
A Meta-model for
Software Protections and Reverse Engineering Attacks

C. Basilea, D. Canavesea, L. Reganoa, P. Falcarinb,∗, B. De Sutterc

aDipartimento di Automatica e Informatica, Politecnico di Torino, Italy
bDepartment of Computing and Engineering, University of East London, London, E16 2RD, United

Kingdom
cComputer Systems Lab, Department of Electronics and Information Systems, Ghent University, Belgium

Abstract

Software protection techniques are used to protect valuable software assets against
man-at-the-end attacks. Those attacks include reverse engineering to steal confidential
assets, and tampering to break the software’s integrity in unauthorized ways. While
their ultimate aims are the original assets, attackers also target the protections along
their attack path. To allow both humans and tools to reason about the strength of
available protections (and combinations thereof) against potential attacks on concrete
applications and their assets, i.e., to assess the true strength of layered protections,
all relevant and available knowledge on the relations between the relevant aspects of
protections, attacks, applications, and assets need to be collected, structured, and for-
malized. This paper presents a software protection meta-model that can be instantiated
to construct a formal knowledge base that holds precisely that information. The pre-
sented meta-model is validated against existing models and taxonomies in the domain
of software protection, and by means of prototype tools that we developed to help
non-modelling-expert software defenders with populating a knowledge base and with
extracting and inferring practically useful information from it. All discussed tools are
available as open source, and we evaluate their use as part of a software protection
work flow on an open source application and industrial use cases.

Keywords: Software Protection, Security Knowledge Base, Decision Support, Attack
modelling, Reverse Engineering, Meta-model

1. Introduction

In so-called man-at-the-end (MATE) software attacks, attackers target assets em-
bedded in software. By means of reverse engineering they try to steal confidential
information, such as embedded cryptographic keys or intellectual property in the form

∗Corresponding author: Paolo Falcarin
Email addresses: cataldo.basile@polito.it (C. Basile),

daniele.canavese@polito.it (D. Canavese), leonardo.regano@polito.it (L. Regano),
falcarin@uel.ac.uk (P. Falcarin), bjorn.desutter@ugent.be (B. De Sutter)

Preprint submitted to Journal of Systems and Software January 25, 2019

of algorithms [1]. They also use reverse engineering techniques as a preparatory step
towards tampering with the software to break its integrity, e.g., to break license checks.
MATE attackers can mount sophisticated attacks, as they can tamper with software
and data in their labs, where they have all kinds of software aids, such as debuggers,
tracers, emulators, and customized operating systems; and hardware aids such as devel-
oper boards with (JTAG-based) hardware debuggers. The latest BSA Global Software
Piracy Study1 states that 39% of software installed on computers worldwide is not
licensed, amounting to $52 billion in losses; in particular, 98% of mobile apps lack
binary code protection and they can be easily reverse engineered and tampered with2.

Software protection techniques transform code and inject new code to hamper re-
verse engineering and tampering. Perfect protection being impossible [2], the tech-
niques aim to raise the cost for attackers and the time needed to perform the MATE
attacks. When they attack protected software, attackers not only target the original as-
sets in the code, but also the protections themselves. To undo, overcome, bypass, and
work around them, they reverse engineer the protections and they tamper with them.
From the perspective of the defender, the protections become assets as well.

Recently, some critical steps have been set in modelling the behaviour of MATE
attackers [3, 4], including how they reason about code under attack, about protections
they encounter, about assets they target, and about attack steps they conduct. There also
exist formal models such as attack graphs [5] and Petri Nets to model concrete attack
paths on concrete assets [6, 7]. We are still lacking overall models, however, that
allow the representation of the relevant relations between (i) assets, (ii) the software
those assets are embedded in, (iii) deployed protections, (iv) individual attack steps
and tools and methods to perform attacks on those protections and on the assets, (v)
possible paths of attack that start from scratch and through which attackers can reach
their ultimate reverse-engineering end goal, i.e., stealing the original asset. Moreover,
these models must support an inferential system that allows reasoning about the data
represented with the model. That is, we need to build a Knowledge Base (KB), which
is essential to perform a complete risk analysis of software applications and to decide
on protections to mitigate reverse-engineering and tampering risks.

In related fields, such as network security, models exist that are consistently used in
practice to assess the overall level of protection. Some models, like the Common Vul-
nerability Scoring System (CVSS) [8], Common Weaknesses Enumeration (CWE)3,
and Common Vulnerability Exposure (CVE) [9], are used to model software weak-
nesses and vulnerabilities, attacks against them (exploit), as well as estimation of like-
lihood, expertise needed by hackers, and ease of replication on a large scale (severity).
Others depict the landscape where attacks may exploit vulnerabilities, like Common
Configuration Enumeration (CCE)4. These models are used in a more complex ecosys-
tem where defenders can perform their assessment, implement their mitigations, and
have a precise snapshot of the system to protect with ad hoc tool and language support,

1BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/
2State of Application Security: https://www.arxan.com/resources/state-of-application-security/
3See http://cwe.mitre.org.
4See https://cce.mitre.org/.

2

e.g., with the Open Vulnerability and Assessment Language (OVAL) [10] or Security
Content Automation Protocol (SCAP) [11] and Open Checklist Interactive Language
(OCIL) [12]. Researchers have also defined KBs, as OWL ontologies, that represent
relations between network vulnerabilities and attacks and have been used to assess
attacks against corporate assets. Moreover, there are tools that can automate attack
replication, like Metasploit. Clearly, the complexity of the network security scenario
is limited compared to the target of this paper, i.e., the MATE context, where building
the landscape also requires to dig into the semantics and internals of the software to
protect.

In the domain of software protection, we also desperately need such models and
similar levels of standardization to collect knowledge. The reason is simple: deploying
protections is highly complex. All protections come with overhead in different forms
(bandwidth, throughput, size, performance, real-time behavior, ...) and with different
levels of expected effectiveness. All protections affect the software development life
cycle in different ways (debugging capabilities, testing needs, integration issues, up-
datability, ...). Furthermore, multiple assets with different security requirements often
need to be protected within the same application. Finally, combining multiple protec-
tions as needed to build a layered defence against all possible attacks, is hampered by
both fundamental and practical composability issues. As a result, defenders face the
difficult task of selecting the best combinations of protections to protect their software
assets.

To help them in making the right decisions, a modelling framework, an inferential
system, and a toolbox (i.e., a KB) are necessary that cover all of the relations between
software, assets, protections, and MATE attacks. Such a KB has wider value however.
It can also help researchers to identify those areas where more research is needed be-
cause satisfactory protections are still missing, and they can help software architects
to identify which types of assets and related security requirements are safe in certain
deployment scenarios, and which are not. Risk assessment and methodologies for eval-
uating protection strength are other interesting research areas that can benefit from the
definition of appropriate meta-models. An additional long term objective would be de-
veloping an automatic decision support system for software protection, i.e., an expert
system that may help software developers with limited expertise in software protection
to select the best way to protect the assets embedded in their applications without the
need of a team devoted to this task. A KB represents facts about a particular domain
(e.g. software protection and reverse engineering), while an expert system can reason
about those facts and use rules and other forms of logic to deduce new facts or spot in-
consistencies. An expert system requires structured data, not just tables with numbers
and strings, but references to other objects. A KB stores complex structured informa-
tion and the ideal representation for a KB is an object model or an ontology as a graph
linking classes, subclasses and object instances. A meta-model (similarly to a grammar
for a programming language) describes the structure of such model, formally defining
its syntax and rules. This paper presents a new meta-model in support of a formalized
KB on the aforementioned relations. Moreover, it describes an inferential system that
builds on the meta-model to perform the risk analysis of software applications.

The research into this meta-model and related tools was carried out in the European

3

FP7 research project ASPIRE5. This modelling research was done in conjunction with
the design and execution of multiple penetration test experiments and with proof-of-
concept research into tool-supported, composable, multi-layered protection of multiple
industrial use cases, i.e., on software and assets of real-world complexity. Moreover,
ASPIRE researched an evaluation methodology for software protection strength, in-
cluding a metrics framework, and decision support to automate the selection of the
best combinations of software protections. Consequently, a major strength of the pre-
sented meta-model and the corresponding tools is that they have been evaluated and to
a large extent validated in the context of all those other research activities.

This paper’s main contributions are the following: (i) A discussion of the require-
ments of a MATE software protection KB and a corresponding meta-model in Section
2; (ii) the presentation of the meta-model that can be instantiated to populate a KB
that captures the necessary information to reason about and assess MATE software
protections in Section 3; (iii) a validation of that meta-model against existing models
and taxonomies from the literature in Section 4.1; (iv) a validation of the meta-model
by means of tools that demonstrate its practical applicability on concrete use cases in
Section 4.2. After those contributions, we discuss related work in Section 5 and draw
conclusions and discuss future work in Section 6.

2. Requirements and Scope

As already motivated in the introduction, we need a way to collect and represent
knowledge regarding MATE attacks and protections, i.e, to model the relations between
the already mentioned aspects of assets, applications, protections, and attacks. More
precisely, we put forward the following requirements.
Requirement R1: We need a way to capture the application structure. This is impor-
tant for two reasons. First, to relate attacks and protections to real software parts (e.g.,
functions and variables) and not entire applications or whole components, allowing a
finer granularity and in turn more expressiveness. Second, it is important to have a way
to model not only the various application parts, but also their relationships (e.g., vari-
able x is contained in function y or function y calls function z) and possibly abstract
interpretations involving these parts (e.g., control flow graphs). This is key to build
a KB system where to perform meaningful inferences about the security of an appli-
cation, not in the least because attackers typically dedicate quite some effort reverse
engineering the relation between application components and zooming in on the most
relevant components in the application under attack [4].
Requirement R2: We need a way to formalize the concept of assets. Original assets
are the application parts that have value for the developer, so it is important to repre-
sent them in the most precise fashion. In addition, it is important to define which asset
security properties the defender should try to protect and, vice-versa, the attacker will
try to breach. In this regard, not only the original assets hold value. So do artifacts in
the application code that help attackers to execute complete attack strategies, such as
hooks where they can attach their tools, and code patterns they can easily identify and

5Advanced Software Protection: Integration, Research, and Exploitation - https://www.aspire-fp7.eu

4

that lead them towards the original assets, i.e., that allow them to zoom in in the most
relevant parts of the software. We call such artifacts intermediate assets. Furthermore,
we consider protection assets, which are artifacts of the deployed protections that ei-
ther allow the identification of the deployed protections (thus allowing the attacker to
pick a strategy to defeat the protection) and protection artifacts that can become the
target of individual attack steps to defeat the protections. Unlike original assets, which
come with security requirements defined by the application developer, intermediate and
protection assets become assets only because they are the target of attack steps. Rea-
soning about original assets and automatically inferring intermediate and protection
assets would be an important task to demand to a KB system.
Requirement R3: We need a way to formally describe attacks and relate them to
the various application parts. Even if there are some efforts in the security world to
represent attacks (e.g., CWE, CVE), we are still lacking a formal way to represent
a complete attacks in an unambiguous way in a MATE scenario. This is important,
especially since we are interested in building a KB system whose inferences allow
performing various kinds of automated security analyses that need to cover all possible
attack paths in order to be truly useful.
Requirement R4: We need a way to formally describe the effects of protections when
applied to code and data. A protection can be abstracted as a specialized tool that
transforms code or injects new code for the purpose of hampering attacks on (original,
intermediate, or protection) assets. Several protection tools are available on the market,
each one offering support for specific versions of multiple protection techniques, con-
figurable in various ways. Therefore, we are interested in modelling protections both
from the perspective of the attacks they prevent or delay, and with respect to the per-
formance overhead and software development life cycle impact they have. Modelling
what a protection effectively does is vital for a KB system able to perform automatic
inferences for a protection assessment of a software application. Moreover, a KB sys-
tem to suggest mitigations strongly relies on the ability of the meta-model to represent
relationships among protections.. On the one hand, a defender may be interested in
knowing when protections cannot be applied on the same piece of code, or on the same
applications. On the other hand, he could be interested in knowing when applied pro-
tections strengthen each other either because one renders defeating another protection
more complex or because they work in synergy against the same attack.
Requirement R5: We need a way to formally describe a protected application. As-
sessing the security of protected applications requires to model with precision where
and how the protections are deployed. Since the application of protections can be con-
figured and tuned based on a set of configuration parameters (e.g., opaque predicates
of different levels of complexity can be inserted into the code at different frequencies
based on an integer parameter) we need a model that is expressive enough to capture
all the possible ways protections may be applied on each application part. Note that,
while R4 concerns reporting how protections relate to each other and how they change
an application, R5 is about describing how protections are applied to application parts.
A KB system that can reason on this information, can be used to predict the effect of
protections when applied on specific application parts, both in terms of overheads and
reached protection strength. Clearly, this is a necessary step to build an expert system
that can assist defenders when they have to select the best way to protect the assets in

