
Learning Early Exit Strategies for Additive Ranking Ensembles
Francesco Busolin

Ca’ Foscari University of Venice, Italy
francesco.busolin@unive.it

Claudio Lucchese
Ca’ Foscari University of Venice, Italy

claudio.lucchese@unive.it

Franco Maria Nardini
ISTI-CNR, Pisa, Italy

francomaria.nardini@isti.cnr.it

Salvatore Orlando
Ca’ Foscari University of Venice, Italy

orlando@unive.it

Raffaele Perego
ISTI-CNR, Pisa, Italy

raffaele.perego@isti.cnr.it

Salvatore Trani
ISTI-CNR, Pisa, Italy

salvatore.trani@isti.cnr.it

ABSTRACT

Modern search engine ranking pipelines are commonly based on
large machine-learned ensembles of regression trees. We propose
LEAR, a novel – learned – technique aimed to reduce the average
number of trees traversed by documents to accumulate the scores,
thus reducing the overall query response time. LEAR exploits a clas-
sifier that predicts whether a document can early exit the ensemble
because it is unlikely to be ranked among the final top-𝑘 results.
The early exit decision occurs at a sentinel point, i.e., after having
evaluated a limited number of trees, and the partial scores are ex-
ploited to filter out non-promising documents. We evaluate LEAR
by deploying it in a production-like setting, adopting a state-of-the-
art algorithm for ensembles traversal. We provide a comprehensive
experimental evaluation on two public datasets. The experiments
show that LEAR has a significant impact on the efficiency of the
query processing without hindering its ranking quality. In detail,
on a first dataset, LEAR is able to achieve a speedup of 3× without
any loss in NDCG@10, while on a second dataset the speedup is
larger than 5× with a negligible NDCG@10 loss (< 0.05%).

KEYWORDS

Learning to Rank, Early Exiting, Efficiency/Effectiveness Trade-offs

ACM Reference Format:

Francesco Busolin, Claudio Lucchese, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. 2021. Learning Early Exit Strate-
gies for Additive Ranking Ensembles. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY,
USA, 5 pages.

1 INTRODUCTION

Query processors of modern search engines rely on sophisticated
ranking pipelines aimed at optimizing precision-oriented metrics
at small cutoffs. Learning-to-rank (LtR) techniques are commonly
used to train complex models able to precisely re-rank a set of
candidate documents. State-of-the-art solutions include additive en-
sembles of regression trees, such as MART [7] and _-Mart [2, 14],
learned by gradient boosting algorithms. Since such ensemble are
made of hundreds of additive regression trees, the tight constraints
on query response time require suitable solutions able to provide
an optimal trade-off between document scoring time and rank-
ing effectiveness [4]. Among the main contributions in the area,
we cite the algorithms for the efficient traversal of tree ensembles

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
2021.

[6, 10, 16]. Alternative methods are concerned with strategies for
pruning the ensemble during or after the training phase [8, 9, 11],
and budget-aware learning-to-rank algorithms [1, 13]. Furthermore,
researchers investigated early termination heuristics aimed to re-
duce, on a document- or query-level basis, the cost of the scoring
process [3, 12, 15]. These works studied the impact of the proposed
early termination strategies on both the latency and ranking ac-
curacy. Finally, other techniques looked at a composite scenario,
where feature extraction costs and system effectiveness are bal-
anced across multiple re-ranking stages [5].

In this paper, we investigate document-level early exit strategies
for additive ranking ensembles by generalizing and building upon
the state-of-the-art method introduced by Cambazoglu et al. [3],
who proposed some heuristic techniques to force documents to
early exit the ensemble if they are unlikely to be included in the
top-𝑘 results. We devise a machine learning framework (ML), called
LEAR (Learned EArly exit Ranking), for early terminating document
scoring. LEAR is based on a binary classifier that exploits query-
document features along with their score/rank cumulated up to
a given ensemble’s tree, called “sentinel”. The classifier predicts
whether the document should exit the ensemble because it will
unlikely be ranked among the top-𝑘 ones or it should continue the
traversal of the rest of the ensemble. We provide an in-depth study
of the possible solutions to training effective early-exiting classifiers,
we discuss their accuracy and their placements in the ensemble
at specific sentinels1. We also provide an analysis of the speedup
achieved by the introduction of LEAR in QuickScorer, a state-
of-the art algorithm for ensemble traversal [10]. The experiments,
conducted on two well-known public LtR datasets, namely MSN-1
and Istella, show that our learned solution for document-level early
exit provides up to 5× speedup with a negligible loss, lower than
0.05%, in terms of NDCG@10 and significantly outperforms the
previous state-of-the-art solution by Cambazoglu et al. [3].

