of

ur primary goals. Ontologies are an important tool that we have

ositively evaluated to perform basic inferences and checks. For

his purpose, we developed an API to translate the EMF meta-

odel in an ontology 11 , written in the Web Ontology Language

 (OWL2) and vice-versa (from OWL2 to EMF) to feed the meta-

odel with the inferred data. In addition, this API allows the ma-

ipulation of the ontology (e.g., create/remove classes/individuals

r write SWRL 12 rules), uses a reasoner (we support both the

ermit 13 and Pellet 14 reasoners) and performs advanced queries

sing the SPARQL-DL language 15 . This allows executing advanced

earches, coherence checks (e.g., test if a Solution instance does

ot contain any forbidden precedence between its applied protec-

ion instances) and various logical inferences (e.g., infer all protec-

ions that mitigate a particular attack step with a given level of

fficacy).

With the help of such tool, and eventually manually filling out

he missing information, it is possible to generate instances of the

pplication and protection meta-models constituting a strong KB,

o be used with more advanced inference and analysis tools. This

ool fulfills all the R1–R6 requirements, as it concerns the gener-

tion of a-posteriori information and hence covers all the meta-

odels.

.2.5. Deriving attack paths against an application

We have developed a tool, written in Java, which infers various

ypes of attack paths on application assets by using Prolog-based

easoning (Basile et al., 2015; Regano et al., 2016). We have used

he meta-model to instantiate a KB with various types of attack

teps that include dynamic and static tampering attacks as well

s network attacks, such as sniffing and spoofing the client-server

ommunications.

The tool manages a fact base that is initialized with the in-

ormation, taken from the KB, about the assets and their security

equirements. Moreover, the tool imports from the KB the attack

teps, which have been annotated (manually by us at the tool de-

ign time) with pre-conditions and post-conditions. Pre-conditions

re predicates built on the facts in the fact base. Examples of facts
11 Its source code is available at https://github.com/daniele-canavese/ontologies.
12 See https://www.w3.org/Submission/SWRL/ .
13 See http://www.hermit-reasoner.com/ .
14 See https://github.com/stardog-union/pellet.
15 http://www.derivo.de/en/resources/sparql- dl- api/ .

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/epsilon/
https://www.eclipse.org/cdt/
https://www.w3.org/Submission/SWRL/
http://www.hermit-reasoner.com/
http://www.derivo.de/en/resources/sparql-dl-api/

14 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

m

o

p

m

a

t

I

a

c

t

a

p

4

fl

c

s

a

o

a

T

t

s

P

r

s

t

t

fi

v

t

o

a

g

a

t

c

e

m

a

g

s

a

e

r

a

t

f

w

m

a

P

t

c

16 https://www.ibm.com/analytics/data-science/prescriptive-analytics/

cplex-optimizer .
17 See http://www.imm.dtu.dk/ekki/projects/ePNK/ .
18 See http://www.eclipse.org/gmf-tooling/ .
19 Petri Net Mark-up Language (PNML) standard ISO/IEC 15909, on-line at http:

//www.pnml.org/ .
• The asset a is a code region inside function f , which is used

to infer relations of attack steps related to static and dynamic

analysis;
• Traces collected for function f , which indicates that the appli-

cation has been executed in a previous attack step, and which

enables all attack steps that involve dynamic analysis;
• The value of the variable x is known, which may be the tar-

get of an attack (e.g., knowing the license key) or enable cryp-

tographic operations (together with the fact x is a symmet-

ric/asymmetric private key).

When a pre-condition is true, the attack step can be executed

and adds new facts in the fact base. The tool uses Prolog to infer,

with backward reasoning, if there is a sequence of attack steps, i.e.,

an attack path, that compromises the security requirements of the

assets. All the discovered attack paths are then added in the KB. In

the end, this tool is able to fill in an instance of the attack meta-

model in a completely automatic fashion. The effort of annotating

attack steps is only needed once and it needs an update only in

the rare event of new attack steps added to the KB. With this tool

we have been able to validate the satisfaction of requirement R3,

as the meta-model was able to properly store all the inferred at-

tack paths and steps on industrial ASPIRE use cases (as will be dis-

cussed in more detail in Section 4.2.12).

4.2.6. Protections and their potency estimation

The protections that counter the attack paths can be found with

various inference rules. We implemented them as custom enrich-

ment modules that integrate ontology reasoning with our EMF im-

plementation of the meta-model. Once these protections are found,

they must be applied in the right order on each (original, interme-

diate and protection) asset, thus producing a Solution instance.

Waiting for an effective automatic decision support system that

finds such, these solutions are manually devised. In order to assist

the security expert to estimate the effectiveness of such solutions,

the concept of potency introduced by Collberg et al. (1997) can be

used. The potency is essentially a value stating how good the secu-

rity of a protected asset is based on the value of selected software

metrics. In his work, Collberg proposed the use of seven static and

dynamic metrics. Since metrics need to be measured on the pro-

tected asset, evaluating the potency of a protection over a specific

asset means that the protection needs to be actually applied, the

program possibly rebuilt and some complexity metrics needs to be

extracted by an ad-hoc tool. This process can be time consuming,

especially if the application is big and/or if the number of candi-

date solutions to choose from is high. To avoid the actual applica-

tion of protections, we developed an estimator that uses a set of

neural-networks trained to predict, with a high degree of accuracy,

the variations of the metric values used to compute the potency.

Therefore, with this tool a defender is able to accurately estimate

the potency of a solution starting only from the unprotected assets’

complexity metrics without rebuilding the application each time

(Canavese et al., 2017).

By using the protection meta-model to store the information

about (single and combination of) protections applied to an asset

and the various application part metrics, we validated the satisfac-

tion of the requirements R4 and R6.

4.2.7. Hiding protected assets

Protected assets have recognizable fingerprints that can be

identified and exploited by attackers. For instance, obfuscation

techniques may flatten the control flow or increase the number

of if statements (opaque predicates) to render code understanding

more difficult. However, static analysis and inspection allow an at-

tacker to identify these protected parts with respect to unprotected

areas. Therefore, after having protected the assets, a security expert
ight decide to fool the attacker by applying the same protection

n other application parts that are not real assets with the pur-

ose of delaying the attacker activities, who will have to evaluate

ore candidate assets fingerprints. We named this protection step

ssets hiding . We developed a tool (Regano et al., 2017) that au-

omatically generates a mixed-integer linear problem for the IBM

LOG CPLEX

16 solver to select the best applications parts where to

pply these decoy protections in order to maximize the attacker

onfusion and delay, by leveraging the information in the applica-

ion and in the protection meta-models.

Also in this case, the protection meta-model served his purpose,

s it allowed us to model both the protected assets and the other

rotected application parts, thus validating the requirement R5.

