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Polar ice cores play a central role in studies of the earth’s climate system through natural
archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections,
where the identification of paleoclimate signals is particularly challenging. For this, state-of-
the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-
MS) has the potential to be revolutionary due to its combination of micron-scale 2D
chemical information with visual features. However, the quantitative study of record
preservation in chemical images raises new questions that call for the expertise of the
computer vision community. To illustrate this new inter-disciplinary frontier, we describe a
selected set of key questions. One critical task is to assess the paleoclimate significance of
single line profiles along the main core axis, which we show is a scale-dependent problem
for which advanced image analysis methods are critical. Another important issue is the
evaluation of post-depositional layer changes, for which the chemical images provide rich
information. Accordingly, the time is ripe to begin an intensified exchange between the two
scientific communities of computer vision and ice core science. The collaborative building
of a new framework for investigating high-resolution chemical images with automated
image analysis techniques will also benefit the already wide-spread application of laser-
ablation inductively-coupled plasma mass spectrometry chemical imaging in the
geosciences.
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1 INTRODUCTION

Ice cores drilled on the polar ice sheets are among the most important climate archives, delivering
valuable insights into the complexity of our climate system (Fischer et al., 2021). With the deposition
of snow, additional properties of the atmospheric composition (aerosols, stable water isotopes, etc.)
are archived. When snow is transformed to ice, air bubbles are enclosed, providing actual snapshots
of the atmosphere of the past and constituting a stand-alone feature of this natural archive. As a
result, there exists a chemical and physical stratification of polar ice, which makes up the
paleoclimatic record, which we shall refer to as “the stratigraphic layering”. The layering
encoding this record is subject to changes with time and depth: the interaction between the
paleoclimatic record and its preserving ice matrix extends from km-scale ice flow over
millennia, down to the microscopic scale of interactions between impurities and ice crystals
(Faria et al., 2010).
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Glacier ice generally consists of a large number of individual
crystals, or “grains”, as well as associated microscopic features
such as grain boundaries and triple junctions, where three grain
boundaries intersect. The microscopic localization of impurities
with respect to the configuration of grains and their boundaries
can crucially affect not only macroscopic deformational
properties, but also the paleoclimate records: For instance,
diffusion and segregation of soluble impurities into grain
boundaries may alter or even destroy the sequence of
paleoclimate signals (Rempel et al., 2001; Barnes and Wolff,
2004; Ng, 2021). Therefore, a quantitative study of the ice
stratigraphy at the microscale, in particular the 2D distribution
of chemical impurities, is crucial to understand how climate
signals have been conserved or transformed, within the
flowing ice over tens to hundreds of millennia. This is of
particular relevance for the retrieval of novel climate records
from the deepest, oldest and thinnest layers, the primary target of
the upcoming ambitious “Oldest ice” ice core drillings in
Antarctica, which is a grand challenge in the ice core sciences
(Brook et al., 2006; Fischer et al., 2013).

Ice core stratigraphy can be assessed through a variety of
methods. The most common approach is direct visual inspection,
combined with microstructural analysis of selected ice sections
via optical microscopy. Such datasets have revealed new insights
into the complexity of the underlying physical processes,
challenging established glaciological concepts (Kipfstuhl et al.,
2009; Faria et al., 2014). Initial contact points with automated
image analysis have now been developed. Early studies used
coaxial reflected light and the birefringed properties of ice in
visual images to automatically detect grain boundaries via image
segmentation (Arnaud et al., 1998; Gay and Weiss, 1999). For
datasets from directed bright-field illumination, a machine
learning approach was developed to obtain automatic, reliable
classification of ice crystal features (Binder et al., 2013). At the
microscale, a digital form of optical microscopy was combined
with automated image analysis to quantify the collective grain as
well as bubble structure (Kipfstuhl et al., 2009; Ueltzhöffer et al.,
2010; Bendel et al., 2013). Morcillo et al. (2020) recently employed
digital image analysis for a macroscopic counterpart of dark-field
microscopy to investigate the optical stratigraphy of an Antarctic
ice core.