2 LEARNING EARLY EXIT STRATEGIES

In this section, we discuss LEAR, our method to force documents
to early exit (EE) the ensemble. To motivate and introduce our
contribution, we first evaluate the main limits of the heuristics
proposed by Cambazoglu et al. [3].

Heuristic EE techniques. Four EE heuristic techniques are pro-
posed in [3], where the best are EE Using Rank Thresholds (ERT)
and EE Using Proximity Thresholds (EPT). At a given sentinel 𝑠 in
the ensemble, ERT sorts the candidate documents for a given query
in decreasing order of their partial scores computed by evaluating

1Code available at https://github.com/hpclab/learning-exit-strategies-ensembles

ar
X

iv
:2

10
5.

02
56

8v
1

 [
cs

.I
R

]
 6

 M
ay

 2
02

1

https://github.com/hpclab/learning-exit-strategies-ensembles

Table 1: Best strategies in [3] vs Full and EE𝑖𝑑𝑒𝑎𝑙 .

Method NDCG@10 Δ Speedup 𝑘
`
𝑠 𝑘𝜎𝑠

Full 0.5249 0% 1 - -
EE𝑖𝑑𝑒𝑎𝑙 0.5249 0% 3.06× 25.04 19.97

ERT (𝑘𝑠 = 15) 0.5169 -1.53% 5.74× - -
ERT (𝑘𝑠 = 20) 0.5204 -0.85% 4.71× - -
EPT (𝑘𝑠 = 15, 𝑝 = 0.2) 0.5229 -0.37% 3.53× 28.56 12.06
EPT (𝑘𝑠 = 15, 𝑝 = 0.5) 0.5241 -0.15% 1.95× 57.49 31.35

the first 𝑠 trees. Then, given a pre-tuned rank threshold 𝑘𝑠 , only the
top-𝑘𝑠 documents are evaluated by the remainder of the ensemble,
while the other documents maintain their ranking at the sentinel
without any additional computation. Besides ranks, EPT exploits
document ranks to select also those document in proximity of the
top-𝑘𝑠 . Let 𝜎𝑘𝑠 be the partial score of the 𝑘𝑠 -th best document at
the sentinel, all documents with a score smaller than 𝜎𝑘𝑠 − 𝑝 early
exit the ensemble, where 𝑝 is a fine-tuned proximity threshold.

The rationale of EPT is to avoid a short-sighted top-𝑘𝑠 selection
when several documents have close scores and therefore they are
equally likely to be ranked among the best results by the whole
ensemble. In the case of such uncertain queries, EPT allows a larger
number of candidate documents to be selected.

To motivate LEAR, i.e., our novel ML-based EE technique, we
evaluate ERT and EPT when applied to a _-Mart additive ensemble
made up of 1,047 trees and trained on theMSN-12 dataset (fold 1)
using the LightGBM3 library. Table 1 compares the performance
figures – in terms of NDCG@10 and speedup – obtained by the
following methods on the test set:
• a ranking that exploits the complete ensemble without EE (Full);
• the ideal EE strategy (EE𝑖𝑑𝑒𝑎𝑙), where for each query 𝑞 an oracle
predicts the optimal value for 𝑘𝑞𝑠 , where all the documents of
rank greater than 𝑘

𝑞
𝑠 at the sentinel 𝑠 can safely early exit the

ensemble. The value 𝑘𝑞𝑠 is the minimum one to guarantee that
the measure NDCG@10 for query 𝑞 is the same as the original
one (Full), i.e., we select a distinct cut 𝑘𝑞𝑠 per each query that
guarantees that all the top-10 documents, appearing at the end
of the original whole ensemble, are kept in the ensemble and
continue to score.

• two versions of ERT, with𝑘𝑠 = 15 and𝑘𝑠 = 20. We experimentally
fine-tuned 𝑘𝑠 and these values resulted the best performing ones;

• two versions of EPT, where we use 𝑘𝑠 = 15 and two values of
score proximity 𝑝 (𝑝 = 0.2 and 𝑝 = 0.5). Larger values of 𝑝 imply
less documents that are stopped at the sentinel.