.2.8. Petri net modelling of attacks

Petri Nets (PNs) (Peterson, 1977) are often used to model the

ow of information in concurrent and distributed systems. We

hose a Petri net editor to model reverse engineering attacks vi-

ually, thus helping to meet requirement R7.

Petri nets are bipartite graphs, with two types of nodes: places

nd transitions, visualized as circles and rectangles respectively. In

ur interpretation, places represent sub-goals reached during an

ttack and transitions correspond to attack steps being executed.

he final place in the model represents the final goal of the at-

acker, i.e., accessing or compromising the security-sensitive as-

et. By correctly connecting the places and transitions in a single

N, one can easily model one or more sub-goals that need to be

eached before the next attack step can be executed, which attack

teps can be performed concurrently or sequentially, and which al-

ernative attack paths lead to the same goal. In a Petri net model

here are different attack paths that can be followed to achieve the

nal goal. Each attack path is a temporal sequence of attack steps,

isited by a token (a black dot within a place in the PN model)

raversing the net from the initial state to the end state through

ne of the possible attack paths. Each token represents a different

ttacker in a team of attackers in collusion to achieve the same

oal. In this way attacks performed in parallel by two colluding

ttackers can be represented.

PNs with Discrete Variables (PNDVs) are a more recent PN ex-

ension with a set of finite global integer variables, used in pre-

onditions, that are guards on transitions (Kindler, 2011). In our

xperience with all the ASPIRE use cases, we noted that the infor-

ation used by the attackers can be decomposed and mapped to

 set of integer variables. For example, when looking for a crypto-

raphic key into a binary file, the attacker usually needs to identify

ome areas of code worth of further investigation. Such intermedi-

te knowledge can be represented with a code region array, where

ach code region is represented by a couple of integer numbers,

epresenting the initial and final offset with respect to the base

ddress of the binary code.

To design the attack models we used ePNK, an Eclipse-based

ool 17 which provides a Java-based extensible open source platform

or PN modelling, based on EMF and Graphical Modeling Frame-

ork (GMF). 18 The current ePNK plug-ins allow designing a PN

odel with discrete values and save it as standard PNML 19 file,

s the GMF-based editor is built on top of an EMF meta-model of

NML. We used this tool to model attacks on two software protec-

ion techniques. The first, as shown in Fig. 5 , aims to extract the

ryptographic key from a White-Box Crypto (WBC) (Wyseur, 2008)

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://www.imm.dtu.dk/ekki/projects/ePNK/
http://www.eclipse.org/gmf-tooling/
http://www.pnml.org/

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 15

Fig. 5. Petri net for the attack on white-box cryptography.

Fig. 6. Petri net for attacks on a SoftVM.

l

p

s

(

d

f

d

i

l

t

s

b

A

i

r

t

o

m

l

n

a

m

c

t

s

F

c

t

a

T

w

P
ibrary. The second aims at de-obfuscating the code of an ap-

lication protected by the use of custom, randomized instruction

ets that are interpreted by a software virtual machine (SoftVM)

 Ghosh et al., 2010), as shown in Fig. 6 . These models have been

esigned after four rounds of interactions with the security experts

rom the ASPIRE project’s industrial partners responsible for the

evelopment of these protections. 20

These modelling exercises have helped the security analysts in

dentifying and visually defining the different attack steps and re-

ated attack tools. Moreover, the Petri net editor has been used

o populate the OWL KB with new attack step types and new in-

tances of attack steps. Each new attack step in the Petri net can

e mapped to a new or existing AttackStepType and to a new

ttackStepItem object in OWL, according to the syntax defined

n the attack meta-model of Fig. 4 . Similarly the attack paths rep-

esented by the PN are mapped to many AttackPath objects in

he KB, while the temporal sequence between attack steps in a PN
20 WP4 deliverables on the ASPIRE website present a full description of the attacks

n the two use cases.

w

a

a

d
odel is mapped into a set of OWL axioms instance of the isFol-

owedBy relationships between two AttackStepItem objects. Fi-

ally the Petri net models have been used by other tools for more

dvanced analysis and simulation (Zhang et al., 2016).

The Petri net modelling helped us in validating the R3 require-

ent of the meta-model by showing that it can represent even

omplex attacks on industrial use cases.

In the remainder of this section, we report more details about

he modelling of the attacks on the two protections to demon-

trate the level of precision that our attack meta-model can reach.

irst, the PN attack model on white box cryptography contains pre-

onditions to transitions. For example, in case the attacker has de-

ected AES-related binary code (represented by Ts0), he will run

 more precise static analysis with AESKeyFinder (represented by

s1), or in case RSA-related code is found (i.e., crypto = ’RSA’), he

ill run a RSAKeyFinder (represented by Ts2), otherwise the IDA

ro-findCrypt2 plug-in can be used (Ts3). After an initial phase

ith the static analysis tool, the attacker is in P2 and can choose

mong many following attack steps representing different dynamic

nalysis techniques (Td1 to Td4): each attack step can be executed

epending on the results and the type of the static analysis attack

16 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

Fig. 7. Example of a code annotation used to define assets.

c

t

i

l

t

t

I

c

f

a

c

n

e

d

s

p

(

r

l

4

4

a

a

g

i

a

a

i

t

o

s

t

t

i

A

S

c

a

a

a

s

t

a

S

s

i

s

r
step previously executed. The pre-condition can help defining that,

for example, Ts1 isFollowedBy Td1 is a possible sequence of At-

tackStepItem while other combinations of attack steps are not ac-

tually feasible.

On the other hand, the design of a PN attack model on vir-

tualization obfuscation as in Fig. 6 has shown that an attack can

be performed by a team of attackers working in parallel. In the

virtualization obfuscation, the SoftVM contains an interpreter that

fetches bytecode from memory. For each bytecode, the SoftVM ex-

ecutes the corresponding native code stored in the respective In-

struction Handler (IH), and then loads the next bytecode. The byte-

code is not stored in a single file or data structure but it split

in different code chunks spread throughout the native code. The

VM implementation is split in a set of IHs which might be obfus-

cated and then encrypted and then spread through the native bi-

nary code using a binary rewriting tool. Each code chunk can con-

tain one or more bytecode instructions. The VM contains different

code portions that are interesting to the attacker: (i) the VM func-

tion called by the native code to transfer control to the VM; (ii) a

decoder, which translates the bytecode into native code; (iii) a dis-

patch routine that given a particular bytecode invokes the IH, and

(iv) the different IHs.

Petri nets are particularly useful to model parallel processes,

and in this example we can see how three attackers can work to-

gether to achieve the common goal. Attacker1 can start looking

for the VM function with dynamic analysis (attack step Tvm), and

then search for the bytecode chunks within the binary code (T6).

