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Abstract

We use a dataset of 12 million residential mortgages to investigate the loan default
behavior in several European countries. We model the default occurrence as a func-
tion of borrower characteristics, loan-specific variables, and local economic condi-
tions. We compare the performance of a set of machine learning algorithms relative
to the logistic regression, finding that they perform significantly better in providing
predictions. The most important variables in explaining loan default are the interest
rate and the local economic characteristics. The existence of relevant geographical
heterogeneity in the variable importance points at the need for regionally tailored
risk-assessment policies in Europe.
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Since the 2008 subprime crisis, a growing literature has been trying to identify the factors

that have caused a rise in credit defaults and the subsequent financial distress. One explan-

ation focuses on the role played by residential mortgages and points to a shift in the credit

supply curve that allowed banks to increase lending to low income, poor credit quality bor-

rowers, and lead to a soar in the house prices. When riskier borrowers started defaulting,

the distress propagated from the housing market to the real economy through the banking

sector with significant losses of output and jobs. Several studies, mainly focused on the

United States, find that areas where lending to subprime borrowers increased significantly

between 2002 and 2005 experienced sharp rises in mortgage defaults after the onset of the

crisis (see Mian and Sufi, 2009 and Mian, Sufi, and Verner, 2017, for an international com-

parison). Other studies, however, point at the expectations about house price appreciation
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as a key driver of borrowers’ and lenders’ decisions during the credit expansion and succes-

sive slump (Adelino, Schoar, and Severino, 2016). In Europe, between 1999 and 2006, sev-

eral countries experienced a significant expansion in the credit to households, particularly

in that part backed by real estate assets, with a subsequent severe contraction in economic

growth and employment, and a decline in house prices. A short period of recovery was fol-

lowed by a marked deterioration with the onset of the sovereign debt crisis in 2010–2012,

when several European countries, like Greece, Portugal, Ireland, and Spain, were unable to

repay or refinance their government debt.

Contrary to the United States, there is limited evidence regarding the drivers of mortgage

defaults following the Great Recession in Europe. There are significant differences between

the residential mortgage market in Europe and in the United States, which are likely to af-

fect both borrowers’ behavior and loan performance. First, mortgages in Europe are mostly

recourse loans, meaning that the borrower remains personally liable, in case of default, for

the difference between the outstanding debt and the sales price of the property. This pre-

vents borrowers from defaulting for strategic considerations, such as in the case of negative

equity. However, recent evidence in Gerardi et al. (2018) for the United States shows that

the frequency of strategic defaults is low, relative to the alternative explanation that

defaults are driven by the inability of the borrower to pay (e.g., due to an income shocks).

The recourse nature of mortgages in Europe partly explains the significantly lower default

rates relative to the United States, where the vast majority of residential loans are nonre-

course. Another difference with the U.S. mortgage market is that European banks grant

loans at lower Loan-to-Value (LTV) ratios, typically limited to 80% of the value of the

property.1 The more conservative approach of European banks is partly explained by the

lack of government-sponsored programs to guarantee residential loans. This implies that

borrowers contribute a larger equity component to purchase the property, which lowers the

risk of default, in particular, for strategic reasons. Finally, European countries are heteroge-

neous in the type of interest rate that is prevalent; while in Belgium, the Netherlands, and

France, the fixed rate mortgage is prevalent, in the remaining countries, the adjustable rate

is predominant. Albertazzi, Ongena, and Fringuellotti (2019) discuss the supply and de-

mand factors that drive the choice of the interest rate type based on a European dataset.

Floating rates have the effect of boosting credit growth when interest rates are declining.

However, borrowers choosing floating rates are exposed to larger periodic payments and

higher likelihood to default in periods of increasing interest rates and high inflation

(Campbell and Cocco, 2015). On the other hand, Fuster and Willen (2017) analyze adjust-

able rate mortgages originated in 2005–2006 in the United States and find evidence that the

decline in the interest rates had the effect of significantly lowering the default rate after the

reset period.

In this article, we use a large dataset of residential mortgages in seven European coun-

tries to study the factors driving mortgage default in the period following the Great

Recession. Understanding the main drivers of default can help to better predict the occur-

rence of a loan default and contribute to the design of reliable tools to assess the borrower’s

creditworthiness by financial institutions. This in turn would improve credit allocation,

1 Another explanation is that bank capital requirements set a risk threshold for residential loans at

80%. A recent survey on the macroprudential policies curated by the IMF is available at https://

www.elibrary-areaer.imf.org/Macroprudential/Pages/Home.aspx.
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ultimately leading to new policy designs aimed at preventing default or helping households

recovering from its effects. Our dataset includes approximately 12 million unique home-

secured mortgages originated between 2000 and 2018, for which we observe the perform-

ance over the period from 2013 to 2018. For each loan, we observe loan-specific character-

istics (e.g., the interest rate), borrower characteristics (e.g., income and employment

status), and information on the geographical location of the asset. One specific feature of

our data is that some variables reflect the situation at the time of the origination of the loan

(e.g., household income), while other variables are dynamically updated (e.g., interest rates)

and can be observed at the time of default. In our default prediction model, we also include

proxies for local economic conditions that allow us to control for the overall state of the re-

gional economy and also to account for the aggregate change in the variables that are not

dynamically updated. This is particularly important in our setting since household income

is only available at the origination date and never updated. Given the strong geographical

heterogeneity observed in the default and its drivers, we conducted the analysis at the re-

gional level, using information about the region where the asset is located.