5

their applications.
Requirement R6: Besides the qualitative relations that we need to model between
protections and attacks, it is also useful to model the relation quantitatively where pos-
sible. This can facilitate more accurate evaluations of the strength of protections given
an application, its assets, and potential attacks. In literature, many metrics to measure
that strength have already been proposed. For example, software complexity metrics
have been proposed to quantify the potency of obfuscations, i.e., the extent with which
obfuscations make manual code comprehension tasks and automatic de-obfuscation
techniques harder [13, 14, 15]. Other authors have proposed combining many different
metrics for assessing the strength of a wider range of protections [16, 17, 18] or have
evaluated which metrics are better predictors of obfuscation quality [19].
Requirement R7: We need a way to help users populate the KB system, without
requiring them to be modelling experts, i.e., by using visual model editors or textual
data that can be easily translated and imported. Similarly we need a way to help users
in extending the model by importing new information from different sources into a
unique format.

In these requirements, we observe the need to model three forms of information:

• generic a priori information describes features of and relations between aspects
that holds invariably for a defender, such as the available attack tools and protec-
tion tools and their capabilities, which do not depend on the exact software to be
protected;

• a priori use case information describes features of and relations between the
application, its assets, and their security requirements;

• a posteriori information describes features of and relations between a concrete
application and its assets, applicable protections, and possible attacks on pro-
tected and unprotected versions. This is mostly information that can be inferred
from the two other forms of information.

The scope of our model is currently limited to software-only protections. We exclude
protections that depend on advanced hardware security features such as Intel’s en-
claves [20] or TrustZone [21] or Sancus or SOFIA-like cryptography-based enforce-
ment of integrity and confidentiality [22, 23]. Furthermore, the attacks we envision
are limited to man-at-the-end attacks. Man-in-the-middle attacks, which focus on at-
tacking distributed systems by intercepting communications and by tampering with the
communications, are excluded. And so are system penetration attacks. In MATE sce-
narios, attackers are assumed to have, in their own lab, all the access they want to the
software under attack, they do not need to penetrate systems in order to get that access.

Furthermore, the scope of our work is limited to native software, i.e., code that
is distributed to end users and attackers in the form of stripped executable binaries
that can be either main executables of applications, or dynamically linked libraries.
This excludes threats from insiders such as any developers with access to the source
code or intermediate formats. It also excludes hardware descriptions in any source,
intermediate, or binary format.

Finally, it is important to point out that the models, inferences, and tools we pro-
pose are created first and foremost to aid developers and users of software protections,

6

i.e., the defenders. We approach the link between protections and attacks from the de-
fender’s perspective. Individual attackers approach an application and its assets one
attack step at a time, and consider alternatives and directions for their next steps after
each step, thus executing one sequence of attack steps, i.e., one attack path. Each at-
tacker’s path depends on his experience, his access to tools, the exact precision with
which their specific tool versions and tool customizations analyse particular deploy-
ments of protections, and even sheer luck, such as when they decide to spend limited
amount of time on searching for clues through an unordered set of information, and
it hence depend on luck whether or not they bump onto the most relevant elements
before their time runs out. Defenders cannot reason in terms of individual attack paths
and luck, however. They instead have to make worst-case assumptions, including the
assumption that multiple attackers may be attempting multiple different attack paths at
any point in time, and the assumption that all potentially successful attack steps will
actually be successful. In other words, they have to assume that all potentially suc-
cessful attack paths will be attempted in parallel. Our models reflect this worst-case
scenario. For example, they do not contain the notion of failed attack steps. How-
ever, not all companies and developers may want or be able, to protect their application
against all the possible attacks. They may lack access to the most powerful protection
tools because of their cost and expertise needed to use them successfully, or their ap-
plications maybe cannot suffer from the performance overhead that invariably comes
with stronger protections. Also the application domain matters. While it is reasonable
to protect software for critical infrastructure also against sophisticated attacks mounted
by very motivated and skilled attackers, several applications (e.g., low-cost games for
smartphones) just need to be protected against automated attacks launched by script
kiddies. We hence differentiate between different levels of attacker expertise, but in
our worst-case analysis, we assume that all the attacks that can be mounted by attack-
ers with a certain expertise are all performed in parallel and successful.

3. Meta-model

We will now introduce our meta-model that, for the sake of readability, is split in
four smaller meta-models:

• the core meta-model contains the most important classes and relationships, from
our perspective;

• the application meta-model details the concepts and associations related to a
generic application and its code;

• the protection meta-model describes the notions that link together the protections
and the protected areas of an application;

• the attack meta-model finally introduces the attack classes and their relationships
with the various application parts.

In the UML class diagrams shown in the rest of the paper, we have adopted a colour
code to help the reader in understanding the effort to fill in the meta-model instance:

7

• Red classes with a double border represent generic a-priori concepts. Instances
of these classes are populated by security experts when preparing the KB. It is
not expected from defenders to change these instances when they have to protect
their applications, unless they are experts in formal models and want to add new
features (e.g., inferences, reasoning) that cannot be built with the data in the
existing meta-model.

• Blue classes with a double border relate to the a-priori use case information.
Instances of these classes are expected to be obtained from the application to
protect. These data can be obtained automatically, e.g., name of functions and
their relations, i.e., a call graph, can be obtained with static analysis tools, or
manually, e.g., to report that a function or a piece of code discovered automati-
cally is an asset and requires the enforcement of specific security requirements.

• The yellow classes with a single border model the a-posteriori knowledge. All
a-posteriori data is, by definition, obtained automatically with the inferences per-
formed in the KB, thus defenders have not to care about their collection.

The reader may have noticed that the effort required by the defender to build the KB
system for protecting a specific application is limited to part of the a-priori use case
information and associations.

3.1. The core meta-model
The core meta-model formalizes the relationships between the main concepts in-

volved in assessing an application’s vulnerabilities and protecting its valuable assets.
Figure 1 depicts the main meta-model’s UML class diagram. It includes the classes to
model the application itself, the assets that must be protected, the available software
protections, the attacker, and the potential attacks on the assets’ security requirements.

The main class is Application, whose instances abstract the applications or libraries
that must be protected. An Application is a composition of one or more ApplicationPart
instances, which represent functions, code regions (as defined by the developer, see
Section 4.2.2 for more details), and global and local variables. An Asset is an Applica-
tionPart instance with a set of security requirements, such as confidentiality or integrity,
targeted by an attacker and that must be enforced by means of some protection. All the
Asset objects must then have at least one hasRequirement association with the SecurityRe-
quirement enumeration, containing all the security requirements an asset can have.

The AttackTarget class represents a possible target of an attacker, who aims at break-
ing the security requirements of the assets, as explained before. In our meta-model
each AttackTarget instance will be associated with one and only one Asset via the threat-
ens association and with one and only one SecurityRequirement element via the affects
relationships. If an attacker can target multiple asset requirements, then several Attack-
Target on the same asset are instantiated.

Attacks can be typically subdivided in an ordered sequence of steps. For example,
if the attacker wants to break the integrity of a function in the application, such as
in a license check, he will need to disassemble/decompile the application’s binary,
find the license check function that forms the asset, and then modify it in order to
break its integrity, being its security requirement. We model such basic steps via the

8

Solution

AppliedProtectionInstanceItem

AppliedProtectionInstance

Application

ApplicationPart

Asset

�enumeration�
SecurityRequirement

ProtectionInstance

Protection

AttackPath

AttackStepItem

AttackTarget

AttackStep
LEGEND

generic a-priori class
a-priori use case class
a-posteriori class

startsWith

isFollowedBy
refersTo

hasInstance

hasType

isAppliedOn

hasRequirement

threatens

affects

hasTarget

startsWith

isFollowedBy

refersTo

Figure 1: Core meta-model UML class diagram.

class AttackStep. Instances of this class may have one or more hasTarget relationships
with instances of the AttackTarget class. Note that some attack steps may not have any
target, since they model some preparatory actions needed by the attacker to mount the
following attack steps (e.g., attaching a debugger to the application before dynamically
changing a function code).

Attacks are modelled via the AttackPath class, whose instances are ordered sequences
of attack steps. Note that not only the last attack step will breach the security require-
ment of an asset. For instance, an attack step that threatens the confidentiality of a
particular asset can lead to another step breaching the asset integrity. To formally en-
force the attack step order, we introduced the class AttackStepItem, whose instances are
associated with a single AttackStep object via the refersTo association and the next step
in the attack path through the isFollowedBy association. Each AttackPath instance is re-
lated, through the startsWith relationship, to one AttackStepItem instance representing the
starting point of the attack path.

Generic protections types are represented via the Protection class. A protection en-
forced with a specific tool and with a particular configuration is represented in the
meta-model as an instance of the ProtectionInstance class. Every ProtectionInstance object
has two importation relationships. The first one is represented via the hasType associa-
tion that binds a ProtectionInstance object with its generic protection, that is a Protection
instance. The second one is the isEnforcedWith association, used to relate a ProtectionIn-
stance object with one or more ProtectionTool instances, modelling all the tools needed
to actually deploy the protection. For instance, the control flow flattening obfuscation
technique is represented as a Protection class instance [24].

9

To slow down an attacker, various protection instances must be applied to the assets
in the application. Therefore, we introduced the AppliedProtectionInstance class, repre-
senting a protection instance applied to a generic application part. This association
is directed towards the application part class, and not the asset concept, since a secu-
rity expert can choose to protect also non-assets in order to confuse (and hence slow
down) the attacker (see Section 4.2 for more information about this subject). Instances
of the AppliedProtectionInstance class are bound via the hasInstance and isAppliedOn asso-
ciations to a ProtectionInstance and ApplicationPart objects, respectively representing the
protection instance and the application part where the former is deployed.

The global set of applied protection instances is represented with the Solution class.
Different solutions in the same model, i.e., for the same application, are obviously pos-
sible. For example, different solutions may be devised to find the best trade-off between
the level of security achieved and the introduced overhead. When applying more than
one protection to the same asset, the order of application is important, since it could
lead to different results in terms of security and even to incoherent cases. Therefore, we
enforced an ordering between the applied protection instances in a solution by means
of the AppliedProtectionInstanceItem class, representing an applied protection instance in-
side a solution. Every AppliedProtectionInstanceItem object is linked with a AppliedPro-
tectionInstance object via the refersTo association. Each Solution instance will have an
association startsWith with an AppliedProtectionInstanceItem instance to represent the first
applied protection instance. The ordering in the solution is then enforced between the
AppliedProtectionInstanceItem instances via the isFollowedBy relationship.

3.2. The application meta-model
The meta-model depicted in Figure 2 defines the fundamental information about

the application needed to protect its assets, in order to preserve the security require-
ments of the latter from the attacks mounted by the attacker, allowing us to satisfy the
requirements R1 and R2.

The class used to model the various components of an application is ApplicationPart.
Each application part has a name attribute and it is contained into a source file repre-
sented with an homonym class, specifying its location in a file system with the path
element. All the ApplicationPart instances can be assets, code or data, represented by
three distinct sub-classes.