The other two attackers can find the dispatch routine of the VM

(Tdis) and then split the work: Attacker2 can focus on the de-

coder function and building a custom disassembler for the byte-

code (Tdec followed by T5), while Attacker3 can search for the IHs

using various static and dynamic analysis tools (To , T2 , T3 , T4).

In order to rebuild the de-obfuscated code (attack step T7), At-

tacker2 and Attacker3 must synchronize to understand the byte-

code semantics by running the code chunks (found in attack step

T6) through the custom disassembler (built in attack step T5).

Once Attacker1 will find the IHs he will have to synchronize with

the others to combine the bytecode semantics and IHs manually to

understand the full semantics of the de-obfuscated code. This case

study with parallel attacks can be represented in the KB system

with a set of axioms representing the different sequences of At-

tackStepItem linked by the relationship isFollowedBy ; in fact, (T5 ,

T6 , T7) or (T6 , T5 , T7) are two valid attack paths representing the

fact that T7 can start only when both T5 and T6 have been per-

formed in any order.

4.2.9. Validation on software protection tool chain

In the ASPIRE project, a tool chain for composable native soft-

ware protections was developed (Basile et al., 2016), which inte-

grates a wide range of protections, and of which almost all com-

ponents are available as open source at https://github.com/aspire-

fp7/. This tool chain is called the ASPIRE Compiler Tool Chain

(ACTC). It uses compiler techniques to deploy software protections

on applications. Those protections all implement different parts of

a layered software protection architecture (Wyseur et al., 2016;

De Sutter et al., 2016a). The ACTC’s protections aim at defending

against reverse-engineering, tampering, and cloning. They include

code and data obfuscations Collberg et al. (1997) , white-box cryp-

tography (as also discussed in Section 4.2.8) (Wyseur, 2008), code

mobility (Cabutto et al., 2015), code diversity, code guards, code

renewability, remote attestation and migration of sensitive code

to secure servers (Viticchié et al., 2016), use of custom instruc-

tion sets interpreted by virtual machines (Ghosh et al., 2010) (as

also discussed in Section 4.2.8), anti-debugging by means of self-

debuggers (Abrath et al., 2016), and more.
During the project, we validated that the presented meta-model

an capture the necessary aspects of all of those protections, of the

ool chain that allows the composition of those protections to vary-

ng degrees, and of the attacks we surveyed in the project and col-

ected in the so-called ASPIRE attack model. This includes, e.g., the

wo attack models discussed in Section 4.2.8 . We cannot discuss

he full attack model in detail, as it was a confidential document.

t consists of a survey of the different types of assets and their se-

urity requirements; the different types of attackers that we might

ace; the concrete methods, tools, and techniques that are avail-

ble to the attackers and the different types of attack activities that

an be performed with them to reach specific intermediate or fi-

al attack goals; as well as the possible ways in which the attack-

rs combine different attack activities to reach their final goal. We

o confirm, however, that all attacks considered as relevant in the

cope of the ASPIRE project by both its academic and its industrial

artners, are covered by our meta-model.

From this discussion, and from the final validation report

 De Sutter et al., 2016b) of the ASPIRE project, we conclude that

equirements R1–R6 are met with respect to the concepts and re-

ations considered relevant in the scope of the ASPIRE project.

.2.10. Software protection work flow

The tools presented in Section 4.2.2 and Sections 4.2.5 to

.2.8 have been integrated with the ACTC as introduced above, to

ssist software developers in (semi-automatically) protecting their

pplications with the ACTC. The meta-model allowed us to inte-

rate inferences as needed for providing decision support for us-

ng the tools in the ACTC into a KB system. The integrated tools

nd the ACTC thus form a tool-supported work flow for semi-

utomated software protection.

As a first step, the work flow calls the tool of Section 4.2.2 to an

nstance of the application meta-model by parsing and analysing

he structure of the C/C++ application to be protected. The user

nly needs to link the application parts he considers as assets to

ecurity requirements. This is done manually, via pragma annota-

ions. An example of an asset, in this example a part of the C code

hat requires integrity, is provided in Fig. 7 . For a complete spec-

fication of the supported annotations, we refer the reader to the

SPIRE Framework Report (Basile et al., 2016) and the ASPIRE Open

ource Manual (Coppens et al., 2016).

The structure of the target application is described by means of

lasses from the application meta-model of Section 3.2 . Variables

nd functions are translated into instances of the ApplicationPart ,

ssets as Asset instances, while security requirement annotations

re translated in hasRequirement relationships between the As-

et instances and values of the SecurityRequirement enumera-

ion.

The structure of the application stored in the KB is then

nalysed by the automatic attack discovery tool described in

ection 4.2.5 . The identified attacks against the application’s as-

ets are then translated by using the a-posteriori classes defined

n the attack meta-model described in Section 3.4 . For each in-

tance of the hasRequirement relationship, i.e., for each secu-

ity requirement of each asset, the tool generates an instance of

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 17

t

s

t

o

T

o

i

s

t

t

l

t

m

p

b

T

I

h

t

t

t

t

i

t

t

l

W

l

t

m

m

u

d

p

m

r

T

t

n

s

S

A

t

a

P

o

t

f

t

fi

p

e

d

l

m

a

v

a

A

o

4

t

q

m

o

p

a

i

m

l

f

s

s

c

t

t

e

c

i

t

o

d

p

a

m

t

a

t

e

O

c

a

t

t

4

d

s

i

u

p

t

d

t

c

O

v

s

m

A

a

p

P

p

m

e

a
he AttackTarget class, with the threatens and affects relation-

hips set accordingly. Then, for each AttackTarget instance, the

ool tries to generate any possible AttackPath containing at least

ne AttackStep having a hasTarget relationship with the Attack-

arget instance. Attack paths are generated by following a set

f Prolog rules, contained in an external KB system, as described

n Regano et al. (2016) . Identified attacks may also be manually vi-

ualized and refined by the software developer with the Petri net

ool described in Section 4.2.8 . Manual attack paths may be added

o the attack meta-model; they will hence be compatible with the

ater tools in the work flow.

After inferring the possible attacks against the application with

he custom enrichment modules of our EMF meta-model imple-

entation described in Section 4.2.6 , the work flow identifies the

rotections that can be applied on the target software in order to

lock the attacks found in the precedent step of the work flow.

he tool automatically generates an instance of the Protection-

nstance class for each AttackPath instance for each Protection

aving a Mitigation for the AttackStepType of at least one At-

ackStep instance in the target AttackPath . The candidate Protec-

ionInstance instances can be manually combined by the applica-

ion developer into an instance of the Solution class.