In these experiments, EE is applied in all the cases at sentinel 𝑠 = 50
and speedup is estimated by considering as scoring cost the number
of trees traversed for each document in the test set. Note that the EE
heuristic that achieves the best effectiveness – i.e., a limited decrease
in NDCG@10 with respect to Full (Δ = −0.15%) – is EPT (𝑘𝑠 = 15,
𝑝 = 0.5). Unfortunately, in this setting, also the resulting speedup
is limited and lower than 2×. On the other hand, EE𝑖𝑑𝑒𝑎𝑙 obtains
by construction the same NDCG@10 as Full, but with a speedup of

2https://www.microsoft.com/en-us/research/project/mslr/
3https://github.com/Microsoft/LightGBM

3.06×. We also report in the table mean and standard deviation for
the cut𝑘𝑠 of each query (𝑘

`
𝑠 and𝑘𝜎𝑠). Obviously, speedup is inversely

proportional to 𝑘`𝑠 , as a smaller 𝑘`𝑠 implies more documents that
early exit the ensemble. Note the 𝑘𝜎𝑠 increases when we increment
the EPT score proximity 𝑝 , because the number of documents that
continue in the ensemble changes greatly for each query. This is
true also for the ideal case (EE𝑖𝑑𝑒𝑎𝑙), but much less than EPT with
proximity score 𝑝 = 0.5.

We can conclude saying that there is room to improve over the
heuristic techniques proposed by Cambazoglu et al. The goal is
to find a trade-off between ERT (𝑘𝑠 = 15), with speedups close
to 6× and a very reduced ranking quality (Δ = −1.53%), and EPT
(𝑘𝑠 = 15, 𝑝 = 0.5), which obtains a very small reduction in the final
ranking quality (Δ = −0.15%), but a speedup lower than 2×.
LEAR Learned EArly exit Ranking. From the previous analysis,
we conclude that there is space for investigating a solution that tries
to improve speedup by keeping Δ𝑁𝐷𝐶𝐺@10 as small as possible.

We propose LEAR, an ML-based solution where a binary classi-
fier at the sentinel filters a possibly small subset of documents that
are then evaluated by the remaining trees of the ensemble. The goal
is thus to discard the largest possible number of documents to boost
the speedup of the ensemble computation and to select the best
documents so as to provide a ranking quality as close as possible to
the one achieved with the full evaluation of all candidates. These
contrasting objectives pose the following challenges: (i) how to
build the training set for the classifier; (ii) how to cope with imbal-
ance of selected versus discarded documents; (iii) which efficient
and accurate classification algorithm to use; and, finally, (iv) how
to manage the trade-off between efficiency and effectiveness.
Building the training set.We distinguish between Exit documents
and Continue documents for training the classifier. The classifi-
cation label is assigned on the basis of the final ranking position
generated by the ensemble and the relevance label associated with
the document. The set Continue includes those documents that are
relevant and included in the top-𝑘 results by the full ensemble. The
complementary documents define the Exit set. At the sentinel 𝑠
we would like to select all the Continue documents so as to mimic
the behaviour of the full ensemble. Conversely, the Exit documents
do not contribute to the top-𝑘 results and their scoring should be
stopped. Note that since the Continue set includes only relevant doc-
uments, and all Continue documents are, by design, ranked higher
than Exit documents, a perfect classifier might drop some irrele-
vant documents and possibly lead to a better ranking than the full
ensemble.

To train our classifier with Continue and Exit examples we use an
augmented representation for the documents including information
that becomes available at the sentinel 𝑠 . Specifically, besides the fea-
tures exploited by the ensemble, we use: the rank of the document
at the sentinel, the score accumulated up to that point, its per-query
min-max normalized value, and the number of candidates for the
corresponding query.
Handling imbalance. Continue documents are in general a small
fraction of all the instances, resulting in a highly imbalanced train-
ing set. Moreover, when using quality metrics such as NDCG@k,
documents contribute differently to the quality of the result set de-
pending on their relevance label. We tackle this issue by exploiting

https://www.microsoft.com/en-us/research/project/mslr/
https://github.com/Microsoft/LightGBM