The typical regression specification adopted by the loan default literature is the logistic

model, thus constraining the log-odd to have a linear functional form. Although such as-

sumption considerably simplifies the analysis, it may introduce misspecification bias due to

neglected nonlinearities and interactions among variables (Sirignano, Sadhwani, and

Giesecke, 2018). For instance, while certain loan characteristics, such as interest rate and

LTV, are known to be important default drivers, their relevance might depend on other fac-

tors, for example, borrower’s income or the state of the local economy. Hence, in addition

to the logistic regression, in this article, we model the probability of default by adopting

boosting techniques from the machine learning (ML) literature. The main characteristic of

these models is that they use a large set of “mis-specified” nonlinear models (the so-called

“weak learners”) and perform model averaging based on some measures of accuracy. To

improve the boosting algorithm transparency and to understand the sources of their

increased performance relative to that of the logistic regression, in our empirical applica-

tion, we adopt a set of tools from the recent literature on interpretable ML (IML; see,

among others, Ribeiro, Singh, and Guestrin, 2016; Murdoch et al., 2019). These methods

allow to measure feature importance and to understand how a specific regressor influences

the default prediction.

Turning to our analysis of loan default, our results show that tree-based models signifi-

cantly outperform the logistic regression in predicting out-of-sample defaults for most

countries, thus supporting the usefulness of ML models. In order to validate the robustness

of our results, we extend the comparison to a larger set of ML models that include random

forests (RFs) and neural networks (NNs). Our results confirm the best performance of

boosting models. We also find that the most important factors driving the default occur-

rence are the current interest rate, the current LTV, and the local economic conditions. The

relative importance of these variables changes across country but they are consistently the

top variables in terms of explanatory power for all countries. Interestingly, we do not find

that borrower’s characteristics at origination (income and employment status) are very rele-

vant. Instead, our results indicate that the current interest rate and LTV have a significant

impact on default occurrence and also that they are highly nonlinear, thus explaining the

better performance of boosting models related to the logistic regression. In addition to

differences in the relevance of these factors across countries, we also find significant
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within-country heterogeneity in their variable importance. For instance, local economic

conditions are the most relevant in explaining defaults in the Eastern coastal regions of

Spain, while in the rest of the country loan characteristics are more important (in particular

the current interest rate). This evidence suggests that macroprudential policies aiming at

controlling risks associated with residential lending should also consider the regional het-

erogeneity of credit markets. Policies should aim at targeting those regions that are experi-

encing excessive credit growth and a booming housing cycle which might require different

policy instruments even within the same country. Furthermore, limiting credit supply in the

regions experiencing excessive growth would allow to channel credit toward other regions

offering more productive investments.

The rest of the article is structured as follows. Section 1 provides an overview of the lit-

erature on loan default analysis and shows how our work relates to the existing literature.

Section 2 describes the data, while Section 3 illustrates our econometric approach. Section

4 discusses the results of the analysis at the regional level. Additional material available on-

line presents a Monte Carlo exercise to investigate the properties of our estimators and the

extended model comparison of various ML models. Finally, Section 5 concludes and high-

lights possible directions of future research.

1 Background Literature

There is a substantial empirical literature on the determinants of mortgage delinquency and

default, mainly focused on the United States. Cunningham and Capone (1990) use a

multinomial logistic regression model to study the default behavior of fixed-rate and

adjustable-rate loans in times of volatile interest rates and house prices. Deng (1997) adopts

a proportional hazard framework to evaluate mortgage default, where the hazard function

includes time-varying covariates. Bajari, Chu, and Park (2008) study the relative import-

ance of the various drivers behind subprime borrowers decision to default. They point at

the role of the nationwide decrease in home prices and increase in borrowers with high pay-

ment to income ratios as main drivers of default. Campbell and Cocco (2015) propose a

model of mortgage default for the United States in the presence of labor income, house

price, inflation, and interest rate risk to show how different shocks contribute to the default

decision. One important result from this study is that negative home equity tends to occur

when house prices decline in a low-inflation environment and for moderate levels of nega-

tive home equity, default is more likely as borrowing constraints bind more tightly on

households. Babii, Chen, and Ghysels (2019) analyze the spatial dependence among com-

mercial and residential default using Generalized Autoregressive Score(GAS) models.

In contrast to the large U.S. empirical literature, studies on the drivers of mortgage

arrears and default for Europe are limited and typically focused on a single country.2 Few

studies analyze the default behavior across countries in Europe, mostly due to the limited

availability of multicountry microdatasets. An exception is the European Community

Household Panel (ECHP) that surveys households across Europe and provides information

about income and housing conditions. This dataset is used by Diaz-Serrano (2005) to

2 See, among others, Sanchez-Martinez, Sanchez-Campillo, and Moreno-Herrero (2016) and Aller

and Grant (2018) for Spain, Lambrecht, Perraudin, and Satchell (2003) and Aron and Muellbauer

(2016) for the UK, and Fitzpatrick and Mues (2016) for Ireland.
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examine the determinants of mortgage delinquency across 12 European countries, which is

found to be positively associated to income volatility. Duygan-Bump and Grant (2009)

examine the effects of adverse shocks that households experience on the likelihood to fall

into arrears. They find that adverse events are important, but the extent to which they mat-

ter varies across countries and crucially depends on the penalty for defaulting. Jappelli,

Pagano, and Di Maggio (2013) study differences in household indebtedness across 11

European countries, showing that higher indebtedness is associated with increased financial

fragility, as measured by the sensitivity of household arrears and insolvencies to macroeco-

nomic shocks. Gerlach-Kristen and Lyons (2015) explore the role of ‘affordability’ and

negative equity in explaining mortgage arrears among European households (see also

Georgarakos, Lojschová, and Ward-Warmedinger, 2009). Ampudia, van Vlokhoven, and

Zochowski (2016) exploit data from the Household Finance and Consumption Survey

(HFCS) in Europe to calculate a set of financial burden indicators for households. They

calibrate their measures using country-level data on nonperforming loan ratios and estimate

a set of stress-test elasticities in response to the interest rate, income, and house price

shocks. Although the ECHP and the HFCS represent rich sources of information on house-

hold income, housing situation, and outstanding loans, they have the disadvantage to in-

clude a very limited number of households which could potentially affect the reliability of

results. In addition, in the ECHP survey, arrears are self-reported, and hence likely to be

underreported, as also pointed by Duygan-Bump and Grant (2009). On the other hand,

loan-level datasets provide information on potentially millions of loans together with

demographic information about the borrower that can also be used to investigate these

questions.