The tool described in Section 4.2.6 produces an estimation of

he software metrics on the ApplicationPart instances after be-

ng protected with the AppliedProtectionInstance instances in

he Solution (linked with the isAppliedOn relationship). The es-

imated metrics serve to compute an estimated potency of the so-

ution without actually applying any protection on the application.

ith this approach, the defender can quickly compare several so-

utions in terms of effectiveness and overhead, without spending

ime to actually apply the solutions and measure and compute the

etrics on the target software. Clearly, the usefulness of the esti-

ation relies on its precision. In the ASPIRE project, in which we

sed profile information collected on the unprotected software to

rive the estimation, we found it sufficiently precise for selecting

rotections. These data are saved in the protection meta-model by

eans of hasMetric relationship between each Solution and Met-

ic class instances, for each pair of ApplicationPart and Metric-

ype . Moreover, the original metrics of the unprotected applica-

ion can be modelled using a dummy Solution instance that links

o protections and it is not related to any AppliedProtectionIn-

tance .

Next, assets are hidden in other code with the tool of

ection 4.2.7 . It refines a Solution by adding decoy protections as

ppliedProtectionInstance class instances, both on already pro-

ected assets and other ApplicationPart instances not marked as

ssets. In the latter case, there is no need to link the Application-

art to security requirements.

As a final step, a tool is executed to annotate the source code

f the application with data that can be processed by the ACTC

ool chain to automatically apply the protections. The tool, starting

rom the solution selected by the defender, navigates the associa-

ions in the meta-model to identify the code to be protected (i.e.,

les and line numbers) and determines, for each code region to

rotect, the low-level parameters that configure the deployment of

ach protection. All the data that will drive the tool chain for that

eployment is injected into the source code in the form of low-

evel annotations, named protection annotations. Like the afore-

entioned security requirement annotations, these are pragmas

nd attributes. With the protection annotations, however, the de-

eloper configures the ACTC to deploy concrete protections on the

ssets, i.e., on the annotated code fragments. We again refer to the

SPIRE Framework Report (Basile et al., 2016) for a complete spec

f those annotations.
.2.11. Validation of work flow on open source application

We have executed our work flow on an open source applica-

ion, Sumatra 21 , a C console application used to compare DNA se-

uences. More information on the meta-model instance and the

eta-model parts that have been instantiated during the phases

f the presented work flow is available as support material to this

aper.

To simulate a risk analysis and mitigation task of a software

pplication, even if Sumatra is open-source and free, we treated

t like it was commercial software, whose comparison algorithms

ust be safeguarded against reverse engineering to protect intel-

ectual property. We have thus manually identified the assets, 25

unctions related to the DNA comparison, performed in four con-

ecutive phases, which we have associated to the confidentiality

ecurity requirement.

We have identified 162 attack paths able to compromise the se-

urity requirements associated to the assets. Then, we have iden-

ified nine types of protections that may help in stopping/delaying

he identified attacks. These protections can be applied in differ-

nt ways to the assets by changing their configuration and appli-

ation parameters, our tool flow identified 299 different protection

nstantiation instances that can be considered during the protec-

ion phase (e.g., for trading off performance and potency). Based

n this information about attacks and useful protections, we have

efined one solution that, according to our experience, properly

rotects the assets. This solution includes 27 protections instances,

t least one for each asset. For an asset that has been considered

ore sensitive, the solution foresees the application of a combina-

ion of three protections. Finally, we have refined this solution by

dding 45 protections to additional application parts to help hiding

he original assets.

The instantiation of the meta-model and the associated knowl-

dge base is available as an ontology file 22 , written in the Web

ntology Language 2 (OWL2). In a supplementary document asso-

iated with this paper (Basile et al., 2019), we present a detailed

nalysis of how the work flow performed on the Sumatra applica-

ion, and how the meta-models were instantiated for this applica-

ion.

.2.12. Validation of work flow on industrial use cases

As part of the ASPIRE project, the ACTC was validated on in-

ustrial use cases. The three industrial project partners, Nagravi-

ion, SafeNet and Gemalto, are world market leaders in their dig-

tal security fields. They developed the uses cases, and in partic-

lar the client-side Android apps of which the security-sensitive

arts were implemented in native dynamically linked libraries

hat were protected by means of the ACTC. DemoPlayer is a me-

ia player provided by Nagravision. It incorporates DRM (Digi-

al Right Management) functions that need to be protected. Li-

enseManager is a software license manager provided by SafeNet.

TP is a one time password authentication server and client pro-

ided by Gemalto. Table 2 shows their lines of code (measured by

loccount Wheeler (2001)). All security-sensitive code is imple-

ented in the C code part, which is the code protected with the

CTC.

Security experts from the industrial partners determined the

ssets in the C code, as well as their security requirements. A

seudonomynous list of them can be found in Section 5 of the AS-

IRE Validation Report (De Sutter et al., 2016b). The security ex-

erts, together with the developers of the ACTC, then also deter-

ined which configurations of protections have to be deployed on

ach asset to achieve sufficient protection against attacks on the

ssets. Table 1 lists the deployed protections on the use cases. Note
21 https://git.metabarcoding.org/obitools/sumatra/wikis/home .
22 https://github.com/uel-aspire-fp7/text2owl/EMSE2018.owl

https://git.metabarcoding.org/obitools/sumatra/wikis/home

18 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

Table 1

Protections applied to each industrial use case.

Industrial UC Data Anti Remote Code Client-Server SoftVM WBC Binary Diversified

Obf. Debug Attestation Mobility Splitting Obf. Obf. Crypto Libs

DemoPlayer × × × × ×
LicenseManager × × × × × ×
OTP × × ×

Table 2

Size of industrial use case applications in SLoC per file type, before the

ACTC is deployed.

Application C H Java C + + Total

DemoPlayer 2595 644 1859 1389 6487

LicenseManager 53,065 6748 819 - 58,283

OTP 284,319 44,152 7892 2694 338,103

M

a

i

s

w

r

f

m

t

5

r

P

r

M

b

S

L

t

w

g

s

V

c

m

t

g

L

r

o

h

M

a

s

i

e

t

e

t

r

O

e

p

m

w

s

d
the use of the SoftVM obfuscation and WBC for which we dis-

cussed Petri net attack models in Section 4.2.8 . To generate the

protected use cases, their thus annotated source code was sent

through the ACTC.

At this point, it is useful to remark that the penetration test-

ing experiments with professional, hired hackers mentioned in

Section 4.1.1 as the basis for the models developed by Ceccato

et al. (2017, 2018) were performed precisely on these protected use

cases. When we validated that our meta-model covers all protec-

tion and attack concepts taken into account by Ceccato et al. as

discussed in Section 4.1.1 , this therefore already implied the vali-

dation of the meta-model with respect to all attack activities per-

formed on the protected industrial use cases by the professional

penetration testers. For those penetration tests, the necessary pro-

tection annotations were injected into the use cases’ C code, and

the thus annotated use cases were compiled and protected by the

ACTC.