The Datum sub-class represents a generic variable or function parameter. Each da-
tum is characterized by its type (e.g., string, integer variable, cryptographic key or
ciphertext), modelled by the DatumType class and hasType association. Knowing this
information is useful for at least two reasons. First, data protections usually are only
applicable to specific data types. For instance, in the prototype protection tools de-
veloped in the ASPIRE project, XOR masking [13] can only be deployed to protect an
integer variable or array of integers. Second, some attacks can only be mounted against
some kind of data. For example, differential cryptanalysis [25] is only meaningful for
some kind of encrypted data.

The Code sub-class is used to model functions, class methods and any generic code
region. A code region can be thought of as a container of other application parts (e.g., a
function contains variables, but also other smaller code snippets) and this fact is mod-
elled via the containment relationship between the ApplicationPart and Code classes. A

10

File
+path

ApplicationPart
+name

Code

Asset Datum

�enumeration�
SecurityRequirement

+CONFIDENTIALITY
+EXECUTION CORRECTNESS
+INTEGRITY
+PRIVACY

�enumeration�
DatumType

Call

DatumItem

LEGEND

generic a-priori class
a-priori use case class
a-posteriori class

hasRequirement

hasType

accesses

hasCall hasCallee

startsWith

isFollowedBy

refersTo

Figure 2: Application meta-model UML class diagram.

piece of code can also access a (local or global) variable, fact represented by the ac-
cesses association. In addition, storing also the call graph of the application may prove
useful, especially when inferring attacks. Each call to a function is modelled as an
instance of the Call class. The caller code is bounded to the call via the hasCall 1-to-1
association, while the call is related to the callee with the hasCallee 1-to-1 association.
Each call object contains also to the ordered list of parameters passed to the called
function. A parameter in this ordered list is modelled via the DatumItem class, related
to the correspondent Datum instance with the refersTo association and the next item via
the isFollowedBy relationship. If the called function has at least one parameter, the Call
instance will contain a startsWith association with a DatumItem instance modelling the
first call parameter. Note that when it is relevant to consider multiple calling sites to
the same callee in some caller function, this can be done by considering multiple Appli-
cationParts in the function, and by associating each of them to the callee with hasCallee.

As introduced in the core meta-model, assets are represented as instances of the As-
set concept, a sub-class of ApplicationPart, and are related with their security requirement
with the association hasRequirement to items of the SecurityRequirement enumeration. In
this context, we limited the list of security requirements to the following values:

• confidentiality, indicating that an asset should not be comprehensible for the
attacker (e.g., patented algorithms) or that it should remain hidden completely
(e.g., crypto key);

• execution correctness, specifying that a code asset must be called and executed
as intended, and should not be bypassed by the attacker (e.g., license checks)
or be executable outside the context of the given application (e.g., a white-box
crypto algorithm);

• integrity, applicable to an asset that must not be modifiable by the attacker (e.g.,
a hard-coded PIN number);

11

Solution

AppliedProtectionInstanceItem

AppliedProtectionInstanceApplicationPart

ProtectionInstanceProtectionTool

Protection

Metric
+value

�enumeration�
MetricType

�enumeration�
SecurityRequirement

LEGEND

generic a-priori class
a-priori use case class
a-posteriori class

enforces

startsWith

isFollowedBy
refersTo

hasInstance

isEnforcedWith

hasType

isAppliedOn

cannotBePrecededBy
shouldNotBePrecededBy

shouldBePrecededBy

hasMetric

hasType

refersTo

Figure 3: Protection meta-model UML class diagram.

• privacy, suitable when the disclosure of an asset could lead to personal data
leakage (e.g., credit card numbers).

Note that the meta-model does not restrict the usage of these requirements, but allows
the security expert to add additional ones, if needed. Also note that although these
requirements can never be met completely (as full protection against MATE attacks is
impossible as explained in the introduction), it is useful to express them because the
aim of the protections is to delay the attackers that aim for violating the requirements.
Thus the expected attacks follow in part from these requirements.

Since filling this meta-model with meaningful instances can be a long process,
especially for big applications, we developed some tools to perform this action auto-
matically (see Section 4.2.2).

3.3. The protection meta-model

The protection meta-model, depicted in Figure 3, contains the classes and relation-
ships related to the protections that can be used to protect the security requirements
of the assets against the actions performed by the attacker. This meta-model allows to
model not only the protection relationships (requirement R4), but can be also used to
precisely describe how an application was protected (requirement R5).

The Protection class is associated with SecurityRequirements values by means of the
enforces association. This association characterises the abilities and purposes of apply-
ing a given protection. Furthermore, the Protection class has several association loops

12

that are useful to model protection synergies and forbidden precedences. In particular,
the shouldBePrecededBy and shouldNotBePrecededBy associations are respectively used to
specify that an applied protection instance should or should not be preceded by another
applied protection instance of a given kind. This is useful when choosing the best so-
lution since one protection can make another, previously applied protection stronger
(e.g., software remote attestation [26] can be made more robust if coupled with anti-
debugging [27]), but applying one protection can also make a later one weaker (e.g., a
control flow obfuscation applied first can negatively impact the data flow analysis that
checks preconditions for applying a data obfuscation), thus affecting the aggressiveness
with which the data obfuscation can be applied. Furthermore, the cannotBePrecededBy
relationship is used to model impossible sequences of protections that can lead to inco-
herent or non-compilable applications (e.g., software remote attestation is usually the
last protection to be put, since altering the code after its deployment will trigger an
invalid attestation).

The ProtectionTool class contains all the available tools that can be used to deploy
a protection on an asset or application part. The supported protection instances are
linked to their tool via the isEnforcedWith association.

Finally, the Metric class instances represent the value of a certain complexity metric
computed over an application part (usually a code) [17]. The value attribute represents
the numerical value of the metric, while the kind is modelled via the hasType associ-
ation towards an enumeration MetricType containing all the available metric categories
(e.g., Halstead length, cyclomatic complexity). The refersTo and the hasMetric associa-
tions direct towards respectively the relative application part and the current protection
solution. Complexity metrics can be useful to quantitatively measure certain security
features of an application, as we also discuss in Section 4. Together, these classes allow
the meta-model to meet requirement R6.

We developed several tools that enable us to assess the security level of a protected
application (see Section 4.2) and further increase the attack effort by strategically pro-
tecting some non-asset application parts (see Section 4.2.7).

3.4. The attack meta-model

The attack meta-model, whose UML class diagram is sketched in Figure 4, contains
all the classes and relationships used to represent the attacker, his attacks and their
effects on the application and the protections. These classes allow us to model with
precision the effects of the attacks on a generic application and its components, thus
meeting the requirement R3.

The attackers are modelled via the Attacker class, related with the hasExpertise asso-
ciation to the AttackerExpertise enumeration, representing the various levels of expertise
an attacker may have. We envision four levels of increasing expertise (i.e., geek, ama-
teur, professional and guru). Note that this enumeration set is completely customizable
and adaptable according to the scenario that needs to be modelled. In addition, the so-
lution itself is related to a specific attacker via the hasAttacker relationship to explicitly
indicate that it was generated to counteract a specific attacking profile.

Attack steps usually refers to an application part (not necessarily an asset). This is
modelled through the refersTo association and the fact that an attack step can threaten

13

AttackPath

AttackStepItemAttackTarget�enumeration�
SecurityRequirement

Asset

ApplicationPart

AttackStep

AttackStepType

�enumeration�
AttackToolType

Solution

Attacker

�enumeration�
AttackerExpertise

+GEEK
+AMATEUR
+PROFESSIONAL
+GURU

�enumeration�
Level

+LOW
+MEDIUM
+HIGH

Mitigation Disruption

Protection

AttackTool LEGEND

generic a-priori class
a-priori use case class
a-posteriori class

hasRequirement

threatens

affects

hasTarget

requiresExpertise

hasExpertise

startsWith

isFollowedBy

refersTohasAttacker

hasMitigation

mitigates
hasDisruption

disrupts

hasLevel hasLevel

hasType

isImplementedBy

hasType

refersTo

requiresExpertise

Figure 4: Attack meta-model UML class diagram.

a security requirement of an asset is modelled via the AttackTarget class and its rela-
tionships. For instance, if the variable ‘x’ is an asset whose confidentiality must be
enforced, the attack step ‘locate the variable x in the function y’ refers to the function
‘y’ and has an attack target for the confidentiality of the asset ‘x’.

The requiresExpertise association represents that an AttackStep may need a minimum
level of attacker expertise to be mounted, thus representing its base difficulty level.
This should represent a best-case scenario from the attacker point-of-view and can
be useful to perform additional inferences on the global difficulty of an entire attack
path. Analogously, the meta-model includes the requiresExpertise association between
AttackTool and AttackerExpertise instances, which allows the classification of tools based
on the minimum level of skills the attacker should have to use it.

Each attack step belongs to a specific type such as dynamic tampering or static
analysis. This fact is formalized through the AttackStepType class and the hasType asso-
ciation. As stated before, we stress that an attack step does not necessarily need to be
a full fledged attack, but it can also be a preparatory step such as ‘setup a web server’,

14

thus the AttackStepType instances mix together both proper attacks and non attack types.
Furthermore, the requiresExpertise association models the fact that an attack step type
requires a minimum expertise level to be mounted by an attacker.

An attack step type (e.g., a debugging attack) can be performed by one or more
different attack tool types (e.g., a debugger). This fact is represented by the isImplement-
edBy relationship with the AttackToolType enumeration, in turn related with the AttackTool
class, via the hasType association, containing the known attack tools (e.g., IDA Pro).

The hasMitigation property is used to represent that a protection can mitigate an at-
tack step type. For instance, this allows us to express that the opaque predicates obfus-
cation technique [13] can be used to decrease the feasibility of both static and dynamic
analysis attacks. The Mitigation class represents the protection mitigation. It is linked
with the softened attack step type through the mitigates association and also allows to
specify a non-numeric level of effectiveness by using the hasLevel association and the
Level enumeration. Vice-versa, an attack can be used to partially or completely re-
move a protection. This is modelled via the hasDisruption relationship with one or more
Disruption class instances. Analogously to the mitigation case, this class specifies the
protection that is affected by an attack via the disrupts association and the effectiveness
level of the disruption with the hasLevel relationship.

Risk analysis is an important phase in the software life cycle. We hence created a
tool that allows us to automatically discover the attacks that can be mounted against a
protected or not protected application (see Section 4.2.5) and another one that performs
various kind of assessments on attack paths and steps via Petri nets (see Section 4.2.8).

The meta-model can indeed represent several simple yet useful inferences. For
instance, information about expertise is useful to reduce the complexity of the attack
discovery tool. If one wants to protect just against a certain category of attackers,
the tool has not to consider all the attack steps and tools, which is an advantage with
backward reasoning. As an example, if we consider the AttackerExpertise values as an
ordered set (GEEK < AMATEUR < PROFESSION < GURU), an attack path can
be considered feasible by an attacker of a given expertise (e.g., AMATEUR) if and
only if all the attack steps needed to mount it require at most the same expertise (i.e.,
AMATEUR or GEEK). As another example, attack step types can be associated to the
expertise based on the information about the tools needed to mount them. That is, if an
attack step can only be implemented by attack tools that require a minimum expertise,
the attack step type cannot be performed by attackers having expertise less than the
minimum expertise required by the tools needed to mount it.

4. Validation

Several taxonomies and surveys of software protections and reverse engineering
techniques have been presented in literature. In the first part of this section, we discuss
to what extent our meta-model covers concepts and relations presented in that litera-
ture, thus validating that our models can capture the information considered relevant in
literature. In the second part, we discuss a number of tools we developed to populate a
KB system using our meta-models and to make practical use of the information in that
KB system. With these tools, we validate that the models have practical use.