a cost-sensitive training where each instance 𝑑 having relevance
label 𝑟𝑑 and classification label 𝑙𝑑 , is associated with a different
weight𝑤𝑑 = 2𝑟𝑑 /𝑓𝑞 (𝑙𝑑), where𝑓𝑞 (𝑙𝑑) is the frequency, among the
candidates for query 𝑞, of the Continue/Exit classification label 𝑙𝑑 .
This pushes the classifier to prioritize loss reduction on documents
with large relevance labels proportionally to their contribution to
the NDCG metric, and on the infrequent Continue documents. Note
that this weighting scheme is query-based and allows the classifier
to adapt to the different queries in the dataset.
Classifier efficiency. Several options are available for building a
binary classifier, e.g., logistic regression, SVM, etc. Note that the
classification task performed for each document is a potential over-
head that we are introducing. After experimental evaluation, not
included in this work due to space constraints, we chose a small
forest of 10 trees trained by minimizing the logistic loss. We found
that such a small forest provides the best results with a limited
additional cost.
Efficiency vs. effectiveness trade-off. Accuracy is not the metric we
are targeting for the classifier. Our goal is in fact to maximise the
recall over Continue documents, without hindering precision. To
this end, we fine tune a filtering threshold on the probability of
belonging to class Continue predicted by the classifier. By varying
this threshold, we can find the sweet spot between precision and
recall. Finally, the position of the sentinel 𝑠 impacts on the accu-
racy of the classifier and on the efficiency of the LEAR framework.
Early sentinels generate less reliable partial document scores/ranks
(due to the limited number of trees) potentially harming the classi-
fier accuracy. On the other hand, they may produce large speedups
thanks to the amount of tree traversals avoided. In the experimental
section we investigate different sentinel points.

3 EXPERIMENTS

Datasets. The datasets used for experiments areMSN-14 (Fold 1)
and Istella5. The MSN-1 one consists of 31,351 queries and 136
features extracted from 3,771,125 query-document pairs, while the
Istella dataset is composed of 33,018 queries and 220 features ex-
tracted from 10,454,629 query-document pairs. They thus differ
in the average number of documents per query, ranging from the
120 of MSN-1 to the 317 of Istella. The query-document pairs in
both datasets are labeled with relevance judgments ranging from 0
(irrelevant) to 4 (perfectly relevant). Istella comes with about 96%
of non-relevant documents and a normal distribution among the
relevant ones centered on label 2, while MSN-1 shows a power law
distribution with 51% of non-relevant documents. Both the datasets
are split in four partitions with sizes 60%-20%-5%-15%: the first
partition is used to train the _-Mart ranking model; the second for
hyper-parameter tuning of _-Mart; the binary classifier is trained
on the second partition and fine-tuned on the third; finally, the
fourth partition is used as test set to evaluate the efficiency and
effectiveness of the ensemble and the EE strategies considered.
Rankingmodels. The reference ranking models were trained with
_-Mart. Indeed, we used the LightGBM implementation6, and fine-
tuning hyper-parameters by maximizing NDCG@10 and using a

4http://research.microsoft.com/en-us/projects/mslr/
5http://blog.istella.it/istella-learning-to-rank-dataset/
6https://github.com/microsoft/LightGBM

bayesian approach as provided by HyperOpt7. The number of trees
was limited at 1,500 and tuned with 100 iterations for early stopping.
The resulting ensembles have 1,047 and 1,469 trees for MSN-1 and
Istella, respectively. Each tree has up to 64 leaves.
Competitor algorithm.We evaluate LEAR against the EPT heuris-
tic strategy. For EPT we used 𝑘𝑠 = 15 and proximity thresholds 𝑝
ranging from 0.3 (more aggressive EE) to 0.8 (more conservative
EE), with a step size of 0.1.
LEAR binary classifier. As previously discussed, we use a forest
of 10 trees to detect Continue/Exit documents. We used top-15
results ranked by the full ensemble to determine the document in
the two classes. The model was trained by optimizing the logistic
loss and using the same implementation framework of _-Mart
(LightGBM + HyperOpt). We also performed feature importance
analysis on query-document features. The resultingmodels employs
54 features for MSN-1 and 118 for Istella. Finally, in all tests for
LEAR we used different choices of confidence classifier thresholds,
ranging from 0.1 (more conservative EE) to 0.7 (more aggressive
EE), with steps of 0.1. Note that the effect of these thresholds is
similar to the one modeled by parameter 𝑝 in EPT.
Assessing the efficiency. We assess the efficiency of LEAR and
EPT usingQuickScorer (QS) [6, 10], the state-of-the-art algorithm
for scoring ensembles of regression trees.We extend QS by introduc-
ing the computation of early exit strategies (both LEAR and EPT) at
a given sentinel during the scoring process. All the results reported
hereinafter consider the total latency of the process, i.e., the time
needed to score the documents with the _-Mart model plus the
time needed to compute the early exit strategy. Our extended QS is
implemented in C++.