The studies reviewed above typically employ standard econometric techniques, such as

logistic regression or hazard models, to analyze the default behavior of households. Over

the past few years, the increasing availability of large and complex datasets as well as the

recent developments in new statistical tools has led researchers to a variety of applications

of ML techniques to credit risk analysis. Desai, Crook, and Overstreet (1996) provide a

first attempt to use neural network models for credit score purposes and obtain comparable

results to the logistic regression. Feldman and Gross (2005) apply the Classification and

Regression Tree algorithm to study a set of approximately 3000 mortgages in Israel using

loan’s and borrower’s information. Khandani, Kim, and Lo (2010) construct a forecasting

model using tree-based ML techniques to study consumer credit risk time series. They claim

to significantly improve the classification rates of credit card holder delinquencies and

defaults, thus inducing a large reduction of the associated financial losses. In a similar study

on the default behavior of 300,000 Irish mortgages, Fitzpatrick and Mues (2016) find that

boosted regression tree and RF models outperform penalized logistic regression. Sirignano,

Sadhwani, and Giesecke (2018) develop a deep learning model of mortgage default risk

using data on 120 million U.S. mortgages over the years 1995–2014, including loan-level

information, as well as macroeconomic variables at the zip-code level. Butaru et al. (2016)

apply ML techniques to predict delinquency by combining information on consumer trade

line, credit bureau, and macroeconomic variables for 2009–2013. They find substantial het-

erogeneity in risk factors, sensitivities, and predictability of delinquency across lenders,

implying that no single model applies to all institutions in their data. Fuster, Goldsmith-

Pinkham, and Ramadorai (2018) study millions of U.S. mortgages using the logistic and RF

models. Among other variables, the authors include as regressors nonfinancial borrower’s
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information (e.g., ethnicity) and analyze whether the application of ML techniques might

favor a demographic group against the others. Albanesi and Vamossy (2019) employ a

range of tools from deep learning to predict consumer default using data on 1 million U.S.

household loans in the period from 2004 to 2015, showing considerable improvements in

default prediction relative to traditional approaches. The range of tools available from the

most recent ML literature for classification is very wide and its use in the area of credit risk

analysis is still largely unexplored, with significant potentials for further study. We refer to

Mullainathan and Spiess (2017) for a review of ML methods with an econometric perspec-

tive and an indication of possible applications and associated challenges if used to study

economic problems, and to Carrasco and Rossi (2016), Medeiros et al. (2019), and Babii,

Ghysels, and Striaukas (2020) as some recent examples of ML methods applied to classical

macroeconomic forecasting. This article follows the literature on ML models for default

forecasting with a novel application to a multicountry European loan-level dataset.

2 Data

European Datawarehouse (ED) is a centralized securitization repository implemented by

the European Central Bank (ECB) as part of the loan-level initiative3 that collects, validates,

and distributes standardized loan-level data for several European countries. Through this

vehicle, banks provide asset-backed securities as collateral in the ECB refinancing opera-

tions. The program started in January 2013 and requires financial institutions to report in-

formation on the structure and performance of their securitized loan portfolios in a detailed

and standardized format. The dataset includes several loan types, ranging from residential

mortgages, credit cards, car loans, and those granted to small- and medium-sized enter-

prises. The dataset contains (dynamic) information about the performance of each loan,

updated at least on a quarterly basis. In addition, the dataset also provides (static) informa-

tion recorded at the time the loan was originated, such as the loan total amount or the bor-

rower’s gross income. So far, ED data have rarely been employed for research, and have

never been used for the analysis of the drivers of loan default. We refer to Ertan, Loumioti,

and Wittenberg-Moerman (2017) and Van Bekkum, Gabarro, and Irani (2017) for the

existing works that exploit ED data for a variety of research purposes.

In this study, we focus on loan data for residential property purchases. This is an im-

portant part of household debt, given the high concentration of resources in the housing

sector observed before the onset of the financial crisis in several European countries. Data

on residential loans provide information about the loan granted, the borrower, and the

asset (i.e., the property) underlying each loan at the time of the origination. In particular,

loan-level information includes data on the amount of debt at the origination of the loan,

the interest rate, and its type (e.g., fixed rate for life, fixed with future periodic resets, or

floating), the loan term, the status, and performance of the loan, whether it is performing,

defaulted or in arrears, and for how many months it has been in arrears. Borrower-level in-

formation includes gross annual income and employment status (e.g., whether the borrower

is self-employed or unemployed) at the date of the origination of the loan. Finally, asset-

level data contain information about the value of the property underlying each loan, the

3 See https://www.ecb.europa.eu/paym/coll/loanlevel/html/index.en.html.
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type of property (e.g., house, flat, or terraced house), and the (partial) postal code where

the property is located.

We collected loan-level information from ED for seven countries, namely Belgium,

France, Ireland, Italy, the Netherlands, Portugal, and Spain over the period from January 1,

2013 until December 31, 2018. Although data are available also for Germany, we excluded

this country from our analysis because of the low number of mortgages appearing in ED,

possibly in line with the low homeownership rate registered for German households (see

Voigtländer, 2009). We cleansed the data in various ways. First, we have eliminated the

records with missing entries, errors, and duplicated entries. Furthermore, we only kept

records for which the total balance of the loan is expressed in Euro. To associate each loan

to a specific region, we have linked the postal code of each property to the corresponding

geographical region, using the Eurostat Nomenclature of Territorial Units for Statistics

(NUTS) classification. Our default risk analysis is carried out separately for each NUTS2

region in the sample. Accordingly, we dropped records for loans that refer to properties

located in NUTS2 regions with less than 100 observations or located in overseas territories.