15

4.1. Validation against models from the literature

4.1.1. Reverse engineering taxonomy and models
Recently, Ceccato et al. developed models to capture the activities of attackers that

target protected software [3, 4]. On the basis of penetration test reports and public chal-
lenge reports produced by professional and amateur hackers, they created a taxonomy
of the concepts that were used by the attackers to describe their attack methods and cor-
responding reasoning processes. This taxonomy is a hierarchy of concepts, in which
sub-concepts are refinements and concrete instances of higher-level concepts. They
also presented four models that capture causal, conditional, temporal and instrumental
relations between (a) the attackers’ high-level comprehension activities; (b) their attack
strategy building activities; (c) their attack tool selection, creation and customization
activities; (d) their selection processes to choose between undoing, overcoming, by-
passing or working around protections.

It is interesting to study how our meta-model covers the taxonomy concepts and
models from Ceccato’s work. With regards to the taxonomy, we observe that all top-
level concepts can either be mapped onto the classes of our meta-model, or are irrele-
vant to it. More in detail, we observe the following regarding these top-level concepts:

Asset Assets map directly to our Asset class.
Attack strategy Attackers mention generic attack strategies as justification for how

they spend their attack effort. Concrete attack path models in a KB, (through instances
of the AttackStep, AttackStepItem and AttackPath classes in our meta-model) represent the
result of concrete, executed attack strategies, i.e., the sequence of steps executed as a
result of implementing an attack strategy. So while the current meta-model does not
directly support modelling attack strategies, it supports concrete instances.

Background knowledge Attackers rely on their background knowledge for making
decisions. Since different attackers have a different background knowledge, they can
choose the most disparate attack paths. Remember, however, that a defender reasoning
about the protections most often needs to consider the worst-case scenario in which the
attackers at the considered level of expertise (as incorporated in our attack meta-model,
see Section 3.4) have all the possible knowledge available to the experts at that specific
expertise level. The relevance of their combined background knowledge is determined
by the attack paths that this knowledge enables. Hence, the relevant information can
be incorporated in the meta-model by populating it with all the attack paths that are
built on that knowledge. The attack-related classes in our meta-model support this
representation, as discussed for the previous concept of attack strategies.

Workaround In the taxonomy by Ceccato et al., workarounds are a specific class
of attacks to defeat protections. They map directly to the AttackStep class.

Analysis / Reverse engineering These concepts are techniques (e.g., diffing, de-
bugging, profiling, pattern matching) to analyse and reverse engineer different aspects
of the software under attack. Those concepts map directly onto the AttackStepType class.

Difficulty Attackers face all kinds of practical issues in their experimental environ-
ment. That is the case because their concrete environments are not perfected a-priori
for the attacked software. From a defender’s perspective, these are best-case scenarios.
On the other hand, in worst-case scenarios, such difficulties do not occur, so there is no
strict need to cover them in our meta-model. In case the issues are not mere practical

16

ones, but fundamental limitations (e.g., related to non-scaling analysis and decidability
issues) the impact these difficulties have on attacks will be reflected in the absence of
certain attack paths in the KB. So, by populating the KB system with the relevant attack
paths, and excluding the irrelevant ones, this concept can also be covered.

Obstacle Ceccato et al. consider two kinds of obstacles that attackers face when
trying to execute attack strategies. The first are protections, which are clearly cov-
ered in our meta-model (by the Protection, ProtectionInstance and AppliedProtectionInstance
classes). In addition, also the effects that they have on enabling or disabling certain at-
tack steps can be modelled via the Mitigation and Disruption concepts. The second kind of
obstacles are additional limitations to the attack environment (e.g., impossibility to run
the protected application, lack of knowledge in the application execution environment),
to which the aforementioned discussion for the concept of difficulties applies.

Weakness Weaknesses are features of application parts that ease attacks on cor-
responding assets, be it original assets with security requirements or protections that
are attacked or intermediate assets that attackers target on their way along a complete
attack path. The fact that an application part is weak against some attack step can be
modelled in our KB system by means of the AttackTarget class and the hasTarget, threatens
and affects associations from our meta-model.

Tool Concrete attack tools map directly to the AttackTool class. Their abstractions
(i.e., sets of similar tools with similar capabilities) map onto the AttackToolType class.

Attack step Ceccato et al. identified a wide range of attack activities at a fine
granularity. These steps, such as “locate a variable in a function”, have explicit or
implicit objects, i.e., targets. For the previous example, these are the function and the
variable themselves. These steps map directly to the AttackStep class. In addition, the
relationships with the objects is handled by the refersTo association and the AttackTarget
class (and its relationships), if the object is an asset.

Analyze attack result Ceccato et al. noted that while executing the attack paths,
the analysis of their results (in particular whether or not attempted attack steps suc-
ceeded) is an important aspect for attackers to decide on the next attack steps to try,
i.e., to estimate the path of least resistance that they will try to execute. As our meta-
model aims to model worst-case scenarios from the defender’s perspective, it is not
relevant to represent such steps separately. As discussed above, attack paths in our KB
model all successful attacks.

Attack failure Being the outcome of an attempted, but failed attack step, this con-
cept is not relevant in the context of our meta-model.

Software element Ceccato et al. listed a wide range of software artifacts that are
targeted in individual attack steps because they serve either as ultimate targets of the at-
tacks or because they serve as clues while the attacker is still searching for the ultimate
assets. These artifacts or elements include both code and data, and static ones (e.g.,
code fragments, global data, API definitions and invocations) as well as dynamic ones
(e.g., variables being assigned values during the program execution, system calls being
executed, code patterns in traces). In all cases, they relate directly to the application
parts that are covered by the ApplicationPart class in our meta-model.

As for the four inferred models of relationships between concepts in the work of
Ceccato et al., we note that these reflect how attack paths are constructed by attackers.
The knowledge in those models is not stored directly in the KB, but the constructed

17

paths are, as already discussed above for some of the top-level concepts. Thus, the
relevant conclusions to be drawn from Ceccato et al.’s models can be represented in a
KB system based on our meta-model.

In our prototype tools (see Section 4.2) that populate a KB system built upon our
meta-model, the inferred models from Ceccato et al. are present but in a strongly
simplified form. More specifically, one of the so-called enrichment modules hard-codes
some causal and temporal relations between attack steps to infer relevant attack paths
starting from a set of attack steps. For simple cases, this module allows us to populate
a KB system with straightforward attack paths relevant to the use case at hand, i.e., the
application at hand with its deployed protections and embedded assets. In future work,
we plan to extend our meta-model to cover concepts of attack strategies as well as the
relationships in the relational models of Ceccato et al. The relevant information to infer
relevant attack paths for a given (protected) application with a set of given constraints
from a set of generic, a-priori available attack steps can then all be stored in the meta-
model, at which point we foresee that more interesting inference can be performed to
populate the KB system with attack paths, thus avoiding the need to insert a-posteriori
complex attack paths manually with the Petri Net tools (see Section 4.2.8).

From this discussion, we conclude that requirements R3-R4-R5 are met with re-
spect to the concepts and relations considered relevant by Ceccato et al.

4.1.2. Obfuscation taxonomy
Collberg et al. presented the first taxonomy of obfuscation techniques in a sem-

inal paper on software protection against reverse engineering [13]. The obfuscation
taxonomy includes layout obfuscations, data obfuscations, control obfuscations, and
preventive transformations, and discusses several de-obfuscation attacks. The paper
also puts forward potency, cost, and resilience as aspects to consider during the evalu-
ation of protections.

The obfuscation techniques discussed in the paper are mostly covered by our pro-
tection meta-model: data and control obfuscations operate on code and data; both those
forms of application parts are covered by the meta-model. Layout obfuscations are not
but they are also outside the scope of our model: they concern source-code aspects
such as comments and names of variables, which are mostly irrelevant in stripped bi-
naries. Those binaries, be it main binaries or dynamically linked libraries, are the form
in which native software, the focus of our work, is distributed and hence attacked. The
sole exception is when identifiers identify external APIs. As discussed in the previous
section, API definitions and invocations are covered by the ApplicationPart class. Pre-
ventive obfuscations, i.e., obfuscations that do not hide assets but that prevent analysis
techniques from providing (very) useful results, are modelled as well, and the Mitigation
class and its relations in the attack meta-model enables us to model which protections
prevent which attack steps.

To evaluate the potency of obfuscations, Collberg et al. propose to use software
complexity metrics that need to be computed on the relevant application parts. Others
later extended on this idea, including some of us [16, 17, 18]. Our protection meta-
model contains the relevant classes and relations to express the necessary information
regarding such metrics and application parts. To evaluate the cost of protections, spe-
cific metrics can be used, such as the static number of instructions to measure code size,

18

and the dynamic number of instructions (i.e., the number of executed instructions for
some inputs) to approximate performance overhead. To evaluate resilience, Collberg et
al. propose a discrete scale with five levels of resilience: trivial, weak, strong, full, and
one-way. In the attack model, the Mitigation and Level classes can capture three levels of
resilience of protections against attacks. We opted for only three techniques because
the level “trivial” is mostly useless when considering only worst-case scenarios, and
because one-way is theoretically possible, but in practice not yet achieved in MATE
scenarios where attackers have white-box access to the software and assets under at-
tack. When considering resilience, Collberg et al. distinguish between programmer
effort, i.e., the effort needed to build or customize tools to perform an attack, and de-
obfuscator effort, i.e., the time and resources needed to deploy the thus built tools. In
our models, we do not make this distinction explicitly. However, the individual attack
steps that our meta-model covers can be both preparatory steps, such as customizing
a tool, and actual attack steps, such as deploying a tool. Thus our meta-models are
expressive enough to capture all the concepts and relations put forward by Collberg et
al.

From this discussion, we conclude that requirements R3-R4-R5-R6 are met with
respect to the concepts and relations considered relevant by Collberg et al.

4.1.3. Obfuscations versus program analyses
Much more recently, Schrittwieser et al. surveyed the state of the art in software

obfuscation vis-à-vis code analyses [15]. The latter are used as attack techniques to
directly attack obfuscations, i.e., if obfuscations lack the necessary resilience, and to
work around obfuscations, i.e., if obfuscations are not potent with respect to some re-
verse engineering task. Like the concrete obfuscation techniques surveyed by Ceccato
et al. the concrete ones surveyed by Schrittwieser et al. can be modelled with our pro-
tection model. Furthermore, the code analysis techniques surveyed by Schrittwieser et
al. can be modelled with our attack model.

Schrittwieser et al. provide a taxonomy that partitions concrete attack techniques
in categories based on (i) the attack goal, (ii) the generic, abstract technique used to
reach that goal, such as “locating code through static analysis”, and (iii) whether or not
the technique is fully automated or performed with human assistance (or even com-
pletely manually). Each of the different combinations they consider can be modelled
with multiple instantiations (one for each concrete technique) of the AttackStepType and
AttackToolType classes from our attack meta-model. Finally, Schrittwieser et al. analyse
the resilience and potency of the obfuscations with respect to different attack classes,
and label them in three categories, ranging from “minor increase of costs”, over “not
unbreakable, but makes analysis more expensive”, to “breaks analysis fundamentally”.
These labels map well onto the three levels of mitigation in our attack meta-model.

From this discussion, we conclude that requirements R3-R4-R5-R6 are met with
respect to the concepts and relations considered relevant by Schrittwieser et al.

4.1.4. Integrity protection taxonomy
An interesting taxonomy of software integrity protections has recently been pub-

lished by Ahmadvand et al. [28]. It covers several concepts that are also represented
in our meta-model. However, we noticed two major differences that are related to the

19

goal of the two works. Whereas our approach started from the need of representing
the information needed when protecting an application from tampering (to break soft-
ware integrity requirements or to defeat anti-reverse-engineering protections in MATE
scenario with software-only protections), the classification presented by Ahmadvand et
al. aims at describing integrity protections. Therefore, our attack meta-model is more
precise than their taxonomy. While they define generic attacks, which can be roughly
mapped to our attack step types, we also have the possibility to define precise attack
steps that refer to the original, intermediate, and protection assets, to group them in
paths and associate attack tools on individual attack steps. Moreover, their taxonomy
lacks the concept of a deployed protection and of the solutions that are needed when
deciding how to protect an application.