Access to the industrial use cases, to the security requirements

of their assets, to experts’ opinions on how to best protect the as-

sets with the ACTC, and to reports of actual penetration test ex-

periments performed on the protected use cases provided an ideal

basis for validating the meta-model and the work flow engineered

around it.

We hence validated the work flow presented in

Section 4.2.10 on the use cases. For this validation, we started from

use case source code annotated with the security requirements

annotations, not with the protection annotations. Also in this

validation effort, we involved security experts from the industrial

partners. In particular, we asked them to assess the practical

usefulness of the work flow.

The security experts were satisfied by the level of detail of the

information obtained by our tools about the applications to pro-

tect. This implicitly validates the meta-model that allow to repre-

sent these data.

The security experts were surprised by the number of attack

paths our tool was able to identify and appreciated the possibility

to add new attack paths manually. Again, the information repre-

sented by the meta-model was defined sufficient and appropriate.

However, they found the attack steps we instantiated for our anal-

ysis had been defined too coarse grained. As the meta-model sup-

ports more fine-grained attack steps (we simply did populate the

KB a-priori knowledge with such steps), this is not a fundamental

issue.

Furthermore, the experts were satisfied by the protections iden-

tified by the tool to mitigate the risks of each attack path. To a

large degree, these identified protections overlapped with the ones

they had proposed manually. They also appreciated the possibil-

ity to precisely link each protection to the attack step it affected.
oreover, the possibility to indicate combination of protections

nd an optional order of application was an important character-

stic, in their opinion, for the adoption of the work flow.

Even if they were a bit reluctant on considering the potency

core we computed for each combination of protections as trust-

orthy, they were convinced that the possibility to visualize met-

ics and protection scores for each asset to protect was a useful

eature.

We can conclude from the feedback received that the meta-

odel and the corresponding work flow can be considered posi-

ively validated.

. Related work

In this section we provide some additional insights on the cur-

ent state-of-the-art on the use of meta-models, ontologies and

etri nets in cyber-security, complementary to the related work al-

eady discussed in the introduction.

eta-models. Various meta-models and modelling languages have

een proposed to represent threats in enterprise networks.

ommestad et al. (2013) presented the Cyber Security Modeling

anguage (CySeMoL), which can be used to model computer sys-

ems in enterprise networks. In addition, the authors presented a

ay to infer threats against such systems using an inference en-

ine on the models developed with CySeMol, evaluating also the

uccess probability of the inferred attacks. Based on this work,

älja et al. (2015) proposed an improved security analysis, that

onsiders attacks by attackers external to the enterprise network

ounted and by legitimate users inside the network.

Kritikos and Massonet (2016) presented a meta-model to assess

he security of cloud applications, alongside a domain specific lan-

uage, namely CAMEL (Cloud Application Modelling & Execution

anguage). It permits the description of the design and the secu-

ity requirements of cloud applications and allows the validation

f the model against a set of constraint expressed using OCL (see

ttps://www.omg.org/spec/OCL/).

In the field of access control systems,

ouelhiv et al. (2008) proposed a meta-model to represent

ccess control policies, with a particular focus on mutation analy-

is, a testing technique for security policies based on the voluntary

njection of flaws (mutation) in policies, in order to evaluate the

fficiency of the security tests. Mutation operators are included in

he meta-model to represent the aforementioned testing process.

Model-Driven Reverse Engineering approaches usually aim at

xtracting models from code (Raibulet et al., 2017); our work is

he first proposed meta-model including software protections and

everse engineering attacks.

ntologies. A significant deal of work has been done by the sci-

ntific community in defining ontologies for cyber-security pur-

oses. Herzog et al. (2007) presented an ontology in OWL to

odel vulnerability and threats on assets in network domains,

ith the relative countermeasures. The authors presented, along-

ide the ontology itself, a set of possible inferences that can be

one on it, e.g., finding all the appropriate countermeasures for

https://www.omg.org/spec/OCL/

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 19

a

i

o

i

s

L

a

c

c

a

s

b

P

a

m

n

e

b

t

t

w

d

h

t

r

a

c

c

l

a

c

p

P

(

n

t

t

a

t

D

a

n

(

s

s

2

f

t

6

t

s

v

m

h

p

d

t

m

t

1

t

t

s

o

t

s

s

r

w

c

h

s

t

e

s

A

F

S

g

a

a

S

f

R

A

A

A

B

B

B

B

B

C

C

C

C

C

C

C

 specific threat. They also show how to query the ontology us-

ng the SPARQL language. Ekelhart et al. (2006) developed an-

ther security ontology, built to simulate attacks against assets

n corporate networks, in order to support a cost-based analy-

is of these threats. It is an extension of a previous work by

andwehr et al. (1994) , where the authors created an ontology as

 centralized KB of flaws for computer systems designers and se-

urity analysts. Costa et al. (2016) proposed a security ontology fo-

used on the modelling of insider threats, e.g., potential malicious

ctivities by legitimate users inside an organization. They also de-

cribed a database of real life incident reports, named MERIT, built

y the authors to validate the ontology against real life use cases.

etri nets. Petri-nets are a super-set of state-transition diagrams,

nd their usefulness for attack modelling was pointed by McDer-

ott as an alternative to attack trees (McDermott, 20 0 0), as Petri

ets are better at representing the actions of simultaneous attack-

rs collaborating on the same attack. Traditionally attack trees have

een the most common type of model for representing known at-

acks (Dewri et al., 2007) as a hierarchy of sub-goals leading to

he final goal. Attack trees have been extended to attack graphs

here nodes might have associated values or logical and/or con-

itions (Sheyner et al., 2002). Other proposals of attack graphs

ave emerged with different semantics and visual representation

o document attack paths (Gupta and Winstead, 2007), analyse

isks (Sheyner and Wing, 2003) or generating attack graphs from

 PROLOG KB (Ou et al., 2006). Roy et al. (2012) proposed Attack

ountermeasure trees (ACT) to extend attack trees to take into ac-

ount both attacks and protections. Attack trees and attack graphs

ack a common standard for representing and exchanging models

nd the fact that they are subset of Petri Nets models made us

hoose the latter modelling for visual editing of attacks and ex-

orting in standard PNML format.