3.1 Performance of LEAR classifier

Table 2 reports the precision and recall performance of the LEAR
classifier. LEAR exhibits a very large recall for the Continue class
of 97% and 99% on the MSN-1 and Istella datasets, respectively.
Therefore, the classifier is able to identify nearly all documents that
should continue the forest traversal because they are likely to be
included into the top-𝑘 results. Having such a large recall on the
Continue class is necessary for a high-quality final ranking. The
second objective of the classifier is to minimize the number of false
positives, i.e., the number of Exit documents incorrectly classified
as Continue, as they do not contribute to the final top-𝑘 results and
only increase the overall evaluation cost. In this regard, the recall
on the Exit class is 82% for MSN-1 and 91% for Istella, which are
pretty good results given the large amount of documents which we
expect to prune. These results were achieved with a sentinel 𝑠 = 50,
by thresholding the classifier’s predicted probability at 50%. In the
following subsection, we investigate the impact on performance of
these two tuning parameters.

Figure1 reports the feature importance analysis of the binary clas-
sifier including the rank- and score-based features made available
at the sentinel. Notably, the document rank and the document score
at the sentinel (red bars) are the first and fourth most important
features, thus largely contributing to the classification accuracy.

7https://github.com/hyperopt/hyperopt

http://research.microsoft.com/en-us/projects/mslr/
http://blog.istella.it/istella-learning-to-rank-dataset/
https://github.com/microsoft/LightGBM
https://github.com/hyperopt/hyperopt

0.00 0.25 0.50 0.75 1.00
normalized feature importance

min of term frequency:body
 max of term frequency:anchor

IDF:url
sum of term frequency:url
document score@sentinel

covered query term ratio:document
max of term frequency:url
document rank@sentinel

Figure 1: Feature importance analysis.

Table 2: LEAR Precision and Recall figures.

Class MSN-1 Istella

Precision Recall Precision Recall

Exit 1.00 0.82 1.00 0.91
Continue 0.33 0.97 0.25 0.99

3.2 Efficiency/effectiveness trade-off

We compare the performance of LEAR against EPT by evaluating
the efficiency/effectiveness trade-offs for theMSN-1 dataset. The
two plots in Figure 2 show the impact of the two strategies on: i) the
final ranking quality, evaluated in terms of reduction of NDCG@10
compared to the reference _-Martmodel (y-axis), and ii) the speed-
up derived from the reduced number of documents to be scored
through the full ensemble (x-axis). Specifically, each plot reports
three curves, each corresponding to the performance of the method
when applied at a given sentinel, i.e., after 50, 100, and 200 trees
of the _-Mart model. For each sentinel, the curve reports the
different efficiency/effectiveness trade-offs obtained by varying
the confidence/proximity threshold for LEAR/EPT, respectively.
The two plots allow us to easily identify the sentinel with the best
efficiency/effectiveness trade-off, i.e., the line dominating the others
in terms of final ranking quality and achieved speedup. Figure
2 (a) shows that the best choice for LEAR is to put the sentinel
after the 50-th tree. In this setting, LEAR achieves no effectiveness
degradation with a speedup of up to 3× for small values of the
confidence threshold (up to 0.3).

Note the this result exactly corresponds to that of EE𝑖𝑑𝑒𝑎𝑙 , re-
ported in Table 1 as the best possible result to which EPT can tend.
By increasing the LEAR confidence threshold, the EE strategy be-
comes more aggressive. This translates to higher speedups at the
cost of higher degradation of the ranking quality. Similarly, Figure
2 (b) reports the same analysis for EPT by varying the proximity

2.5 3.0 3.5 4.0
speedup

0.4

0.2

0.0

 N
DC

G@
10

 (%
)

s = 50
s = 100
s = 200

(a) LEAR

1.5 2.0 2.5 3.0 3.5
speedup

0.4

0.2

0.0

s = 50
s = 100
s = 200

(b) EPT

Figure 2: Efficiency-effectiveness trade-offs of LEAR and

EPT by varying the sentinel on theMSN-1 dataset.