On the other hand, they expanded the high-level classification of protections with
intermediate concepts that group protections in a way that is interesting for categorisa-
tion purposes, but is unnecessary for our goals. Moreover, their classification includes
information about the life cycle, which describes information about management and
production stages of the application to protect. It will be certainly interesting to study
how that information can be integrated in our model, as life cycle information can be
useful when protecting libraries or when protecting applications without having the
possibility to access source code. Moreover, the proposed taxonomy includes high-
level concepts like overhead (which we have explicitly avoided as too coarse grained
by resorting to a broader concept of metrics), and trust anchor (which defines hardware
security mechanisms that we have excluded by hypothesis). Moreover, in their work,
authors explicitly defined the granularity of representation of the assets, which we can
avoid as our application meta-model conveys precise information on the application
parts that allows us to infer the granularity.

4.2. Validation with practical tools

The meta-model presented in Section 3.2 has been used in conjunction with various
tools to support the process of analysis and protection of an application.

These tools have been developed and used in the context of the ASPIRE project.
Here they are introduced to demonstrate that our meta-model is able to convey infor-
mation useful to perform real software protection tasks.

4.2.1. Integration with Eclipse EMF
The meta-model has been implemented using the Eclipse Modeling Framework

(EMF)6, allowing its manipulation and navigation directly in Java applications. EMF is
a well supported standard in the Eclipse world and several tools (e.g., Eclipse Epsilon7)
are available to perform various modelling tasks, such as validation and model-to-
model transformation. The code of our meta-model is publicly available at https://
github.com/SPDSS/adss/tree/master/eu.aspire_fp7.adss.akb.

This implementation contributes to the coverage of the R7 requirements, as it con-
cerns the usability of our meta-model.

6See https://www.eclipse.org/modeling/emf/.
7See https://www.eclipse.org/epsilon/.

20

4.2.2. Automatic analysis of the application to protect
We developed a tool based on the Eclipse C Development Toolkit (CDT) 8 that

is able to parse a set of C/C++ source files, identifies the functions, their parameters,
reconstruct the call graph, locate the local and global variables, and to translate such
information into appropriate instances of our EMF-based meta-model, in particular the
application meta-model. The fact that we were able to correctly and properly represent
all the information extracted by CDT about an application that we deemed important
for attack evaluation and protection purposes validates the effectiveness of our meta-
model in meeting the requirement R1.

Moreover, the CDT tool is also used to parse annotations, directly applied to the
code by software developers or analysts, that indicate which parts of the applications
are assets and which are their security requirements. The ASPIRE tools support an-
notations in the form of pragmas to identify and annotate code regions of interest and
attributes to identify and annotate variables of interest [29]. Using this approach, we
were able to validate the capability of our meta-model to represent what constitutes an
asset, thus fulfilling requirement R2.

4.2.3. Text to OWL conversion
We developed a text2OWL tool9 for developers who are not familiar with the OWL

formalism and tools. It was developed to create or update a valid OWL ontology out
of a text file containing a taxonomy of reverse engineering attacks. The input text file
consists of two parts: the first one contains the taxonomy of concepts, while the second
part consists of additional rules between such concepts. In the first part the taxonomy
is made of a set of trees of concepts whose hierarchy is defined by the indentation, as
in the following excerpt of the textual taxonomy:

Analysis-reverse engineering
=Static analysis
==Diffing
==Control flow graph reconstruction
=Dynamic analysis
==Dependency analysis

The number of = characters indicates the sub-concepts’ nesting depth. This tool
generates the same class hierarchy in OWL via an axiom for each tree edge as a triplet
of ’concept, relationship, concept’ (e.g., ‘Diffing isSubConceptOf StaticAnalysis’).

A list of similar triplets forms the second part of the text file, but with different types
of relationships (e.g., ‘Analysis-Reverse Engineering usedTo IdentifySensitiveAssets’),
that actually transform the taxonomy in a thesaurus (a graph of concepts, not bound by
a tree structure like a taxonomy). Furthermore, the tool also checks for inconsistencies
among the concepts defined in the rules and the taxonomy (e.g., concepts in the rules
that do not appear in the taxonomy). This tool has been specifically developed for, and
tested on, the taxonomy and models of Ceccato et al. that were discussed extensively
in Section 4.1.1. This tool also helps us to meet the usability requirements of R7.

8https://www.eclipse.org/cdt/
9Online at https://aspire-fp7.eu/system/files/Text2OWL.java_.bz2

21

4.2.4. Integration with OWL ontologies
Given the huge amount of information required to perform security analysis of soft-

ware applications in MATE scenarios, supporting the KB enrichment with automatic
inferences was one of our primary goals. Ontologies are an important tool that we
have positively evaluated to perform basic inferences and checks. For this purpose, we
developed an API to translate the EMF meta-model in an ontology10, written in the
Web Ontology Language 2 (OWL2) and vice-versa (from OWL2 to EMF) to feed the
meta-model with the inferred data. In addition, this API allows the manipulation of
the ontology (e.g., create/remove classes/individuals or write SWRL11 rules), uses a
reasoner (we support both the Hermit12 and Pellet13 reasoners) and performs advanced
queries using the SPARQL-DL language14. This allows executing advanced searches,
coherence checks (e.g., test if a Solution instance does not contain any forbidden prece-
dence between its applied protection instances) and various logical inferences (e.g.,
infer all protections that mitigate a particular attack step with a given level of efficacy).

With the help of such tool, and eventually manually filling out the missing in-
formation, it is possible to generate instances of the application and protection meta-
models constituting a strong KB, to be used with more advanced inference and analysis
tools. This tool fulfills all the R1–R6 requirements, as it concerns the generation of a-
posteriori information and hence covers all the meta-models.

4.2.5. Deriving attack paths against an application
We have developed a tool, written in Java, which infers various types of attack paths

on application assets by using Prolog-based reasoning [30, 31]. We have used the meta-
model to instantiate a KB with various types of attack steps that include dynamic and
static tampering attacks as well as network attacks, such as sniffing and spoofing the
client-server communications.

The tool manages a fact base that is initialized with the information, taken from the
KB, about the assets and their security requirements. Moreover, the tool imports from
the KB the attack steps, which have been annotated (manually by us at the tool design
time) with pre-conditions and post-conditions. Pre-conditions are predicates built on
the facts in the fact base. Examples of facts are:

• the asset a is a code region inside function f , which is used to infer relations of
attack steps related to static and dynamic analysis;

• traces collected for function f , which indicates that the application has been
executed in a previous attack step, and which enables all attack steps that involve
dynamic analysis;

• the value of the variable x is known, which may be the target of an attack (e.g.,
knowing the license key) or enable cryptographic operations (together with the

10Its source code is available at https://github.com/daniele-canavese/ontologies.
11See https://www.w3.org/Submission/SWRL/.
12See http://www.hermit-reasoner.com/.
13See https://github.com/stardog-union/pellet.
14http://www.derivo.de/en/resources/sparql-dl-api/

22

fact x is a symmetric/asymmetric private key).

When a pre-condition is true, the attack step can be executed and adds new facts in
the fact base. The tool uses Prolog to infer, with backward reasoning, if there is a se-
quence of attack steps, i.e., an attack path, that compromises the security requirements
of the assets. All the discovered attack paths are then added in the KB. In the end, this
tool is able to fill in an instance of the attack meta-model in a completely automatic
fashion. The effort of annotating attack steps is only needed once and it needs an up-
date only in the rare event of new attack steps added to the KB. With this tool we have
been able to validate the satisfaction of requirement R3, as the meta-model was able
to properly store all the inferred attack paths and steps on industrial ASPIRE use cases
(as will be discussed in more detail in Section 4.2.12).

4.2.6. Protections and their potency estimation
The protections that counter the attack paths can be found with various inference

rules. We implemented them as custom enrichment modules that integrate ontology
reasoning with our EMF implementation of the meta-model. Once these protections
are found, they must be applied in the right order on each (original, intermediate and
protection) asset, thus producing a Solution instance. Waiting for an effective automatic
decision support system that finds such, these solutions are manually devised. In order
to assist the security expert to estimate the effectiveness of such solutions, the concept
of potency introduced by Collberg et al. [13] can be used. The potency is essentially
a value stating how good the security of a protected asset is based on the value of
selected software metrics. In his work, Collberg proposed the use of seven static and
dynamic metrics. Since metrics need to be measured on the protected asset, evaluating
the potency of a protection over a specific asset means that the protection needs to be
actually applied, the program possibly rebuilt and some complexity metrics needs to
be extracted by an ad-hoc tool. This process can be time consuming, especially if the
application is big and/or if the number of candidate solutions to choose from is high.
To avoid the actual application of protections, we developed an estimator that uses a set
of neural-networks trained to predict, with a high degree of accuracy, the variations of
the metric values used to compute the potency. Therefore, with this tool a defender is
able to accurately estimate the potency of a solution starting only from the unprotected
assets’ complexity metrics without rebuilding the application each time [32].

By using the protection meta-model to store the information about (single and com-
bination of) protections applied to an asset and the various application part metrics, we
validated the satisfaction of the requirements R4 and R6.

4.2.7. Hiding protected assets
Protected assets have recognizable fingerprints that can be identified and exploited

by attackers. For instance, obfuscation techniques may flatten the control flow or in-
crease the number of if statements (opaque predicates) to render code understanding
more difficult. However, static analysis and inspection allow an attacker to identify
these protected parts with respect to unprotected areas. Therefore, after having pro-
tected the assets, a security expert might decide to fool the attacker by applying the
same protection on other application parts that are not real assets with the purpose of

23

delaying the attacker activities, who will have to evaluate more candidate assets fin-
gerprints. We named this protection step assets hiding. We developed a tool [33] that
automatically generates a mixed-integer linear problem for the IBM ILOG CPLEX15

solver to select the best applications parts where to apply these decoy protections in
order to maximize the attacker confusion and delay, by leveraging the information in
the application and in the protection meta-models.

Also in this case, the protection meta-model served his purpose, as it allowed us to
model both the protected assets and the other protected application parts, thus validat-
ing the requirement R5.

4.2.8. Petri net modelling of attacks
Petri Nets (PNs) [34] are often used to model the flow of information in concurrent

and distributed systems. We chose a Petri net editor to model reverse engineering
attacks visually, thus helping to meet requirement R7.

Petri nets are bipartite graphs, with two types of nodes: places and transitions,
visualized as circles and rectangles respectively. In our interpretation, places represent
sub-goals reached during an attack and transitions correspond to attack steps being
executed. The final place in the model represents the final goal of the attacker, i.e.,
accessing or compromising the security-sensitive asset. By correctly connecting the
places and transitions in a single PN, one can easily model one or more sub-goals that
need to be reached before the next attack step can be executed, which attack steps can
be performed concurrently or sequentially, and which alternative attack paths lead to
the same goal. In a Petri net model there are different attack paths that can be followed
to achieve the final goal. Each attack path is a temporal sequence of attack steps, visited
by a token (a black dot within a place in the PN model) traversing the net from the initial
state to the end state through one of the possible attack paths. Each token represents a
different attacker in a team of attackers in collusion to achieve the same goal. In this
way attacks performed in parallel by two colluding attackers can be represented.

PNs with Discrete Variables (PNDVs) are a more recent PN extension with a set
of finite global integer variables, used in pre-conditions, that are guards on transitions
[35]. In our experience with all the ASPIRE use cases, we noted that the information
used by the attackers can be decomposed and mapped to a set of integer variables. For
example, when looking for a cryptographic key into a binary file, the attacker usually
needs to identify some areas of code worth of further investigation. Such intermediate
knowledge can be represented with a code region array, where each code region is
represented by a couple of integer numbers, representing the initial and final offset
with respect to the base address of the binary code.

To design the attack models we used ePNK, an Eclipse-based tool16 which provides
a Java-based extensible open source platform for PN modelling, based on EMF and
Graphical Modeling Framework (GMF)17. The current ePNK plug-ins allow designing

15https://www.ibm.com/analytics/data-science/prescriptive-analytics/
cplex-optimizer.