We also dropped records in the first and last percentiles of the distribution for all quantita-

tive variable, where percentiles have been calculated separately for each NUTS2 in the sam-

ple. In our empirical study, we define a loan as defaulted if it is in arrears for more than 90

consecutive days. One reason for defining default in this way is that it provides a uniform

definition of default across Europe, given that the legal definition of default may vary

across countries, depending on country-specific regulations. When a loan is classified as

defaulted according to our criterion, we remove all updates of the loan status that follows

the date of default, thus excluding the possibility that the defaulted loan returns to a per-

forming status. After this cleaning procedure, we obtain a dataset consisting of 162 million

observations, with approximately 12 million unique mortgages observed over a time and in

96 NUTS2 regions. The numerosity of the dataset varies largely across NUTS2 regions,

ranging from the approximately 20,000 records of the Spanish Ciudad Autónoma de

Melilla region to the 4 million records of the French Île-de-France region.4

Table 1 reports the number of records by country, the number of unique loans, the de-

fault rate, and the percentage of unique loans divided by the 2018 country population

obtained from Eurostat. One important remark is that the distribution of loans is not pro-

portional to the population of the country. Indeed, countries like Italy and Spain present

fewer unique loans than a smaller country like the Netherlands. The default rate also varies

substantially across countries, ranging from 0.34% in France to 14.70% for Ireland. Most

importantly, the default rate is very low for most countries, indicating the highly unbal-

anced nature of the default variable.

Table 2 shows loan characteristics at the country level in order to evaluate differences in

the residential loan markets across Europe. The median loan maturity at origination is be-

tween 18 and 25 years for Belgium, France, and Italy, while the remaining countries have a

median term of 30 years or longer as in the case of Portugal. There are also significant dif-

ferences in interest rate type across countries: in Belgium, France, and the Netherlands

mortgages are predominantly of the fixed interest rate type, while in the remaining coun-

tries the floating rate prevails. The Netherlands is unique among European countries by

4 We refer to the Supplementary Appendix for additional data cleaning operations that we performed

on ED data.
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having a large percentage of loans that are only interest mortgages. In terms of median LTV

ratio, most countries are around 80%, with the highest ratio being the Netherlands with

87.7% and the lowest Italy with 68.18%. Finally, in terms of Debt-to-Income (DTI), the

highest leverage is in Spain where households borrow five times their income and the lowest

in the Netherlands where the ratio is only 2.08.

We augment the ED dataset with a number of variables that we expect to be relevant in

determining loan default. As pointed out by several studies, local economic conditions are

likely to play an important role in explaining the differences in credit risk (see, among

others, Djeundje and Crook, 2018; Dirick et al., 2019). Accordingly, we integrate ED data

with a set of aggregate, regional macroeconomic variables as a proxy for the state of the

economy of a region. These include the NUTS2-level change in unemployment rate and

gross domestic product (GDP) growth obtained from Eurostat. Furthermore, we calculated

the observed NUTS3-level default rate and the average NUTS3-level house price growth,

computed using ED data. All variables related to the local economic conditions have been

lagged 1 year. This is the shortest possible lag to include in the analysis given that the

Table 1 ED loans by country: number of records, number of unique loans, default rate, and per-

centage of unique loans over the country population in 2018

Country No. observations No. of loans Default rate (%) Loans by population (%)

Belgium 16,707,359 1,168,744 0.76 10.25

France 50,703,745 4,366,815 0.34 6.49

Ireland 8,208,587 386,535 14.70 7.95

Italy 17,240,131 1,253,678 6.61 2.07

Portugal 55,22,206 342,684 6.62 3.33

Spain 22,065,010 1,871,179 3.15 4.00

Netherlands 26,923,998 2,819,810 0.93 16.36

Notes: The default rate is computed as the number of defaulted loans over the number of distinct loans in the

sample.

Table 2 Loan characteristics by country

Country Term Interest Rate Type Interest LTV DTI

Floating Fixed only

Belgium 20.00 0.00 100.00 0.20 80.00 2.24

France 18.00 2.80 97.20 0.10 76.78 2.91

Ireland 30.00 95.00 5.00 6.10 80.00 4.63

Italy 20.08 73.10 26.90 0.00 68.18 4.20

Portugal 34.33 99.30 0.70 0.50 83.33 4.14

Spain 30.00 98.10 1.90 0.00 79.21 5.00

Netherlands 30.00 5.80 94.20 82.70 87.74 2.08

Notes: Summary statistics by country of the median loan term in years (Term), the percentage of mortgages

that are of the Floating and Fixed interest rate type, the percentage of loans whose repayment is interest only,

and the median LTV and DTI.
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regional macroeconomic variables provided by Eurostat are only available at the yearly

frequency.5

Table 3 provides the definitions of the variables included as regressors in our models of

loan default. We split the variables into three sets, namely, loan-specific, borrower-specific,

and aggregated regional variables. The choice of these variable is in line with the existing

literature on loan default prediction, and we refer to Cunningham and Capone (1990),

Deng (1997), Campbell and Cocco (2015), and Sirignano, Sadhwani, and Giesecke (2018),

among others, where similar features are studied. Among the loan-specific characteristics,

we include two categorical variables (namely, interest rate type and property type) and two

numerical variables observed at the origination of the loan, that is valuation amount (in

logs) and the DTI ratio, calculated as the ratio between the total amount of loan and the

gross income of the borrower. In addition, we also included three numeric variables that

are observed every time the loan information is updated in the dataset, such as the seniority

of the loan, computed as number of days since the loan was granted, the current LTV and

the current interest rate applied to the loan. With respect to borrower-specific variables, we

include the borrower gross income and the employment status, where both features are

observed only at the time of the origination of the loan.

In our default risk model, we have also included a number of variables calculated at the

level of the financial institution issuing the loans. Considering only the loans originated in

the seven countries under study, in the ED dataset, there are 601 unique institutions, issuing

at least 1000 loans. We expect substantial heterogeneity in the outcome variable and regres-

sors across institutions, due to differences in lending policies, risk perceptions, and risk

tolerance. Adding originator fixed effects to our default risk model is likely to create over-

fitting problems. Rather than controlling for bank-specific effects, we have decided to com-

pute the average LTV ratio, average DTI ratio, and the average balance change of the loan

originator in the previous year, and add these variables to our default risk model as add-

itional controllers. These aggregates represent a proxy for the policy adopted by a financial

institution at a certain point in time with respect to residential mortgages, and controlling

for them allows us to achieve a more accurate description of the borrower’s default deci-

sion, regardless of who originated the loan.