Recently they have also been used to combine hierarchical

etri nets to model specific cyber-physical attacks on smart grids

 Chen et al., 2011), while Wang et al. (2013a) focused on Petri

et based attack modelling for software security where the at-

ack step difficulty is ranked within five categories (from au-

omated to fully manual). Xu and Nygard (2006) also models

ttacks with aspect-oriented Petri nets to superimpose protec-

ions as sub-nets to be interconnected with the attack model.

alton et al. (2006) suggested generalized stochastic Petri nets for

ttack modelling; stochastic Petri nets are a type of timed Petri

ets where transitions fire after random times. Coloured Petri nets

CPN) are used to design coloured Petri nets, where tokens repre-

ent different data types (colours) (Jensen, 1987); a similar open-

ource project is PIPE Petri Net editor and simulator (Dingle et al.,

009), however both tools cannot export the model to standard

ormats, making more complicated the conversion of their models

owards standard formats like OWL.

. Conclusions

This paper has presented a meta-model developed to describe

he knowledge needed to perform risk analysis in the context of

oftware protection against MATE attack scenarios that involve re-

erse engineering and tampering attacks. We discussed how the

eta-model meets a set of concrete requirements, we discussed

ow existing models and taxonomies in the domain of software

rotection are covered, and we presented a range of tools that

emonstrate the practical usefulness. Moreover, we provided a de-

ailed use case analysis in the form of an instance of the meta-

odel filled in with the data from the risk analysis and mitiga-

ion of an open source software application. doi: 10.1016/j.jss.2018.

2.025 .
Developing an automatic decision support system is the long

erm goal of our research, which we have started addressing with

he ASPIRE project. There are several open issues to solve before

uch a system can be used in the real world. The most relevant

ne is the weak correlation between measurable characteristics of

he software (protected and unprotected) with the empirical as-

essment of the effort needed to perform successful attacks.

One important result of the research in this field would be in-

tantiating the meta-model with an as much as possible complete

epresentation of the generic a priori information, to be shared

ith the software protection community. However, this goal will

ertainly face major issues. For political aspects (related to the ad-

erence to a security by obscurity principle) companies do not

hare their data about protection assessment (e.g., weak points, at-

ack paths against their protections).

We also foresee that the model may be extended in the future,

.g., to cover different software distribution formats, such as (more

ymbolic) bytecodes.

cknowledgements

This research is supported by the European Union Seventh

ramework Programme (FP7/2007-2013), project ASPIRE (Advanced

oftware Protection: Integration, Research, and Exploitation), under

rant agreement no. 609734. The research by Bjorn De Sutter was

lso funded by the Fund for Scientific Research - Flanders (FWO),

s part of the project 3G0E2318 .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jss.2018.12.025 .

eferences

brath, B. , Coppens, B. , Volckaert, S. , Wijnant, J. , De Sutter, B. , 2016. Tightly-coupled

self-debugging software protection. In: Proc. 6th Workshop on Software Secu-
rity, Protection, and Reverse Engineering (SSPREW), pp. 7:1–7:10 .

hmadvand, M. , Pretschner, A. , Kelbert, F. , 2019. A taxonomy of software integrity
protection techniques. Adv. Comput 112 .

nckaert, B. , Madou, M. , De Sutter, B. , De Bus, B. , De Bosschere, K. , Preneel, B. , 2007.

Program obfuscation: a quantitative approach. In: Proc. ACM workshop Quality
of protection, pp. 15–20 .

arak, B. , Goldreich, O. , Impagliazzo, R. , Rudich, S. , Sahai, A. , Vadhan, S. , Yang, K. ,
2001. On the (im) possibility of obfuscating programs. In: Advances in cryptol-

ogy CRYPTO 2001. Springer, pp. 1–18 .
asile, C. , Canavese, D. , D’Annoville, J. , De Sutter, B. , Valenza, F. , 2015. Automatic

discovery of software attacks via backward reasoning. In: Software Protection

(SPRO), 2015 IEEE/ACM 1st International Workshop on, pp. 52–58 .
asile, C., Cavanese, D., Regano, L., Falcarin, P., De Sutter, B.,. A meta-model for

software protections and reverse engineering attacks: an instance of the meta-
model. J. Syst. Softw. Under submission. doi: 10.1016/j.jss.2018.12.025 .

asile, C. , et al. , 2016. ASPIRE framework report. Deliverable. ASPIRE EU FP7 Project .
iham, E. , Shamir, A. , 1993. Differential cryptanalysis of the data encryption stan-

dard. Springer-Verlag, London, UK .

abutto, A. , Falcarin, P. , Abrath, B. , Coppens, B. , De Sutter, B. , 2015. Software pro-
tection with code mobility. In: Proc. Second ACM Workshop on Moving Target

Defense, pp. 95–103 .
anavese, D. , Regano, L. , Basile, C. , Viticchié, A. , 2017. Estimating software obfus-

cation potency with artificial neural networks. In: Security and Trust Manage-
ment. Springer International Publishing, pp. 193–202 .

eccato, M. , 2016. ASPIRE security evaluation methodology. Deliverable. ASPIRE EU

FP7 Project .
eccato, M. , Capiluppi, A. , Falcarin, P. , Boldyreff, C. , 2015. A large study on the effect

of code obfuscation on the quality of java code. Empirical Softw. Eng. 20 (6),
1486–1524 .

eccato, M. , Tonella, P. , Basile, C. , Coppens, B. , De Sutter, B. , Falcarin, P. , Torchi-
ano, M. , 2017. How professional hackers understand protected code while per-

forming attack tasks. In: Proc. 25th Int’l Conf. on Program Comprehension,
pp. 154–164 .

eccato, M. , Tonella, P. , Basile, C. , Falcarin, P. , Torchiano, M. , Coppens, B. , De Sut-

ter, B. , 2018. Understanding the behaviour of hackers while performing attack
tasks in a professional setting and in a public challenge. Empirical Software En-

gineering .
hen, T.M. , Sánchez-Aarnoutse, J.C. , Buford, J.F. , 2011. Petri net modeling of cyber–

physical attacks on smart grid. IEEE Trans. Smart Grid 2 (4), 741–749 .

https://doi.org/10.1016/j.jss.2018.12.025
https://doi.org/10.13039/501100004963
http://dx.doi.org/10.13039/501100003130
https://doi.org/10.1016/j.jss.2018.12.025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0005
http://creativecommons.org/licenses/by/4.0/
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0014

20 C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21

S

S

T

V

V

V

W

W

W

W

W

X

Z

de Clercq, R. , De Keulenaer, R. , Coppens, B. , Yang, B. , Maene, P. , de Bosschere, K. ,
Preneel, B. , de Sutter, B. , Verbauwhede, I. , 2016. SOFIA: software and control

flow integrity architecture. In: Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1172–1177 .