16See http://www.imm.dtu.dk/œekki/projects/ePNK/.
17See http://www.eclipse.org/gmf-tooling/.

24

a PN model with discrete values and save it as standard PNML18 file, as the GMF-
based editor is built on top of an EMF meta-model of PNML. We used this tool to
model attacks on two software protection techniques. The first, as shown in Figure 5,
aims to extract the cryptographic key from a White-Box Crypto (WBC) [36] library.
The second aims at de-obfuscating the code of an application protected by the use of
custom, randomized instruction sets that are interpreted by a software virtual machine
(SoftVM) [37], as shown in Figure 6. These models have been designed after four
rounds of interactions with the security experts from the ASPIRE project’s industrial
partners responsible for the development of these protections.19

These modelling exercises have helped the security analysts in identifying and vi-
sually defining the different attack steps and related attack tools. Moreover, the Petri
net editor has been used to populate the OWL KB with new attack step types and new
instances of attack steps. Each new attack step in the Petri net can be mapped to a new
or existing AttackStepType and to a new AttackStepItem object in OWL, according to the
syntax defined in the attack meta-model of Figure 4. Similarly the attack paths repre-
sented by the PN are mapped to many AttackPath objects in the KB, while the temporal
sequence between attack steps in a PN model is mapped into a set of OWL axioms
instance of the isFollowedBy relationships between two AttackStepItem objects. Finally
the Petri net models have been used by other tools for more advanced analysis and
simulation [38].

The Petri net modelling helped us in validating the R3 requirement of the meta-
model by showing that it can represent even complex attacks on industrial use cases.

In the remainder of this section, we report more details about the modelling of
the attacks on the two protections to demonstrate the level of precision that our at-
tack meta-model can reach. First, the PN attack model on white box cryptography
contains pre-conditions to transitions. For example, in case the attacker has detected
AES-related binary code (represented by Ts0), he will run a more precise static anal-
ysis with AESKeyFinder (represented by Ts1), or in case RSA-related code is found
(i.e., crypto = ’RSA’), he will run a RSAKeyFinder (represented by Ts2), otherwise the
IDA Pro findCrypt2 plug-in can be used (Ts3). After an initial phase with the static
analysis tool, the attacker is in P2 and can choose among many following attack steps
representing different dynamic analysis techniques (Td1 to Td4): each attack step can be
executed depending on the results and the type of the static analysis attack step previ-
ously executed. The pre-condition can help defining that, for example, Ts1 isFollowedBy
Td1 is a possible sequence of AttackStepItem while other combinations of attack steps
are not actually feasible.

On the other hand, the design of a PN attack model on virtualization obfuscation as
in Figure 6 has shown that an attack can be performed by a team of attackers working
in parallel. In the virtualization obfuscation, the SoftVM contains an interpreter that
fetches bytecode from memory. For each bytecode, the SoftVM executes the corre-
sponding native code stored in the respective Instruction Handler (IH), and then loads
the next bytecode. The bytecode is not stored in a single file or data structure but it split

18Petri Net Mark-up Language (PNML) standard ISO/IEC 15909, on-line at http://www.pnml.org/
19WP4 deliverables on the ASPIRE website present a full description of the attacks on the two use cases.

25

Figure 5: Petri net for the attack on white-box cryptography.

in different code chunks spread throughout the native code. The VM implementation
is split in a set of IHs which might be obfuscated and then encrypted and then spread
through the native binary code using a binary rewriting tool. Each code chunk can con-
tain one or more bytecode instructions. The VM contains different code portions that
are interesting to the attacker: (i) the VM function called by the native code to transfer
control to the VM; (ii) a decoder, which translates the bytecode into native code; (iii) a
dispatch routine that given a particular bytecode invokes the IH, and (iv) the different
IHs.

Petri nets are particularly useful to model parallel processes, and in this example we
can see how three attackers can work together to achieve the common goal. Attacker1
can start looking for the VM function with dynamic analysis (attack step Tvm), and then
search for the bytecode chunks within the binary code (T6). The other two attackers
can find the dispatch routine of the VM (Tdis) and then split the work: Attacker2 can
focus on the decoder function and building a custom disassembler for the bytecode
(Tdec followed by T5), while Attacker3 can search for the IHs using various static and
dynamic analysis tools (To, T2, T3, T4).

In order to rebuild the de-obfuscated code (attack step T7), Attacker2 and Attacker3
must synchronize to understand the bytecode semantics by running the code chunks
(found in attack step T6) through the custom disassembler (built in attack step T5).
Once Attacker1 will find the IHs he will have to synchronize with the others to combine
the bytecode semantics and IHs manually to understand the full semantics of the de-
obfuscated code. This case study with parallel attacks can be represented in the KB
system with a set of axioms representing the different sequences of AttackStepItem
linked by the relationship isFollowedBy; in fact, (T5, T6, T7) or (T6, T5, T7) are two valid
attack paths representing the fact that T7 can start only when both T5 and T6 have been
performed in any order.

4.2.9. Validation on software protection tool chain
In the ASPIRE project, a tool chain for composable native software protections was

developed [29], which integrates a wide range of protections, and of which almost all

26

Figure 6: Petri net for attacks on a SoftVM.

components are available as open source at https://github.com/aspire-fp7/.
This tool chain is called the ASPIRE Compiler Tool Chain (ACTC). It uses com-
piler techniques to deploy software protections on applications. Those protections
all implement different parts of a layered software protection architecture [39, 40].
The ACTC’s protections aim at defending against reverse-engineering, tampering, and
cloning. They include code and data obfuscations [13], white-box cryptography (as
also discussed in Section 4.2.8) [36], code mobility [41], code diversity, code guards,
code renewability, remote attestation and migration of sensitive code to secure servers [42],
use of custom instruction sets interpreted by virtual machines [37] (as also discussed
in Section 4.2.8), anti-debugging by means of self-debuggers [27], and more.

During the project, we validated that the presented meta-model can capture the nec-
essary aspects of all of those protections, of the tool chain that allows the composition
of those protections to varying degrees, and of the attacks we surveyed in the project
and collected in the so-called ASPIRE attack model. This includes, e.g., the two attack
models discussed in Section 4.2.8. We cannot discuss the full attack model in detail,
as it was a confidential document. It consists of a survey of the different types of as-
sets and their security requirements; the different types of attackers that we might face;
the concrete methods, tools, and techniques that are available to the attackers and the
different types of attack activities that can be performed with them to reach specific
intermediate or final attack goals; as well as the possible ways in which the attackers
combine different attack activities to reach their final goal. We do confirm, however,
that all attacks considered as relevant in the scope of the ASPIRE project by both its
academic and its industrial partners, are covered by our meta-model.

From this discussion, and from the final validation report [43] of the ASPIRE
project, we conclude that requirements R1–R6 are met with respect to the concepts
and relations considered relevant in the scope of the ASPIRE project.

27

int func(int x)
{

int i=0;
//start of the asset
_Pragma("ASPIRE begin requirement(integrity)");
x++;
i--;
_Pragma("ASPIRE end");
//end of asset
return i-x;

}

Figure 7: Example of a code annotation used to define assets.

4.2.10. Software protection work flow
The tools presented in Section 4.2.2 and Sections 4.2.5 to 4.2.8 have been inte-

grated with the ACTC as introduced above, to assist software developers in (semi-
automatically) protecting their applications with the ACTC. The meta-model allowed
us to integrate inferences as needed for providing decision support for using the tools
in the ACTC into a KB system. The integrated tools and the ACTC thus form a tool-
supported work flow for semi-automated software protection.

As a first step, the work flow calls the tool of Section 4.2.2 to an instance of the
application meta-model by parsing and analysing the structure of the C/C++ application
to be protected. The user only needs to link the application parts he considers as assets
to security requirements. This is done manually, via pragma annotations. An example
of an asset, in this example a part of the C code that requires integrity, is provided in
Figure 7. For a complete specification of the supported annotations, we refer the reader
to the ASPIRE Framework Report [29] and the ASPIRE Open Source Manual [44].

The structure of the target application is described by means of classes from the
application meta-model of Section 3.2. Variables and functions are translated into in-
stances of the ApplicationPart, assets as Asset instances, while security requirement an-
notations are translated in hasRequirement relationships between the Asset instances and
values of the SecurityRequirement enumeration.

The structure of the application stored in the KB is then analysed by the auto-
matic attack discovery tool described in Section 4.2.5. The identified attacks against
the application’s assets are then translated by using the a-posteriori classes defined in
the attack meta-model described in Section 3.4. For each instance of the hasRequire-
ment relationship, i.e., for each security requirement of each asset, the tool generates
an instance of the AttackTarget class, with the threatens and affects relationships set ac-
cordingly. Then, for each AttackTarget instance, the tool tries to generate any possible
AttackPath containing at least one AttackStep having a hasTarget relationship with the
AttackTarget instance. Attack paths are generated by following a set of Prolog rules,
contained in an external KB system, as described in [31]. Identified attacks may also
be manually visualized and refined by the software developer with the Petri net tool de-
scribed in Section 4.2.8. Manual attack paths may be added to the attack meta-model;
they will hence be compatible with the later tools in the work flow.

28

After inferring the possible attacks against the application with the custom enrich-
ment modules of our EMF meta-model implementation described in Section 4.2.6, the
work flow identifies the protections that can be applied on the target software in order to
block the attacks found in the precedent step of the work flow. The tool automatically
generates an instance of the ProtectionInstance class for each AttackPath instance for each
Protection having a Mitigation for the AttackStepType of at least one AttackStep instance in
the target AttackPath. The candidate ProtectionInstance instances can be manually com-
bined by the application developer into an instance of the Solution class.

The tool described in Section 4.2.6 produces an estimation of the software metrics
on the ApplicationPart instances after being protected with the AppliedProtectionInstance in-
stances in the Solution (linked with the isAppliedOn relationship). The estimated metrics
serve to compute an estimated potency of the solution without actually applying any
protection on the application. With this approach, the defender can quickly compare
several solutions in terms of effectiveness and overhead, without spending time to ac-
tually apply the solutions and measure and compute the metrics on the target software.
Clearly, the usefulness of the estimation relies on its precision. In the ASPIRE project,
in which we used profile information collected on the unprotected software to drive
the estimation, we found it sufficiently precise for selecting protections. These data
are saved in the protection meta-model by means of hasMetric relationship between
each Solution and Metric class instances, for each pair of ApplicationPart and MetricType.
Moreover, the original metrics of the unprotected application can be modelled using a
dummySolution instance that links no protections and it is not related to any AppliedPro-
tectionInstance.

Next, assets are hidden in other code with the tool of Section 4.2.7. It refines a
Solution by adding decoy protections as AppliedProtectionInstance class instances, both on
already protected assets and other ApplicationPart instances not marked as assets. In the
latter case, there is no need to link the ApplicationPart to security requirements.

As a final step, a tool is executed to annotate the source code of the application
with data that can be processed by the ACTC tool chain to automatically apply the
protections. The tool, starting from the solution selected by the defender, navigates
the associations in the meta-model to identify the code to be protected (i.e., files and
line numbers) and determines, for each code region to protect, the low-level parame-
ters that configure the deployment of each protection. All the data that will drive the
tool chain for that deployment is injected into the source code in the form of low-level
annotations, named protection annotations. Like the aforementioned security require-
ment annotations, these are pragmas and attributes. With the protection annotations,
however, the developer configures the ACTC to deploy concrete protections on the as-
sets, i.e., on the annotated code fragments. We again refer to the ASPIRE Framework
Report [29] for a complete spec of those annotations.

4.2.11. Validation of work flow on open source application
We have executed our work flow on an open source application, Sumatra20, a C

console application used to compare DNA sequences. More information on the meta-

20https://git.metabarcoding.org/obitools/sumatra/wikis/home

29

model instance and the meta-model parts that have been instantiated during the phases
of the presented work flow is available as support material to this paper.