threshold. Here, the best trade-offs are achieved at 200 trees. In this
setting, results show no quality degradation with speedups of up
to 1.75× by using proximity thresholds higher than 0.6. From that
point, in correspondence of lower proximity values, EPT starts de-
grading ranking quality with a maximum loss observed of−0.05% in
correspondence to a speedup of about 2.6×. On the MSN-1 dataset,
LEAR and EPT thus show their best results by using sentinels placed
at different points of the ensemble. We also tested the two methods
on the Istella dataset. We do not report the plots due to space con-
straints. Results on Istella show that the best performance of the
two methods are achieved at 100 trees. We conclude the analysis
by reporting a direct comparison of the best sentinel placements of
the two methods in Figure 3. Figure 3 (a) provide such a compari-
son on the MSN-1 dataset. It clearly show the superiority of LEAR
with respect to EPT. Indeed, the former method outperforms the
latter by margin, providing much higher speed-ups when keeping
fixed the effectiveness degradation or, conversely, providing higher
effectiveness at the same speed-up ratio. Figure 3 (b) shows the
same comparison on Istella, where LEAR still outperforms EPT in
terms of trade-offs despite a reduced margin. To conclude, we exper-
imentally show that our ML-based solution for early exit additive
ranking ensembles is able to achieve better efficiency-effectiveness
trade-offs than previous state-of-the-art heuristics.

4 CONCLUSION

Wehave discussed LEAR, an effectiveML-based technique to speedup
document ranking employing additive ensembles of regression
trees. LEAR forces documents to early exit the ensemble if they are
unlikely to be ranked among the final top-𝑘 results. Experiments
on two public datasets showed that LEAR achieves speedups larger
than 5× with a negligible loss of NDCG@10 (< 0.05%). Results
also showed that it remarkably outperforms the state-of-the-art
document-level EE heuristics. As future work, we intend to investi-
gate the integration in the LEAR framework of query-level early
exit strategies.

2 3 4
speedup

0.3

0.2

0.1

0.0

 N
DC

G@
10

 (%
)

LEAR@50
EPT@200

(a) MSN-1

4 5 6
speedup

0.3

0.2

0.1

0.0

LEAR@100
EPT@100

(b) Istella

Figure 3: Efficiency-effectiveness trade-offs of the best LEAR

against the best EPT on theMSN-1 and Istella datasets.

REFERENCES

[1] Nima Asadi and Jimmy Lin. 2013. Training efficient tree-based models for docu-
ment ranking. In Advances in Information Retrieval. Springer, 146–157.

[2] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[3] Berkant Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya
Liao, Zhaohui Zheng, and Jon Degenhardt. 2010. Early exit optimizations for
additive machine learned ranking systems. In Proc. WSDM. ACM, 411–420.

[4] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto.
2016. Quality versus efficiency in document scoring with learning-to-rankmodels.
Information Processing & Management 52, 6 (2016), 1161 – 1177.

[5] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper. 2017.
Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In Proc. SIGIR.
ACM, 445–454.

[6] D. Dato, C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and
R. Venturini. 2016. Fast ranking with additive ensembles of oblivious and non-
oblivious regression trees. ACM TOIS 35, 2 (2016).

[7] J. H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189–1232.

[8] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Trani Salvatore. 2018. X-CLEaVER: Learning Ranking
Ensembles by Growing and Pruning Trees. ACM TIST (2018).

[9] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Salvatore Trani. 2016. Post-Learning Optimization of Tree
Ensembles for Efficient Ranking. In Proc. SIGIR. ACM, 949–952.

[10] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Ven-
turini. 2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive
Ensembles of Regression Trees. In Proc. SIGIR. ACM, 73–82.

[11] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, and
Salvatore Trani. 2017. X-DART: Blending Dropout and Pruning for Efficient
Learning to Rank. In Proc. SIGIR. ACM, 1077–1080.

[12] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
and Salvatore Trani. 2020. Query-level Early Exit for Additive Learning-to-Rank
Ensembles. In Proc. SIGIR. ACM, 2033–2036.

[13] Lidan Wang, Jimmy Lin, and Donald Metzler. 2010. Learning to Efficiently Rank.
In Proc. SIGIR. ACM, New York, NY, USA, 138–145.

[14] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao. 2010. Adapting boosting for
information retrieval measures. Information Retrieval (2010).

[15] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. 2021. BERxiT: Early Exiting
for BERT with Better Fine-Tuning and Extension to Regression. In Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. Association for Computational Linguistics, Online,
91–104. https://www.aclweb.org/anthology/2021.eacl-main.8

[16] Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, and Ruofei Zhang. 2018. Rapid-
Scorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level
Parallelization. In Proc. SIGKDD. ACM, 941–950.

https://www.aclweb.org/anthology/2021.eacl-main.8

	Abstract
	1 Introduction
	2 Learning early exit strategies
	3 Experiments
	3.1 Performance of LEAR classifier
	3.2 Efficiency/effectiveness trade-off

	4 Conclusion
	References