Collberg, C. , Thomborson, C. , Low, D. , 1997. A taxonomy of obfuscating transfor-
mations. Technical Report. Department of Computer Science, The University of

Auckland, New Zealand .
Collberg, C. , Thomborson, C. , Low, D. , 1998. Manufacturing cheap, resilient, and

stealthy opaque constructs. In: Proc. 25th Symp. Principles of Programming Lan-

guages, pp. 184–196 .
Coppens, B. , et al. , 2016. ASPIRE Open Source Manual. Deliverable. ASPIRE EU FP7

Project .
Costa, D. , Albrethsen, M. , Collins, M. , Perl, S. , Silowash, G. , Spooner, D. , 2016. An in-

sider threat indicator ontology. Technical Report. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA .

Dalton, G. , Mills, R.F. , Colombi, J.M. , Raines, R.A. , et al. , 2006. Analyzing attack trees

using generalized stochastic Petri nets. In: Information Assurance Workshop,
pp. 116–123 .

De Sutter, B. , Falcarin, P. , Wyseur, B. , Basile, C. , Ceccato, M. , D’Annoville, J. ,
Zunke, M. , 2016. A reference architecture for software protection. In: 13th Work-

ing IEEE/IFIP Conf. on Software Architecture (WICSA), pp. 291–294 .
De Sutter, B. , et al. , 2016. ASPIRE Validation Report. Deliverable. ASPIRE EU FP7

project .

Dewri, R. , Poolsappasit, N. , Ray, I. , Whitley, D. , 2007. Optimal security hardening
using multi-objective optimization on attack tree models of networks. In: Procs.

ACM Conf. Computer and Communications Security, pp. 204–213 .
Dingle, N.J. , Knottenbelt, W.J. , Suto, T. , 2009. PIPE2: A tool for the performance eval-

uation of generalised stochastic petri nets. ACM SIGMETRICS Perform. Eval. Rev.
36 (4), 34–39 .

Ekelhart, A. , Fenz, S. , Klemen, M.D. , Weippl, E.R. , 2006. Security ontology: simulating

threats to corporate assets. In: Bagchi, A., Atluri, V. (Eds.), Information Systems
Security. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 249–259 .

Falcarin, P. , Collberg, C.S. , Atallah, M.J. , Jakubowski, M.H. , 2011. Guest editors’ intro-
duction: software protection. IEEE Software 28 (2), 24–27 .

Ghosh, S. , Hiser, J.D. , Davidson, J.W. , 2010. A secure and robust approach to software
tamper resistance. In: Information Hiding, pp. 33–47 .

Gupta, S. , Winstead, J. , 2007. Using attack graphs to design systems. IEEE Secur. Pri-

vacy 5 (4), 80–83 .
Herzog, A. , Shahmehri, N. , Duma, C. , 2007. An ontology of information security. Int.

J. Inf. Secur. Privacy (IJISP) 1 (4), 1–23 .
Intel, I., Software guard extensions programming reference, revision 2, 2014.

Jensen, K. , 1987. Coloured Petri nets. Advances in Petri Nets. Springer .
Kindler, E. , 2011. The ePNK: an extensible Petri net tool for PNML. In: Applications

and Theory of Petri Nets. Springer Berlin Heidelberg, pp. 318–327 .

Kritikos, K. , Massonet, P. , 2016. An integrated meta-model for cloud application se-
curity modelling. Procedia Comput. Sci. 97, 84–93 . 2nd International Conference

on Cloud Forward: From Distributed to Complete Computing
Landwehr, C.E. , Bull, A.R. , McDermott, J.P. , Choi, W.S. , 1994. A taxonomy of computer

program security flaws. ACM Comput. Surv. 26 (3), 211–254 .
Mann, D.E. , Christey, S.M. , 1999. Towards a common enumeration of vulnerabilities.

2nd Workshop on Research with Security Vulnerability Databases, Purdue Uni-
versity, West Lafayette, Indiana .

McDermott, J.P. , 20 0 0. Attack net penetration testing. In: Proc.20 0 0 Workshop on

New Security Paradigms, pp. 15–21 .
Mell, P. , Scarfone, K. , Romanosky, S. , 2007. A complete guide to the common vulner-

ability scoring system version 2.0 .
Mouelhiv, T. , Fleurey, F. , Baudry, B. , 2008. A generic metamodel for security policies

mutation. In: 2008 IEEE International Conference on Software Testing Verifica-
tion and Validation Workshop, pp. 278–286 .

Noorman, J. , Agten, P. , Daniels, W. , Strackx, R. , Van Herrewege, A. , Huygens, C. , Pre-

neel, B. , Verbauwhede, I. , Piessens, F. , 2013. Sancus: low-cost trustworthy ex-
tensible networked devices with a zero-software trusted computing base.. In:

USENIX Security Symposium, pp. 479–494 .
Ou, X. , Boyer, W.F. , McQueen, M.A. , 2006. A scalable approach to attack graph gen-

eration. In: Proc. 13th ACM Conf. on Computer and Communications Security,
pp. 336–345 .

Peterson, J.L. , 1977. Petri nets. ACM Comput. Surv. 9 (3), 223–252 .

Radack, S. , Kuhn, R. , 2011. Managing security: the security content automation pro-
tocol. IT Prof 13 (1), 9–11 .

Raibulet, C. , Fontana, F.A. , Zanoni, M. , 2017. Model-driven reverse engineering ap-
proaches: a systematic literature review. IEEE Access 5, 14516–14542 .

Regano, L. , Canavese, D. , Basile, C. , Lioy, A. , 2017. Towards optimally hiding protected
assets in software applications. In: 2017 IEEE International Conference on Soft-

ware Quality, Reliability and Security (QRS), pp. 374–385 .

Regano, L. , Canavese, D. , Basile, C. , Viticchié, A. , Lioy, A. , 2016. Towards automatic
risk analysis and mitigation of software applications. In: Information Security

Theory and Practice. Springer International Publishing, pp. 120–135 .
Roy, A. , Kim, D.S. , Trivedi, K.S. , 2012. Attack countermeasure trees (ACT): towards

unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5
(8), 929–943 .

Schrittwieser, S. , Katzenbeisser, S. , Kinder, J. , Merzdovnik, G. , Weippl, E. , 2016. Pro-

tecting software through obfuscation: can it keep pace with progress in code
analysis? ACM Comput. Surv. 49 (1), 4:1–4:37 .

Sheyner, O. , Haines, J.W. , Jha, S. , Lippmann, R. , Wing, J.M. , 2002. Automated gen-
eration and analysis of attack graphs. In: IEEE Symp. Security and Privacy,

pp. 273–284 .
heyner, O. , Wing, J. , 2003. Tools for generating and analyzing attack graphs. In:
International Symposium on Formal Methods for Components and Objects.