To simulate a risk analysis and mitigation task of a software application, even if
Sumatra is open-source and free, we treated it like it was commercial software, whose
comparison algorithms must be safeguarded against reverse engineering to protect in-
tellectual property. We have thus manually identified the assets, 25 functions related to
the DNA comparison, performed in four consecutive phases, which we have associated
to the confidentiality security requirement.

We have identified 162 attack paths able to compromise the security requirements
associated to the assets. Then, we have identified nine types of protections that may
help in stopping/delaying the identified attacks. These protections can be applied in
different ways to the assets by changing their configuration and application parame-
ters, our tool flow identified 299 different protection instantiation instances that can be
considered during the protection phase (e.g., for trading off performance and potency).
Based on this information about attacks and useful protections, we have defined one
solution that, according to our experience, properly protects the assets. This solution
includes 27 protections instances, at least one for each asset. For an asset that has been
considered more sensitive, the solution foresees the application of a combination of
three protections. Finally, we have refined this solution by adding 45 protections to
additional application parts to help hiding the original assets.

The instantiation of the meta-model and the associated knowledge base is available
as an ontology file21, written in the Web Ontology Language 2 (OWL2). In a supple-
mentary document associated with this paper [45], we present a detailed analysis of
how the work flow performed on the Sumatra application, and how the meta-models
were instantiated for this application.

4.2.12. Validation of work flow on industrial use cases
As part of the ASPIRE project, the ACTC was validated on industrial use cases.

The three industrial project partners, Nagravision, SafeNet and Gemalto, are world
market leaders in their digital security fields. They developed the uses cases, and in
particular the client-side Android apps of which the security-sensitive parts were im-
plemented in native dynamically linked libraries that were protected by means of the
ACTC. DemoPlayer is a media player provided by Nagravision. It incorporates DRM
(Digital Right Management) functions that need to be protected. LicenseManager is
a software license manager provided by SafeNet. OTP is a one time password au-
thentication server and client provided by Gemalto. Table 2 shows their lines of code
(measured by sloccount [46]). All security-sensitive code is implemented in the C
code part, which is the code protected with the ACTC.

Security experts from the industrial partners determined the assets in the C code,
as well as their security requirements. A pseudonomynous list of them can be found in
Section 5 of the ASPIRE Validation Report [43]. The security experts, together with
the developers of the ACTC, then also determined which configurations of protections
have to be deployed on each asset to achieve sufficient protection against attacks on

21https://aspire-fp7.eu/system/files/EMSE2018.owl_.bz2

30

Industrial UC Data Anti Remote Code Client-Server SoftVM WBC Binary Diversified
Obf. Debug Attestation Mobility Splitting Obf. Obf. Crypto Libs

DemoPlayer × × × × ×
LicenseManager × × × × × ×
OTP × × ×

Table 1: Protections applied to each industrial use case.

Application C H Java C++ Total

DemoPlayer 2,595 644 1,859 1,389 6,487
LicenseManager 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103

Table 2: Size of industrial use case applications in SLoC per file type, before the ACTC is deployed.

the assets. Table 1 lists the deployed protections on the use cases. Note the use of
the SoftVM obfuscation and WBC for which we discussed Petri net attack models in
Section 4.2.8. To generate the protected use cases, their thus annotated source code
was sent through the ACTC.

At this point, it is useful to remark that the penetration testing experiments with
professional, hired hackers mentioned in Section 4.1.1 as the basis for the models de-
veloped by Ceccato et al. [3, 4] were performed precisely on these protected use cases.
When we validated that our meta-model covers all protection and attack concepts taken
into account by Ceccato et al. as discussed in Section 4.1.1, this therefore already im-
plied the validation of the meta-model with respect to all attack activities performed
on the protected industrial use cases by the professional penetration testers. For those
penetration tests, the necessary protection annotations were injected into the use cases’
C code, and the thus annotated use cases were compiled and protected by the ACTC.

Access to the industrial use cases, to the security requirements of their assets, to
experts’ opinions on how to best protect the assets with the ACTC, and to reports of
actual penetration test experiments performed on the protected use cases provided an
ideal basis for validating the meta-model and the work flow engineered around it.

We hence validated the work flow presented in Section 4.2.10 on the use cases.
For this validation, we started from use case source code annotated with the security
requirements annotations, not with the protection annotations. Also in this validation
effort, we involved security experts from the industrial partners. In particular, we asked
them to assess the practical usefulness of the work flow.

The security experts were satisfied by the level of detail of the information obtained
by our tools about the applications to protect. This implicitly validates the meta-model
that allow to represent these data.

The security experts were surprised by the number of attack paths our tool was able
to identify and appreciated the possibility to add new attack paths manually. Again,
the information represented by the meta-model was defined sufficient and appropriate.
However, they found the attack steps we instantiated for our analysis had been defined

31

too coarse grained. As the meta-model supports more fine-grained attack steps (we
simply did populate the KB a-priori knowledge with such steps), this is not a funda-
mental issue.

Furthermore, the experts were satisfied by the protections identified by the tool to
mitigate the risks of each attack path. To a large degree, these identified protections
overlapped with the ones they had proposed manually. They also appreciated the pos-
sibility to precisely link each protection to the attack step it affected. Moreover, the
possibility to indicate combination of protections and an optional order of application
was an important characteristic, in their opinion, for the adoption of the work flow.

Even if they were a bit reluctant on considering the potency score we computed for
each combination of protections as trustworthy, they were convinced that the possibility
to visualize metrics and protection scores for each asset to protect was a useful feature.

We can conclude from the feedback received that the meta-model and the corre-
sponding work flow can be considered positively validated.

5. Related Work

In this section we provide some additional insights on the current state-of-the-art
on the use of meta-models, ontologies and Petri nets in cyber-security, complementary
to the related work already discussed in the introduction.

Meta-models. Various meta-models and modelling languages have been proposed to
represent threats in enterprise networks. Sommestad et al. [47] presented the Cyber Se-
curity Modeling Language (CySeMoL), which can be used to model computer systems
in enterprise networks. In addition, the authors presented a way to infer threats against
such systems using an inference engine on the models developed with CySeMol, eval-
uating also the success probability of the inferred attacks. Based on this work, Valja
et al. [48] proposed an improved security analysis, that considers attacks by attackers
external to the enterprise network mounted and by legitimate users inside the network.

Kritikos et al. [49] presented a meta-model to assess the security of cloud appli-
cations, alongside a domain specific language, namely CAMEL (Cloud Application
Modelling & Execution Language). It permits the description of the design and the se-
curity requirements of cloud applications and allows the validation of the model against
a set of constraint expressed using OCL (see https://www.omg.org/spec/OCL/).

In the field of access control systems, Mouelhiv et al. [50] proposed a meta-model
to represent access control policies, with a particular focus on mutation analysis, a test-
ing technique for security policies based on the voluntary injection of flaws (mutation)
in policies, in order to evaluate the efficiency of the security tests. Mutation operators
are included in the meta-model to represent the aforementioned testing process.

Model-Driven Reverse Engineering approaches usually aim at extracting models
from code [51]; our work is the first proposed meta-model including software protec-
tions and reverse engineering attacks.

Ontologies. A significant deal of work has been done by the scientific community
in defining ontologies for cyber-security purposes. Herzog et al. [52] presented an
ontology in OWL to model vulnerability and threats on assets in network domains,

32

with the relative countermeasures. The authors presented, alongside the ontology itself,
a set of possible inferences that can be done on it, e.g., finding all the appropriate
countermeasures for a specific threat. They also show how to query the ontology using
the SPARQL language. Ekelhart et al. [53] developed another security ontology, built
to simulate attacks against assets in corporate networks, in order to support a cost-
based analysis of these threats. It is an extension of a previous work by Landwehr
et al. [54], where the authors created an ontology as a centralized KB of flaws for
computer systems designers and security analysts. Costa et al. [55] proposed a security
ontology focused on the modelling of insider threats, e.g., potential malicious activities
by legitimate users inside an organization. They also described a database of real life
incident reports, named MERIT, built by the authors to validate the ontology against
real life use cases.

Petri nets. Petri-nets are a super-set of state-transition diagrams, and their usefulness
for attack modelling was pointed by McDermott as an alternative to attack trees [56], as
Petri nets are better at representing the actions of simultaneous attackers collaborating
on the same attack. Traditionally attack trees have been the most common type of
model for representing known attacks [57] as a hierarchy of sub-goals leading to the
final goal. Attack trees have been extended to attack graphs where nodes might have
associated values or logical “and/or” conditions [5]. Other proposals of attack graphs
have emerged with different semantics and visual representation to document attack
paths [58], analyse risks [59] or generating attack graphs from a PROLOG KB [60].
Roy et al. [61] proposed Attack countermeasure trees (ACT) to extend attack trees to
take into account both attacks and protections. Attack trees and attack graphs lack a
common standard for representing and exchanging models and the fact that they are
subset of Petri Nets models made us choose the latter modelling for visual editing of
attacks and exporting in standard PNML format.

Recently they have also been used to combine hierarchical Petri nets to model spe-
cific cyber-physical attacks on smart grids [7], while Wang et al. [62] focused on Petri
net based attack modelling for software security where the attack step difficulty is
ranked within five categories (from automated to fully manual). Xu et al. [63] also
models attacks with aspect-oriented Petri nets to superimpose protections as sub-nets
to be interconnected with the attack model. Dalton et al. [64] suggested generalized
stochastic Petri nets for attack modelling; stochastic Petri nets are a type of timed Petri
nets where transitions fire after random times. Coloured Petri nets (CPN) are used to
design coloured Petri nets, where tokens represent different data types (colours) [65];
a similar open-source project is PIPE Petri Net editor and simulator [66], however,
both tools cannot export the model to standard formats, making more complicated the
conversion of their models towards standard formats like OWL.

6. Conclusions

This paper has presented a meta-model developed to describe the knowledge needed
to perform risk analysis in the context of software protection against MATE attack sce-
narios that involve reverse engineering and tampering attacks. We discussed how the
meta-model meets a set of concrete requirements, we discussed how existing models

33

and taxonomies in the domain of software protection are covered, and we presented
a range of tools that demonstrate the practical usefulness. Moreoever, we provided a
detailed use case analysis in the form of an instance of the meta-model in with the data
from the risk analysis and a mitigation of an open-source software application.

Developing an automatic decision support system is the long term goal of our re-
search, which we have started addressing with the ASPIRE project. There are several
open issues to solve before such a system can be used in the real world. The most
relevant one is the weak correlation between measurable characteristics of the soft-
ware (protected and unprotected) with the empirical assessment of the effort needed to
perform successful attacks.

One important result of the research in this field would be instantiating the meta-
model with an as much as possible complete representation of the generic a priori
information, to be shared with the software protection community. However, this goal
will certainly face major issues. For political aspects (related to the adherence to a
security by obscurity principle) companies do not share their data about protection
assessment (e.g., weak points, attack paths against their protections).

We also foresee that the model may be extended in the future, e.g., to cover different
software distribution formats, such as (more symbolic) bytecodes.

Acknowledgements

This research is supported by the European Union Seventh Framework Programme
(FP7/2007-2013), project ASPIRE (Advanced Software Protection: Integration, Re-
search, and Exploitation), under grant agreement no. 609734. The research by Bjorn
De Sutter was also funded by the Fund for Scientific Research - Flanders (FWO), as
part of the project 3G0E2318.

References

[1] P. Falcarin, C. S. Collberg, M. J. Atallah, M. H. Jakubowski, Guest Editors’ In-
troduction: Software Protection, IEEE Software 28 (2) (2011) 24–27.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
K. Yang, On the (im) possibility of obfuscating programs, in: Advances in cryp-
tology—CRYPTO 2001, Springer, 2001, pp. 1–18.

[3] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Falcarin,
M. Torchiano, How professional hackers understand protected code while per-
forming attack tasks, in: Proc. 25th Int’l Conf. on Program Comprehension, 2017,
pp. 154–164.