3 Methods

Assume we observe yit, for i ¼ 1; . . . ;N and t ¼ 1; . . . ;T, a categorical variable associated

to the ith loan in quarter t, with yit ¼ 1 if default occurs and yit ¼ 0 otherwise. In addition,

let xit be a K-dimensional vector of covariates associated to the ith loan at time t. Given

that in our empirical application both the number of loans, N, and the number of covari-

ates, K, are large, we have decided to adopt a range of methods that are suitable for dealing

with high-dimensional, big data. Specifically, we consider three alternative approaches for

modeling the risk of default as a function of a set of covariates, namely penalized logistic

5 As an alternative, we could add in the regression the local economic variables expressed in levels

rather than first differences. However, the inclusion of variables, such as GDP and house price

would complicate the estimation of the classical logistic regression as the maximum likelihood esti-

mator would not have the standard asymptotic properties in the presence of nonstationary varia-

bles (see, e.g., Park and Phillips, 2000).
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regression, Gradient Boosting (GB) and Extreme Gradient Boosting (XGB). In the rest of

this section, we first briefly describe these methods6 and then discuss the range of tools used

to assess the performance of our models and interpret results.

3.1 Models

3.1.1 Penalized logistic regression.

Logistic regression is one of the most popular approaches when modeling the probability of

loan default as a function of a set of covariates. Let P yit ¼ 1jxitð Þ be the conditional prob-

ability of default given the covariates, xit . The logistic model assumes that the log of the

odds of the conditional probability P yit ¼ 1jxitð Þ is a linear combination of xit :

ln
P yit ¼ 1jxitð Þ

1� P yit ¼ 1jxitð Þ

� �
¼ b0 þ x0itb; (1)

where b0 is the intercept and b is a K-dimensional vector of coefficients associated to the

covariates, xi. Estimates of b0 and b in Equation (1) are traditionally obtained by minimiz-

ing the negative log-likelihood. If the number of unknown parameters, Kþ 1, is large

Table 3 Explanatory variables used to predict the occurrence of a default

Feature Attribute Type Description

Loan-specific variables

DTI Static Numeric DTI at origination

Interest rate type Static Categorical Interest rate type

Interest rate Dynamic Numeric Interest rate at the pool cutoff date

LTV Dynamic Numeric LTV at pool cutoff-date

Property type Static Categorical Property type of the underlying asset

Seniority Dynamic Numeric Loan seniority at origination (in days)

Valuation amount Static Numeric Property value as at loan origination (in logs)

Borrower-specific variables

Borrower’s employment Static Categorical Employment status of the applicant

at origination

Income Static Numeric Borrower gross annual income at

origination (in logs)

Regional-specific variables

Default rate Dynamic Numeric Default rate (%) by NUTS3

lagged 1 year

GDP growth Dynamic Numeric GDP percentage growth by NUTS2

lagged 1 year

House Price growth Dynamic Numeric House price percentage growth by

NUTS3 lagged 1 year

Unemployment rate growth Dynamic Numeric Unemployment rate growth by

NUTS2 lagged 1 year

6 We estimated all models using the h2o platform; details about the model implementation are avail-

able at http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html. The Supplementary

Appendix provides additional details regarding the parameter selection.
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relative to the number of observations, N, then solving the standard likelihood problem

might lead to low estimation accuracy or even biased results. To avoid these problems, one

solution is to add a penalization term to the objective function that shrinks or sets some

coefficients to zero. In our application, we adopt the elastic-net penalization that solves the

following minimization problem:

min
b0 ;b

� 1

N

XN
i¼1

XT

t¼1

½yit b0 þ x0itb
� �

� log 1þ eb0þx0itb
� �

� þ k
XK

k¼1

½ajbkj þ
1

2
1� að Þb2

k�
( )

; (2)

where k � 0 is a regularization parameter and 0 � a � 1 is the elastic-net parameter, mix-

ing between ridge (a ¼ 0) and lasso (a ¼ 1), and allowing for variable selection and shrink-

age (Zou and Hastie, 2005). The overall impact of the penalty in Equation (2) is controlled

by k: the larger k, the stronger the variable selection or shrinkage imposed by the elastic

net. In our application, we select a with a grid search over the values

a 2 f0; 0:2;0:4; 0:6; 0:8;1g: in the majority of the cases, the best model coincides with a ¼
0 which corresponds to a nonsparse solution. We select k with a search on 100 values simi-

larly to Friedman, Hastie, and Tibshirani (2010).

3.1.2 Gradient tree boosting.

Proposed by the ML literature, GB represents a powerful tool for classification and re-

gression analysis. This method consists of sequentially applying a weak classification al-

gorithm to adaptively reweighted versions of the initial training data. The weighting

scheme is adaptive in the sense that those observations misclassified by the classifier in

the previous step are then given a higher weight, whereas observations that were correctly

classified are assigned a lower weight. Thus, as iterations proceed, the boosting classifica-

tion algorithm focuses more on observations that are difficult to classify than on those

that are already classified correctly. In the context of binary classification, boosting can

be interpreted as an approximation of additive logistic models built on a Bernoulli likeli-

hood. Several versions of boosting exist, we refer to Friedman, Hastie, and Tibshirani

(2000) for a review of various specifications. In our empirical problem, we adopt a GB

procedure with decision trees as weak classifiers, following the approach outlined in

Friedman (2001). One reason for using decision trees in our empirical context is that, by

construction, they allow for interaction among explanatory variables (see Schiltz et al.,

2018 for a discussion on this). A decision tree splits the (multidimensional) space of the

explanatory variables into a set of nonoverlapping regions. Specifically, a tree can be

expressed as follows:

T xit;Hð Þ ¼
XJ

j¼1

cj1 xit 2 Rj

� �
; (3)

where R1; . . . ;RJ represent a partition of the covariates space, 1 �ð Þ is an indicator function,