Springer, pp. 344–371 .
ommestad, T. , Ekstedt, M. , Holm, H. , 2013. The cyber security modeling language: a

tool for assessing the vulnerability of enterprise system architectures. IEEE Syst.
J. 7 (3), 363–373 .

onella, P. , Ceccato, M. , De Sutter, B. , Coppens, B. , 2014. POSTER: a measurement
framework to quantify software protections. In: Proc. ACM SIGSAC Conf. Com-

puter and Communications Security, pp. 1505–1507 .

iticchié, A. , Basile, C. , Avancini, A. , Ceccato, M. , Abrath, B. , Coppens, B. , 2016. Reac-
tive attestation: automatic detection and reaction to software tampering attacks.

In: Proc. 2016 ACM Workshop on Software PROtection, pp. 73–84 .
iticchié, A. , Basile, C. , Lioy, A. , 2018. Remotely assessing integrity of software appli-

cations by monitoring invariants: present limitations and future directions. In:
Risks and Security of Internet and Systems. Springer, pp. 66–82 .

älja, M. , Korman, M. , Shahzad, K. , Johnson, P. , 2015. Integrated metamodel for se-

curity analysis. In: 48th Hawaii Int’l Conf. on System Sciences, pp. 5192–5200 .
altermire, D. , Scarfone, K. , Casipe, M. , 2011. The Open Checklist Interactive Lan-

guage (OCIL) Version 2.0 .
ang, C. , Hill, J. , Knight, J. , Davidson, J. , 20 0 0. Software tamper resistance: obstruct-

ing static analysis of programs. Technical Report. Technical Report CS-20 0 0-12,
University of Virginia, 12 20 0 0 .

ang, H. , Fang, D. , Dong, H. , Lei, Y. , Gong, X. , Gu, Y. , 2013. Software attack modeling

and its application. In: 10th IEEE Int. Conf. High Performance Computing and
Communications, pp. 1152–1158 .

Wang, H. , Fang, D. , Wang, N. , Tang, Z. , Chen, F. , Gu, Y. , 2013. Method to evaluate
software protection based on attack modeling. In: Proc. 10th IEEE Int. Conf. High

Performance Computing and Communications, pp. 837–844 .
heeler, D. A., 2001. More than a gigabuck: Estimating GNU/Linux’s size.

ojcik, M., Bergeron, T., Wittbold, T., Roberge, R., 2003. Introduction to OVAL: a

new language to determine the presence of software vulnerabilities. Available
online at http://oval.mitre.org .

Wyseur, B. , 2008. White-box cryptography. KU Leuven .
Wyseur, B. , De Sutter, B. , et al. , 2016. ASPIRE Reference Architecture. Deliverable.

ASPIRE .
u, D. , Nygard, K.E. , 2006. Threat-driven modeling and verification of secure soft-

ware using aspect-oriented petri nets. IEEE Trans. Softw. Eng. 32 (4), 265–278 .

hang, G. , Falcarin, P. , Gómez-Martínez, E. , Tartary, C. , Islam, S. , De Sutter, B. ,
D’Annoville, J. , 2016. Attack simulation based software protection assessment

method for protection optimisation. In: Proc. Int’l Conf. Cyber Security and Pro-
tection of Digital Services, pp. 1–8 .

Cataldo Basile received a M.Sc. (summa cum laude) in

2001 and a Ph.D. in computer engineering in 2005 from

the Politecnico di Torino, where is currently a research
associate. His research is concerned with software secu-

rity, software attestation, policy-based security manage-
ment in networked environments, policy refinement, and

general models for detection, resolution and reconcilia-
tion of security policy conflicts.

Daniele Canavese received a M.Sc. degree in 2010 and a

Ph.D. in computer engineering in 2016 from Politecnico di
Torino, where he is currently a research assistant. His re-

search interests are concerned with security management
via inferential frameworks, software protection systems,

public key cryptography and models for network analysis.

Leonardo Regano is a Ph.D. student and research assis-
tant at Politecnico di Torino, where he received the M.Sc.

degree in computer engineering in 2015. His current re-
search interests focus on software security, applications of

artificial intelligence and machine learning to cybersecu-
rity, analysis of security policies, and assessment of soft-

ware protection techniques.

http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053a
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0055
http://oval.mitre.org
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30283-8/sbref0059

C. Basile, D. Canavese and L. Regano et al. / The Journal of Systems and Software 150 (2019) 3–21 21

Paolo Falcarin is a Reader in Computer Science at the

University of East London, leading the Software Systems
Engineering research group. He was awarded a Ph.D. de-

gree in software engineering from Politecnico di Torino
(Italy) in 2004. He was the General Chair of SPRO 2015

and guest editor of a special issue on software protection

of IEEE Software. His research interests span over soft-
ware engineering, distributed systems, software protec-

tion and security. He co-authored over 70 peer-reviewed
papers in international conferences and journals and led

the online protections activities in the ASPIRE project.
Bjorn De Sutter is professor at Ghent University in the

Computer Systems Lab. He obtained his M.Sc. and Ph.D.
degrees in computer science from Ghent University’s Fac-

ulty of Engineering in 1997 and 2002. His research fo-
cuses on the use of compiler techniques to aid program-

mers with non-functional aspects of their software, such

as performance, code size, reliability, and software protec-
tion. As for the latter, he developed techniques to mitigate

reverse engineering, software tampering, code reuse at-
tacks, fault injection attacks, and timing side channel at-

tacks. He co-authored over 80 peer-reviewed papers in in-
ternational conferences and journals. He coordinated the

ASPIRE project.

	A meta-model for software protections and reverse engineering attacks
	1 Introduction
	2 Requirements and scope
	3 Meta-model
	3.1 The core meta-model
	3.2 The application meta-model
	3.3 The protection meta-model
	3.4 The attack meta-model

	4 Validation
	4.1 Validation against models from the literature
	4.1.1 Reverse engineering taxonomy and models
	4.1.2 Obfuscation taxonomy
	4.1.3 Obfuscations versus program analyses
	4.1.4 Integrity protection taxonomy

	4.2 Validation with practical tools
	4.2.1 Integration with Eclipse EMF
	4.2.2 Automatic analysis of the application to protect
	4.2.3 Text to OWL conversion
	4.2.4 Integration with OWL ontologies
	4.2.5 Deriving attack paths against an application
	4.2.6 Protections and their potency estimation
	4.2.7 Hiding protected assets
	4.2.8 Petri net modelling of attacks
	4.2.9 Validation on software protection tool chain
	4.2.10 Software protection work flow
	4.2.11 Validation of work flow on open source application
	4.2.12 Validation of work flow on industrial use cases

	5 Related work
	6 Conclusions
	Acknowledgements
	Supplementary material
	References