To fully assess the preservation of the climatic signals
represented by the vertical distribution of impurity
concentration in ice cores, jointly evaluating the chemical
information with visual analysis is key. However, all
techniques based on the chemical analysis of ice core
meltwater lack the ability to directly assess lateral spatial
relations among impurities within the ice, and face
fundamental limitations in depth resolution (e.g., Breton et al.,
2012). To analyze samples in the frozen ice state, scanning
electron microscopy/energy dispersive X-ray spectrometry
(e.g., Baker and Cullen, 2003; Barnes et al., 2003; Iizuka et al.,
2009) as well as micro-Raman spectroscopy (e.g., Eichler et al.,
2019) have been successfully used to determine the location of
impurities within the ice matrix and to analyze the chemical
composition of individual particles, typically based on spot-like
measurements. The evaluation of the chemical micro-

stratigraphy and its implications for the interpretation of
coarser scale meltwater signals requires continuous 2D
information. However, a standard technique in 2D chemical
imaging has not yet been established for ice cores.

A highly promising candidate in this regard is LA-ICP-MS.
LA-ICP-MS uses a laser to ablate a few tenths of micro-liters of ice
from the surface, which are subsequently analyzed for various
elemental impurity species with a mass spectrometer (Müller
et al., 2011; Sneed et al., 2015; Della Lunga et al., 2017; Spaulding
et al., 2017). Very recently, the application of LA-ICP-MS for 2D
chemical imaging in ice cores has been refined and greatly
improved (Bohleber et al., 2020a). Here high-resolution
artifact-free 2D images from state-of-the-art imaging methods
(e.g., Wang et al., 2013; van Elteren et al., 2019) provide an
unprecedented density of information; several million laser shots
(correlating with chemical measurements) are fired over just a
few square mm. A camera co-aligned with the laser then captures
visual images of the ice sample surface. By this means, LA-ICP-
MS combines chemical and visual information of the ice core
microstratigraphy.

The introduction of a new technology establishes the need for
better understanding the potential and limitations of these novel
high-resolution 2D chemical images of ice cores. As we see new
frontiers of multidisciplinary research emerging in this
framework, the employment of computer vision methods
might be a game-changer for fully exploiting the complexity of
the chemical images. In the same fashion as computer vision has
lead to advances in medical image analysis, neuroscience, bio-
medicine, robotics, object recognition, and a host of other areas,
the time is ripe for it to revolutionize ice core science. To
accelerate this, in this article we begin an inter-disciplinary
dialogue. We describe a selected set of key problems in the
analysis of chemical images of ice cores as examples of future
inter-disciplinary research questions, that can only be successfully
tackled in close collaboration with the computer vision
community.

2 MAKING CHEMICAL IMAGES OF ICE
CORES

Impurity images are acquired as a pattern of lines, without
overlap in the direction perpendicular to that of the scan, and
without any further spatial interpolation. Each pixel in an ice core
chemical image has a size of 35 µm × 35 µm (Figure 1). For each
chemical element a numerical matrix contains rows and columns,
according to the physical size of the image: an image of 7 mm ×
35 mm in size has 200 rows and 1,000 columns. The numerical
entries in this matrix refer to either the recorded intensity (e.g.,
counts per second) or, if a calibration is applied, the
concentration (e.g., in parts per million). Due to the careful
synchronization, the individual pixels of the different chemical
channels can be considered to be almost perfectly spatially
aligned. In contrast, the mosaic of visual images obtained from
the laser camera is not a-priori aligned with the chemical images.
A sample dataset (including the datasets from Figure 1) has been
made publicly available (see data availability below). Details on
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the imaging technique are described elsewhere (Bohleber et al.,
2020a).

The visual images are generally characterized by air bubbles
(dark blobs), grain boundaries (dark lines), and occasional sub-
grain boundaries (thin dark lines). In the chemical images, the
individual impurity channels generally differ, e.g., through a

variable degree of impurity localization at grain boundaries,
depending on the depth sections and respective climatic
period. The LA-ICP-MS image shown in Figure 1 has been
obtained from the EPICA Dome C deep Antarctic ice core, on
a sample from a glacial period of about 27.8 thousand years ago.
Additional images are presented elsewhere (Bohleber et al.,

FIGURE 1 | Laser-ablation inductively-coupled plasma mass spectrometry imaging at micron-scale resolution combines new chemical dimensions with visual ice
core analysis. Shown in (A) is an ice core drill and a freshly drilled ice core piece. Typical cm-resolution signals of chemical impurities obtained frommeltwater analysis are
illustrated in (B) (photo credit:Sarah Wauthy). Stars (+) indicate hypothetical stratigraphic (e.g., annual) layers. Row (C) shows the chemical imaging with LA-ICP-MS,
with examples for the chemical image for Na, Mg, and Sr intensities, using separate color channels and the visual images obtained from amosaic of camera images
[in (D)]. The comparison shows individual bright spots 1) and that the network of linesmost dominant in the red Na image 2) correspond to the grain boundaries which are
seen as dark lines in the visual image. Background image in tile A: copyright PNRA.