H ¼ cj;Rj
� �J

j¼1
are the unknown parameters. Hence, at each interaction m ¼ 1; . . . ;M, the

boosting algorithm applied to decision trees estimates the unknown parameters, H, by solv-

ing the following equation:
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min
Hm

XN
i¼1

XT

t¼1

L yit; fm�1 xitð Þ þ T xit;Hmð Þ
� �

; (4)

where L �ð Þ is a loss function and fm xitð Þ is the so-called boosted tree model, or tree

ensemble:

fm xitð Þ ¼
Xm
‘¼1

T xit;H‘ð Þ: (5)

The minimization Equation (4) with boosted tree model in Equation (5) can be solved

by fast approximate algorithms. In particular, we apply the so-called GB procedure that

achieves minimization by calculating recursively the negative gradient of the loss function,

in a “steepest-descent” type algorithm. In our application, we adopt the difference between

the outcome and the estimated probability of default as loss function and the Area Under

the Curve as stopping criterion. The implementation of the gradient tree boosting algorithm

presented above requires fixing a set of meta-parameters relative to the number of regions,

J, in Equation (3), and the number of trees, M, in Equation (4). The selection procedure for

such meta-parameters is briefly discussed in the Supplementary Appendix. We also refer to

Hastie, Tibshirani, and Friedman (2009) for a detailed presentation of GB.

3.1.3 Extreme GB.

Our third specification is the XGB model proposed by Chen and Guestrin (2016). Extreme

GB has gained great popularity in the recent ML literature, proving to be one of the most

accurate algorithms for classification and forecasting purposes.

Chen and Guestrin (2016) extend the GB model in Equation (4) to include a regulariza-

tion term:

min
hm

XN
i¼1

XT

t¼1

l yit; fm�1 xitð Þ þ T xit; hmð Þ
� �

þ dJ þ 1

2
g
XJ

j¼1

cj
2

0
@

1
A; (6)

where d > 0 is a l1-penalty on the number of leaves of a tree J as in Equation (3), and g > 0

is a l2-penalty on the leaf weights cj, for j ¼ 1; . . . ; J. In addition, their algorithm departs

from an exact greedy algorithm for tree learning in favor of an approximate algorithm that

has the advantage of being scalable with big data, as it is the case in this application. The

approximate algorithm has two main characteristics. The first is that only percentiles of the

feature variables are considered as splitting points, rather than considering all possible val-

ues as in the exact case. The second feature of the XGB model is that it handles missing val-

ues by assigning them to a tree node, with a data-driven choice of the direction. A detailed

discussion of the algorithm and of the regularization term in Equation (6) is provided in

Chen and Guestrin (2016).

3.2 Model Performance

We compute a number of out-of-sample metrics in order to compare the performance of

the above algorithms. First, we calculate the Receiver Operating Characteristic (ROC) and

corresponding Area Under the ROC Curve (AUC), which are the standard tools for
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measuring binary classification performance.7 For a given classifier, the AUC values range be-

tween 0.5, for a classifier performing as well as a random guess, and 1.0 for the perfect classi-

fier. Although the AUC is widely popular among practitioners for its straightforward

interpretation, Hand (2009) states that it has the disadvantage of evaluating a classifier using

a weight function that depends on the classifier itself, thus providing an incoherent measure

of comparison. Accordingly, Hand (2009) proposes an alternative measure to the AUC, the

H-measure, which uses a misclassification cost that is fixed and independent of the classifier.

Given the highly unbalanced nature of our data, we follow Hand and Anagnostopoulos

(2014) and in computing the H-measure we assign a cost to misclassifying a defaulted loan

larger than the cost of incorrectly classifying a nondefaulted loan. This is achieved by setting

the severity ratio (i.e., the severity of misclassifying a nondefaulted loan relative to the cost of

misclassifying a defaulted loan) equal to the reciprocal of the relative class frequencies.

Finally, for each algorithm, we compute two additional measures of goodness-of-fit alterna-

tive to the AUC and the H-measure. The first is the Brier’s score (BS) by Brier (1950) which

corresponds to the average squared error of predicted probabilities and observed values,

BS ¼ 1=N
PN

i¼1 yi � pið Þ2, where yi is the observed default occurrence and pi is the estimated

probability of default for the ith loan. The BS ranges between 0 and 1, with smaller values

pointing at better classifier performance. The second measure is the Logarithmic score (LS)

defined as follows: LS ¼
PN

i¼1 yilog pið Þþ
�

1� yið Þ log 1� pið ÞÞ. Larger values of the LS stat-

istic indicate better predictive performance of the classifier.

Given that we estimate the models for each NUTS2 region in our sample, we can exploit

our multiple region-specific estimates to perform a statistical comparison between the out-

of-sample performance of the different algorithms. To this end, we first apply the Friedman

and the Iman–Davenport test statistics that evaluate whether there exists any significant dif-

ference in the ranking obtained by comparing a performance metric across models

(Friedman, 1940; Iman and Davenport, 1980). If the null hypothesis of equivalence of the

rankings of a performance metric across algorithms is rejected in the above tests, then it is

possible to compute a pairwise comparison of the ranking of the two algorithms using a

post hoc test, as outlined in Garcia and Herrera (2008). The above tests carry out a statistic-

al comparison of overall performance measured across different methods, but do not allow

to compare measures calculated at loan-level, such as the BS and LS. Hence, for testing the

difference between any two scores, we apply the Diebold and Mariano (1995) (DM) statis-

tic. Specifically, we apply the Lahiri and Yang (2013) modification of the DM statistic to

allow the comparison of scoring measures associated to binary outcomes. The fact that we

estimate a model for each NUTS2 regions separately allows us to partly account for the het-

erogeneity present in the data. We refer to Timmermann and Zhu (2019) for a recent dis-

cussion on how to account for unobserved heterogeneity using a common factor setup

while testing for equal predictive accuracy.