[4] M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens,
B. De Sutter, Understanding the behaviour of hackers while performing attack
tasks in a professional setting and in a public challenge, Empirical Software En-
gineering.

34

[5] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, J. M. Wing, Automated Genera-
tion and Analysis of Attack Graphs, in: IEEE Symp. Security and Privacy, 2002,
pp. 273–284.

[6] H. Wang, D. Fang, N. Wang, Z. Tang, F. Chen, Y. Gu, Method to Evaluate Soft-
ware Protection Based on Attack Modeling, in: Proc. 10th IEEE Int. Conf. High
Performance Computing and Communications, 2013, pp. 837–844.

[7] T. M. Chen, J. C. Sánchez-Aarnoutse, J. F. Buford, Petri Net Modeling of Cyber-
Physical Attacks on Smart Grid, IEEE Trans. Smart Grid 2 (4) (2011) 741–749.

[8] P. Mell, K. Scarfone, S. Romanosky, A complete guide to the common vulnera-
bility scoring system version 2.0 (2007).

[9] D. E. Mann, S. M. Christey, Towards a common enumeration of vulnerabilities,
in: 2nd Workshop on Research with Security Vulnerability Databases, Purdue
University, West Lafayette, Indiana, 1999.

[10] M. Wojcik, T. Bergeron, T. Wittbold, R. Roberge, Introduction to OVAL: A new
language to determine the presence of software vulnerabilities, Available online
at http://oval.mitre.org (2003).

[11] S. Radack, R. Kuhn, Managing security: The security content automation proto-
col, IT professional 13 (1) (2011) 9–11.

[12] D. Waltermire, K. Scarfone, M. Casipe, The Open Checklist Interactive Language
(OCIL) Version 2.0 (2011).

[13] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transforma-
tions, Tech. rep., Department of Computer Science, The University of Auckland,
New Zealand (1997).

[14] C. Collberg, C. Thomborson, D. Low, Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs, in: Proc. 25th Symp. Principles of Programming
Languages, 1998, pp. 184–196.

[15] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, E. Weippl, Pro-
tecting software through obfuscation: Can it keep pace with progress in code
analysis?, ACM Comput. Surv. 49 (1) (2016) 4:1–4:37.

[16] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere, B. Preneel,
Program obfuscation: a quantitative approach, in: Proc. ACM workshop Quality
of protection, 2007, pp. 15–20.

[17] P. Tonella, M. Ceccato, B. De Sutter, B. Coppens, POSTER: A Measurement
Framework to Quantify Software Protections, in: Proc. ACM SIGSAC Conf.
Computer and Communications Security, 2014, pp. 1505–1507.

[18] M. Ceccato, ASPIRE Security Evaluation Methodology, Deliverable D4.06, AS-
PIRE EU FP7 Project (2016).

35

[19] M. Ceccato, A. Capiluppi, P. Falcarin, C. Boldyreff, A large study on the effect
of code obfuscation on the quality of java code, Empirical Software Engineering
20 (6) (2015) 1486–1524.

[20] I. Intel, Software guard extensions programming reference, revision 2 (2014).

[21] ARM, Security technology building a secure system using trustzone technology
(white paper) (2009).

[22] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, F. Piessens, Sancus: Low-cost trustworthy extensible
networked devices with a zero-software trusted computing base., in: USENIX
Security Symposium, 2013, pp. 479–494.

[23] R. de Clercq, R. De Keulenaer, B. Coppens, B. Yang, P. Maene, K. de Bosschere,
B. Preneel, B. de Sutter, I. Verbauwhede, SOFIA: Software and control flow in-
tegrity architecture, in: Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016, pp. 1172–1177.

[24] C. Wang, J. Hill, J. Knight, J. Davidson, Software tamper resistance: Obstructing
static analysis of programs, Tech. rep., Technical Report CS-2000-12, University
of Virginia, 12 2000 (2000).

[25] E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, London, UK, 1993.

[26] A. Viticchié, C. Basile, A. Lioy, Remotely assessing integrity of software applica-
tions by monitoring invariants: Present limitations and future directions, in: Risks
and Security of Internet and Systems, Springer, 2018, pp. 66–82.

[27] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. De Sutter, Tightly-coupled
self-debugging software protection, in: Proc. 6th Workshop on Software Security,
Protection, and Reverse Engineering (SSPREW), 2016, pp. 7:1–7:10.

[28] M. Ahmadvand, A. Pretschner, F. Kelbert, A taxonomy of software integrity pro-
tection techniques, Advances in Computers.

[29] C. Basile, et al., ASPIRE Framework Report, Deliverable D5.11, ASPIRE EU
FP7 Project (2016).

[30] C. Basile, D. Canavese, J. D’Annoville, B. De Sutter, F. Valenza, Automatic
discovery of software attacks via backward reasoning, in: Software Protection
(SPRO), 2015 IEEE/ACM 1st International Workshop on, 2015, pp. 52–58.

[31] L. Regano, D. Canavese, C. Basile, A. Viticchié, A. Lioy, Towards automatic risk
analysis and mitigation of software applications, in: Information Security Theory
and Practice, Springer International Publishing, 2016, pp. 120–135.

[32] D. Canavese, L. Regano, C. Basile, A. Viticchié, Estimating software obfusca-
tion potency with artificial neural networks, in: Security and Trust Management,
Springer International Publishing, 2017, pp. 193–202.

36

[33] L. Regano, D. Canavese, C. Basile, A. Lioy, Towards optimally hiding protected
assets in software applications, in: 2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS), 2017, pp. 374–385.

[34] J. L. Peterson, Petri Nets, ACM Comput. Surv. 9 (3) (1977) 223–252.

[35] E. Kindler, The ePNK: an extensible Petri net tool for PNML, in: Applications
and Theory of Petri Nets, Springer Berlin Heidelberg, 2011, pp. 318–327.

[36] B. Wyseur, White-box cryptography, Ph.D. thesis, KU Leuven (2008).

[37] S. Ghosh, J. D. Hiser, J. W. Davidson, A secure and robust approach to software
tamper resistance, in: Information Hiding, 2010, pp. 33–47.

[38] G. Zhang, P. Falcarin, E. Gómez-Martı́nez, C. Tartary, S. Islam, B. De Sut-
ter, J. D’Annoville, Attack Simulation based Software Protection Assessment
Method for Protection Optimisation, in: Proc. Int’l Conf. Cyber Security and
Protection of Digital Services, 2016, pp. 1–8.

[39] B. Wyseur, B. De Sutter, et al., ASPIRE Reference Architecture, Deliverable
D1.04 v2.1, ASPIRE (2016).

[40] B. De Sutter, P. Falcarin, B. Wyseur, C. Basile, M. Ceccato, J. D’Annoville,
M. Zunke, A reference architecture for software protection, in: 13th Working
IEEE/IFIP Conf. on Software Architecture (WICSA), 2016, pp. 291–294.

[41] A. Cabutto, P. Falcarin, B. Abrath, B. Coppens, B. De Sutter, Software protection
with code mobility, in: Proc. Second ACM Workshop on Moving Target Defense,
2015, pp. 95–103.

[42] A. Viticchié, C. Basile, A. Avancini, M. Ceccato, B. Abrath, B. Coppens, Reactive
attestation: Automatic detection and reaction to software tampering attacks, in:
Proc. 2016 ACM Workshop on Software PROtection, 2016, pp. 73–84.

[43] B. De Sutter, et al., ASPIRE Validation Report, Deliverable D1.06, ASPIRE EU
FP7 project (2016).

[44] B. Coppens, et al., ASPIRE Open Source Manual, Deliverable D5.13, ASPIRE
EU FP7 Project (2016).

[45] C. Basile, D. Cavanese, L. Regano, P. Falcarin, B. De Sutter, A meta-model for
software protections and reverse engineering attacks: an instance of the meta-
model, Journal of Systems and SoftwareUnder submission.

[46] D. A. Wheeler, More than a gigabuck: Estimating GNU/Linux’s size (2001).

[47] T. Sommestad, M. Ekstedt, H. Holm, The cyber security modeling language: A
tool for assessing the vulnerability of enterprise system architectures, IEEE Sys-
tems Journal 7 (3) (2013) 363–373.

37

[48] M. Välja, M. Korman, K. Shahzad, P. Johnson, Integrated metamodel for security
analysis, in: 48th Hawaii Int’l Conf. on System Sciences, 2015, pp. 5192–5200.

[49] K. Kritikos, P. Massonet, An integrated meta-model for cloud application secu-
rity modelling, Procedia Computer Science 97 (2016) 84 – 93, 2nd International
Conference on Cloud Forward: From Distributed to Complete Computing.

[50] T. Mouelhiv, F. Fleurey, B. Baudry, A generic metamodel for security policies
mutation, in: 2008 IEEE International Conference on Software Testing Verifica-
tion and Validation Workshop, 2008, pp. 278–286.

[51] C. Raibulet, F. A. Fontana, M. Zanoni, Model-driven reverse engineering ap-
proaches: A systematic literature review, IEEE Access 5 (2017) 14516–14542.

[52] A. Herzog, N. Shahmehri, C. Duma, An ontology of information security, Inter-
national Journal of Information Security and Privacy (IJISP) 1 (4) (2007) 1–23.

[53] A. Ekelhart, S. Fenz, M. D. Klemen, E. R. Weippl, Security ontology: Simulating
threats to corporate assets, in: A. Bagchi, V. Atluri (Eds.), Information Systems
Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 249–259.

[54] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S. Choi, A taxonomy of com-
puter program security flaws, ACM Comput. Surv. 26 (3) (1994) 211–254.

[55] D. Costa, M. Albrethsen, M. Collins, S. Perl, G. Silowash, D. Spooner, An insider
threat indicator ontology, Tech. Rep. CMU/SEI-2016-TR-007, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA (2016).

[56] J. P. McDermott, Attack net penetration testing, in: Proc2̇000 Workshop on New
Security Paradigms, 2000, pp. 15–21.

[57] R. Dewri, N. Poolsappasit, I. Ray, D. Whitley, Optimal security hardening using
multi-objective optimization on attack tree models of networks, in: Procs. ACM
Conf. Computer and Communications Security, 2007, pp. 204–213.

[58] S. Gupta, J. Winstead, Using attack graphs to design systems, IEEE Security &
Privacy 5 (4) (2007) 80–83.

[59] O. Sheyner, J. Wing, Tools for generating and analyzing attack graphs, in: Inter-
national Symposium on Formal Methods for Components and Objects, Springer,
2003, pp. 344–371.

[60] X. Ou, W. F. Boyer, M. A. McQueen, A scalable approach to attack graph gen-
eration, in: Proc. 13th ACM Conf. on Computer and Communications Security,
2006, pp. 336–345.

[61] A. Roy, D. S. Kim, K. S. Trivedi, Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees, Security and Communication
Networks 5 (8) (2012) 929–943.

38

[62] H. Wang, D. Fang, H. Dong, Y. Lei, X. Gong, Y. Gu, Software Attack Modeling
and Its Application, in: 10th IEEE Int. Conf. High Performance Computing and
Communications, 2013, pp. 1152–1158.

[63] D. Xu, K. E. Nygard, Threat-driven modeling and verification of secure software
using aspect-oriented Petri nets, IEEE Trans. Softw. Eng. 32 (4) (2006) 265–278.

[64] G. Dalton, R. F. Mills, J. M. Colombi, R. A. Raines, et al., Analyzing attack
trees using generalized stochastic Petri nets, in: Information Assurance Work-
shop, 2006, pp. 116–123.

[65] K. Jensen, Coloured Petri nets, in: Advances in Petri Nets, Springer, 1987.

[66] N. J. Dingle, W. J. Knottenbelt, T. Suto, PIPE2: a tool for the performance evalua-
tion of generalised stochastic Petri Nets, ACM SIGMETRICS Performance Eval-
uation Review 36 (4) (2009) 34–39.

39