Frontiers in Computer Science | www.frontiersin.org June 2021 | Volume 3 | Article 6902763

Bohleber et al. Ice Cores Meet Computer Vision

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


2020b). From a conceptual point of view, Figure 1 is a
representative example of the following general image
characteristics: i) Small bright spots of a few ten microns
occurring within grains as single spots or in small clusters.
“Clouds” of such spots are also observed. ii) High intensities
reflected in co-localization with the grain boundary network,
especially for the Na images. In a typical 7 mm × 35 mm image,
tens of grains to a few hundred grains can be distinguished
visually. iii) Overall intensity gradients on the mm-scale, showing
sections with darker versus brighter intensities.

3 KEY QUESTIONS AND A ROLE FOR
COMPUTER VISION

The future technological evolution of LA-ICP-MS ice core
analysis promises to increase image size by at least one order
of magnitude or more, enabled by large cryocells (Sneed et al.,
2015) and faster scan speeds (Šala et al., 2020). With more
chemical channels added, the results are high dimensional
images that call for an equal advance in data reduction and
interpretation. This way, the chemical images may provide
important new insight into the identification and
preservation of paleoclimate signals in deep ice, one of the
pressing challenges in today’s ice core research. Below we
discuss three crucial questions that connect the analysis of
the chemical images to this challenge, illustrating where the
application of computer vision methods could lead to
breakthroughs.

3.1 Question 1: Can Scale-Space Theory
Assist in Extracting Paleoclimatic Signals?
Previous investigations focused on establishing a meaningful
interpretation of the novel LA-ICP-MS signals through a
validation against existing meltwater analysis. It was shown
that the coarse-scale variability seen in 1D single line profiles
of LA-ICP-MS, measured along the main core axis, is consistent
with the full resolution signals from meltwater analysis (Della
Lunga et al., 2017; Spaulding et al., 2017). The coarse-scale
variability had to be inferred by applying substantial (e.g.,
Gaussian) smoothing to 1D single line profiles. In this fashion
annual layers could be identified (i.e., the chemical contrast
between summer and winter snow layers) which were thinned
beyond the cm-resolution capabilities of meltwater analysis
(Bohleber et al., 2018). However, smoothing with a Gaussian
simply discards much of the high-resolution signal, and crucial
information is potentially lost.

Initial evidence has already suggested a relationship between
the fine-scale signal components (e.g., peaks in 1D line profiles)
and the grain boundaries (Della Lunga et al., 2014; Kerch et al.,
2015; Beers et al., 2020). The new 2D imaging technique has
fully revealed the influence of ice crystal features and has
demonstrated that, if an impurity species is mostly localized
at the grain boundaries (such as Na), it is in turn the grain
boundary network that determines the fine-scale signal
components in single line profiles (Bohleber et al., 2020a).

Accordingly, there should exist a hypothetical “sweet spot” in
measurement scale, at which the stratigraphic record (e.g.,
annual layers) is captured at the highest possible resolution,
while the imprint of crystal-related features such as grain
boundaries is still avoided.

However, the physical scales of stratigraphic layering and ice
crystal features are neither constant in depth nor universal among
all cores: the stratigraphic layering becomes increasingly
compressed with age and thinned due to deformation by ice
flow. The size of ice grains also varies between glacial and
interglacial periods, and can become increasingly large in deep
ice due to several processes. Eventually sub-mm (annual) layer
thickness can be expected in ice, showing grain diameters
exceeding several cm (Faria et al., 2010; Fischer et al., 2013).
This means that the localization of impurities at grain boundaries
can ultimately erase the original layer sequence. In this case the
crystal size becomes an upper limit to the resolution at which the
related paleoclimate signals may be interpreted. Accordingly, to
separate the imprint of ice crystal features from the stratigraphic
layering may not be achievable in all instances, especially once the
stratigraphic signal gets corrupted by layer folding, impurity
segregation to grain boundaries and migration along the ice
vein network.