3.3 Interpretable Machine Learning

ML methods have been successful in learning complex relations and predicting future real-

izations in several applications. However, the difficulty in interpreting what a model has

7 Despite being a powerful tool to compare model performance, we do not report the ROC curves as

we would have to report one plot for each NUTS2 region. We rely on more compact ways to plot

the results, which are in line with the ROC curves.
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learned has often undermined the credibility of the analysis. The recent work on IML, or

Explainable Artificial Intelligence, is an attempt to provide a set of tools to interpret the

outcome of ML algorithms and identify the nonlinear interactions present in the data. We

refer to Ribeiro, Singh, and Guestrin (2016), Murdoch et al. (2019), and Zhao and Hastie

(2019) among others, for more details on IML. One important tool for interpreting results

is the calculation of the variable importance (for variable importance in boosting models,

see Hastie, Tibshirani, and Friedman, 2009, p. 356). In the case of GB and XGB, variable

importance is calculated as the reduction in the squared prediction error as a result of the

split in the tree and attributed to the splitting variable. We repeat this operation across all

nodes in the tree and sum it across the M trees. The resulting quantity is then standardized

on a percentage scale and can be interpreted as the relative importance of a variable in pre-

dicting default.

To explore the relation between the dependent variable and the explanatory variables,

we also produce the so-called Accumulated Local Effect (ALE) plots (Apley, 2016). The

ALE averages the prediction changes calculated on small partitions of the variable of inter-

est and then accumulates them over all partitions. If the function is differential, the local ef-

fect is computed as the first derivative with respect to the variable of interest over the

partition. The uncentered ALE of variable j is computed as follows:

f̂
�
j;ALE xð Þ ¼

Xkj xð Þ

k¼1

1

nj kð Þ
X

i:xi;j2Nj kð Þ
f zk;j; xi; jð Þ � f zk�1;j; xi; jð Þ
h i

(7)

for each x 2 z0;j; zK;jð Þ, where nj kð Þ is the number of training observations in the kth parti-

tion Nj kð Þ, such that
PK

k¼1 nj kð Þ ¼ N, for k ¼ 1; 2; . . . ;K, given a fixed number of parti-

tions K. The term within square brackets is the change in predicted output in the kth

partition, where all the variables other than the variable of interest xi; j are set to their sam-

ple average within the kth partition. Equation (7) is then centered such that the centered

ALE estimator has a zero mean effect:

f̂ j;ALE xð Þ ¼ f̂
�
j;ALE xð ÞÞ� 1

n

XN
i¼1

f̂
�
j;ALE xi;jð ÞÞ: (8)

ALE plots, obtained from Equation (8), serve as alternative to marginal or partial de-

pendence plots (Friedman, 2001), with the advantage of achieving a reliable representation

of the effect even in the presence of correlated explanatory variables. An advantage of ALE

in the context of a big data application is that they are computationally less intensive

related to alternative methods, such as the SHapley Additive exPlanation method proposed

by Lundberg and Lee (2017). We refer to Apley (2016) for a detailed presentation of ALE

plots.

4 Results

4.1 Exploratory Data Analysis

Figure 1 displays a map of the default rate by NUTS2. It is interesting to observe that

regions belonging to the same country have similar default rates, indicating the presence of

strong country-level differences, with Portugal, Spain, Italy, and Ireland showing the high-

est default rates. Significant intracountry heterogeneity is also present. For example, regions
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from the East coast of Spain show higher default rates relative to other areas; the default

rate for the Valencian Community is 5.61%, 246 basis point higher than that of Northern

regions. Similarly, regions in the Center and South of Italy show higher default rates than

regions from the North. The range of intracountry variation can be very large for certain

countries; for example, in Italy, the default rate ranges from 0.92% in South Tyrol to

11.42% in Abruzzo.

Figure 2 reports the median current interest rate and median current LTV over time:

each line represents a NUTS2 region with the color varying depending on the associated

country. The interest rate has steadily decreased in all countries, whereas LTV has remained

stable, except for the Netherlands where it dropped by approximately 20 percentage points.

Both variables show strong across country heterogeneity: the median interest rates are

clearly clustered by country, indicating the presence of moderate within-country variability.

On the contrary, the LTV observations are much more disperse and suggest that the relative

size of the loan can vary largely across regions, especially for Spain and Portugal.

Figure 3 shows the plot of default rate calculated in the years 2013–2018 against the

2008–2013 percentage change in GDP and unemployment, at regional level. It is interesting

to observe that relatively higher default rates are associated to negative GDP growth and

high unemployment growth. We also note that Portugal, Spain, Italy, and Ireland, having

the highest default rates, are also the countries that suffered the sharpest decline in output

and employment immediately after the onset of the 2008 Great Recession, indicating that

these countries are still experiencing the negative consequences of the economic crisis.

4.2 Model Comparison

In this section, we use the penalized logistic regression, GB and XGB to analyze loan-level

data from ED. For each NUTS2 region, we partition our data into training, validation, and

test sets, and take 60% of the distinct loans as the training set, 20% for validation pur-

poses, and 20% as a test set. The sampling procedure is stratified in order to account for

0

2

16
Default Rate (%)

Figure 1 Default rate by NUTS2 (colors in logarithmic scale).
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homogeneous proportions of defaulted loans in the three sets. As reported in Table 1, de-

fault occurrences are rare and the dataset results highly unbalanced. To accurately account

for the probability of the rare default event, we balance the classes either under-sampling

the most frequent classes or oversampling the less frequent ones.8 The final probabilities

are adjusted to the original sample via a monotonic transformation, which does not alter

ordering and thus not affecting AUC metrics (more details on class balancing by King and

Zeng, 2001). We report the details of the parameter tuning for each model in the

Supplementary Appendix.9 Figure 4 reports the box-plot of the AUC and H-measure for

the three models by country. Both AUC and H-measure indicate that boosting models

Median Interest Rate Median LTV

2014 2015 2016 2017 2018 2014 2015 2016 2017 2018

40
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Figure 2 Median interest rate (a) and LTV (b) by NUTS2 regions (colors by country).
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Figure 3 Default rate by NUTS2 against GDP (a) and unemployment (b) growth over 2008–2013 (colors

by country).