As a starting point to tackle this question, undisturbed ice
core sections typically feature a nearly level layer sequence
(Svensson et al., 2005). In this case, signals related to the
stratigraphic layering should not be a primary function of the
lateral position of the line profile on the ice core surface (Sneed
et al., 2015; Della Lunga et al., 2017). However, due to the
presence of the grain boundary imprint, this does not hold at the
high resolution scale, as shown in Figure 2. On the other hand,
for the example of the Na image of Figure 1, the grain boundary
imprint becomes increasingly blurred until, at a scale of around
1 mm (e.g., the standard deviation of the Gaussian kernel), only
the overall intensity gradients of the image remain present. This
suggests that the overall intensity gradient is connected to the
stratigraphic layering, warranting further investigation. Small-
scale folding would corrupt the above criterion, with regard to
the lateral signal coherence. An answer cannot come from 1D
line profiles alone, but rather requires an analysis of the 2D
images.

Evidently, this question has a deep connection to the scale of
the image features. Hence, much may be gained from treating
this question with scale-space techniques, a well-established
field in computer vision (Witkin, 1983; Koenderink, 1984;
Lindberg, 1994; Florack et al., 1994; Florack et al., 1996; ter
Haar Romeny, 2003; Duits et al., 2004; Koenderink, 2021) for
which modern approaches leveraging deep learning are now
emerging (Bekkers et al., 2018; Romero et al., 2020). The
expected output from scale-dependent image characterization
should allow one to optimize the experimental design to
reliably detect the stratigraphic layer signal at the highest
possible resolution. This can mean determining the physical
resolution of analysis, such as the laser spot size, and
determining the number of and lateral spacing between the
parallel lines needed—ideally including a criterion for the
detection of small-scale folding.

Frontiers in Computer Science | www.frontiersin.org June 2021 | Volume 3 | Article 6902764

Bohleber et al. Ice Cores Meet Computer Vision

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


3.2 Question 2: What do Image Features
Reveal About the Ice Core Record?
Detecting, counting and classifying grain boundaries, triple
junctions and spot-type image features along the chemical
image dimensions can offer new and improved ways of
extracting chemical information. For instance, marine and
terrestrial sources of insoluble particles have been
distinguished based on a classification according to the multi-
elemental composition (Oyabu et al., 2020). For the chemical
images such a classification is a complex task that needs to be
performed automatically, or it will be intractable with growing
image size. Thus, this is another area where expertise from
computer vision will be instrumental in overcoming the
present limitations.

The chemical images also offer new options for the
investigation of post-depositional chemical reactions. As a
concrete example in this regard, meltwater analysis of a deep
Antarctic ice core revealed that sharp sulfate spikes showed an
“anomalous” chemical composition, which was explained by the
post-depositional formation of soluble particles of magnesium
sulfate salts in grain boundaries (Traversi et al., 2009). The latter
process would imply the co-localization of Mg and Ca in grain
boundaries. Chemical images can provide new insights about
whether the co-occurrence of impurities in meltwater analysis is in
fact a result of their co-localization at grain boundaries.

Since the chemical images will, for the foreseeable future, only
cover a small representative section of a typical sample melted for
analysis [e.g., approximately 1 m long, cross-section typically
3 cm × 3 cm (Röthlisberger et al., 2000)] a meaningful way of
extrapolation and upscaling is needed when attempting a direct
comparison to meltwater techniques. In this context,
macroscopic variables derived from the images can be
compared more easily to those of other datasets. Examples of

such variables are grain size and shape as well as the spatial
density and chemical signature of insoluble particles (related to
spot-type features). This can be compared, e.g., to visual datasets,
volume particle concentration derived from macroscopic
meltwater analysis and other chemical measurements.

Using image features (Zhou et al., 2016) in concert with tools
including co-localization analysis, image segmentation (Kass
et al., 1988; Malladi et al., 1995; Chan and Vese, 2001; Long
et al., 2015; Ronneberger et al., 2015) clustering (Shi and Malik,
2000; Ng et al., 2002; Pavan and Pelillo, 2007) and object
detection (Ren et al., 2015) can provide a foundation for
performing such analysis in a quantitative manner. For
instance, to assess the layer integrity, an algorithm must
determine i) the degree of localization of an impurity species
at the grain boundaries and weigh ii) the average size of the grains
against iii) the thickness of the stratigraphic layering of interest.
The latter data (expected nominal thickness of annual layers etc.)
can typically come from existing datasets from glaciological and
ice core analyses.

3.3 Question 3: CanComputer Vision Help to
Test Existing Theories of Impurity Diffusion?
Impurities can diffuse especially along ice veins (i.e., the network
of triple junctions) due to concentration gradients of soluble
species or chemical competition (Barnes and Wolff, 2004). There
is also the case of “anomalous diffusion” which can lead to 1D
signal displacement along the main core axis (Rempel et al.,
2001). Recently it has been shown that diffusive impurity
transport along ice veins will lead to an effect much like low-
pass filtering on 1-D signals (Ng, 2021). Hence, the diffusive
impurity relocation is another crucial question, for which the
chemical images may provide important detail if combined with
computer vision techniques.

FIGURE 2 | Image (A) shows the original Na image (7 mm × 35 mm). The example of two individual line profiles (the dark and light blue lines, two of the 200
horizontal lines that make up this image) reveals how the significance of single peaks (the fine scale signal components) is tied closely to the grain boundaries in the ice
crystal network (illustrated by four sample connecting lines). The imprint of the grain boundaries on the LA-ICP-MS signals weakens if the resolution is decreased and the
scale is increased, respectively. This is illustrated by image (B), obtained by applying 2D Gaussian smoothing to image A (30 pixel standard deviation). In image (B),
the two lines spaced 100 pixels (350 μm) apart show a high degree of similarity, the coarse scale components now representing mainly the overall intensity gradient of
the image.
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Evidently, whether the diffusive impurity becomes strong
enough to affect the paleoclimate signals depends on two factors:
i) the relative degree of localization at triple junctions (i.e., most
of the impurities need to be located there) and ii) the
connectedness of the ice vein network (vs. blockages or void
areas). Regarding i), the position of triple junctions in the
images can be determined either from visual data or from
chemical images with a high degree of localization at
grain boundaries, like Na. Various algorithms exist for triple
junction detection. For the corresponding position of triple
junctions, the relative intensity or concentration level can be
determined and compared to levels at grain boundaries and
grain interiors.

Regarding ii), the degree of connectedness of the ice vein
network could be evaluated using a 3D approach. For this
purpose, 2D images are stacked together, either in consecutive
ablation or after removing a surface layer manually by scraping/
polishing the surface (VanMalderen et al., 2017). This means that
building a 3D model of the ice vein network may require some
interpolation or statistical treatment of all detected triple
junctions.

4 OUTLOOK

In future applications, fully automatic methods based on
computer vision techniques may offer the speed and accuracy
to systematically analyze the large-scale, high-dimensional
datasets that modern acquisition systems will provide in the
coming years. Once tools for investigating the key questions
related to the chemical images have been developed, the ice core
community could independently focus on their application,
similar to the now established techniques for processing
visual ice core images. Regarding a vision for a prolonged
long term partnership between ice core and computer
science, it can be envisaged that, once initial algorithms have
been developed, a next step could involve further automation,
e.g., to train a machine learning algorithm to recognize instances
of stratigraphic layer disturbances in the chemical images. This
would result in machine-based assistance similar to that in
present state-of-the-art medical diagnostics. As the
technology continues to evolve, large sized (square tens of
cms) with tens of chemical dimensions may become a
standard practice over the coming years. At that point,
imaging of new ice cores could have produced thousands of
images like the one shown in Figure 1, including dedicated
platforms for data and code exchange. As thousands or millions
of annotated or labeled examples become available (typically for
classification or labeling tasks) deeper and wider neural
networks can be used, as is now common for many modern
day computer vision applications. Transfer learning, active
learning, or domain adaptation techniques might help in
lowering the labeling effort. However, we are presently quite

far from having such annotated data, or abundance of examples.
This motivates the use of more classical computer vision and
pattern analysis methods, as a starting point. Object detection
could help in quantitatively analyzing the number and chemical
characteristics of impurities at grain boundaries, triple junctions
and other locations. Here, tasks such as interactive image
segmentation or semantic segmentation could help
automatically detect grains and their boundaries. Ultimately,
computer vision has the potential to lead to a permanent
transformation in the manner that chemical stratigraphy in
polar ice cores is investigated. With the dialogue started here,
we envision the formation of a new community spanning
present disciplinary boundaries across geosciences, one which
includes imaging and image analysis experts alike.
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