8 A balancing alternative to standard under/over-sampling is the Synthetic Minority Over-sampling

Technique proposed by Chawla et al. (2002).

9 Approximately 9000 models were trained to obtain the results presented in this section. Further

details on the models and the parameter tuning are provided in the Supplementary Appendix avail-

able on the corresponding author’s personal website.
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perform better than the logistic for all countries. When comparing XGB against GB, the H-

measure is slightly in favor of the XGB.

To better understand for which regions boosting models perform better relative to the

conventional logistic regression, Figure 5 reports a map with the H-measure of the GB and

XGB relative to the H-measure of the logistic regression by NUTS2 regions: in blue are

denoted the regions where the boosting model outperforms the logistic regression, in gray

(ratio of one) the ones where the models achieve the same performance, while in red the

regions where the logistic regression performs best. The darker the color the larger the dif-

ference relative to the logistic. Overall, we observe a strong prevalence of values larger than

one, indicating a better performance of boosting models. GB and XGB perform very simi-

larly, with slightly higher values of the H-measure for the latter. The maps show strong

country-level effects and clear within-country heterogeneity, suggesting that the model per-

formance can vary largely both across and within each country. Estimating a model for

each NUTS2 region allows to capture such regional differences that would not otherwise be

observed in country-level models. Ireland, Italy, Spain, Portugal, and the Netherlands pre-

sent strong evidence of the better performance of the boosting models over the logistic: the

best performance is obtained in two Italian regions, Aosta Valley and Sicily, where the

boosting models outperform the logistic benchmark by a ratio of 3. In Belgium and France,

the difference with the logistic regression is less evident although XGB has better perform-

ance in the large majority of Belgian and French regions.

The H-measure can be used in statistical testing for the difference in the out-of-sample

performance of the three models. Specifically, we rank the three models on the basis of the

H-measure in each NUTS2 region and obtain the average ranking of each model. Hence,

the difference in ranking of the three models can be tested overall by using the Friedman

and Iman–Davenport tests, or pairwise using the post hoc test (Garcı́a et al., 2010). The

first column of Table 4 reports the average ranking of the three models across regions, and

points at XGB as attaining the best performance. Both the Friedman and Iman–Davenport

test statistics reject the null hypothesis of equivalence between the three rankings at the 5%

level. Interestingly, the post hoc test indicates that while both boosting models outperform

the logistic, there is no significant difference between the rankings of GB and XGB.

PT
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Figure 4 Box plots of the AUC (a) and H-measure (b) by country and model.
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The BS and LS can be used to compare the out-of-sample forecasting performance based

on the Lahiri and Yang (2013) extension of the Diebold and Mariano (1995) test described

in Section 3. Table 5 reports the frequency of rejection of the null hypothesis of equal fore-

cast accuracy of the models when they are compared pairwise. The confidence level is 5%

and the p-values are corrected with the Benjamini and Hochberg (1995) correction for mul-

tiple testing. Boosting models perform significantly better than the logistic in the majority

of the cases, with the XGB outperforming the logistic in 90% of the regions based on the

LS. Although the BS does not show strong differences between the GB and the XGB, with

the latter being preferred to the former only in 59% of the cases, the LS tends to favor the

XGB, which is the preferred model in 90% of the cases.

4.3 Extended Model Comparison

The ML literature includes a wide range of models that could potentially provide higher

prediction accuracy relative to the tree-based models considered so far (see D’Hondt et al.,

Gradient Boosting XGBoost

1 3

H−measure
 relative to Logistic

Figure 5 Performance metrics: H-measure of GB (a) and XGB (b) related to logistic regression by

NUTS2 regions. A value of one (in gray) indicates equivalent performance of the models, values larger

than one (blue scale) indicate that boosting models outperform the logistic, while values smaller than

one (red scale) indicate that the logistic outperforms boosting models. The darker the color, the larger

is the distance from one.

Table 4 Comparison of classifiers using Friedman and Iman–Davenport tests on the H-measure

rankings under the null hypothesis of ranking equivalence (right) and p-values from post hoc

test (left)

Model Average

ranking

Pair-wise post hoc test Friedman and Iman–Davenport tests

Logistic GB XGB Test statistics Value p-value

Logistic 2.78 � 0.00 0.00 Friedman 96.646 0.00

GB 1.82 0.00 � 0.54 Iman–Davenport 96.287 0.00

XGB 1.40 0.00 0.54 �
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2019 and Gu, Kelly, and Xiu, 2020 among others). To evaluate the robustness of our

results, we consider three additional ML models, namely, a Naı̈ve Bayes (NB) classifier, a

RF, and a NN (we refer to Hastie, Tibshirani, and Friedman, 2009 for a detailed discussion

of the models). In addition, we also extend the Logistic model to include nonlinearities by

adding the squares of the numerical variables as additional regressors. Our comparison

thus includes seven alternative forecasting models: XGB, GB, RF, Penalized Logistic with

Power Series (LG-PS), Penalized Logistic (LG), NN, and NB. Although the set of models

considered is not exhaustive, it is representative of various ML techniques that have been

successfully applied in economics and finance.

Even in this extended comparison, XGB and GB achieve the best performance regardless

of the metric considered, and are closely followed by RF. Incorporating nonlinearities to

the Logistic model allows the LG-PS to outperform the linear LG, suggesting that capturing

nonlinear effects is a key element to achieve higher forecast accuracy. Besides, the perform-

ances of NN and NB are quite poor, with the former being associated to a large variability

of its performance across regions. Using the Friedman and Iman–Davenport test, we reject

the null hypothesis of equivalence of the ranking among all models at the 5% level. Based

on a pairwise comparison between model rankings at the 5% significance level, XGB out-

performs all other models, except for GB. Although we notice the added value of power ser-

ies to capture nonlinearities, there is no significant difference among LG and LG-PS

rankings. Overall, the analysis of a larger sets of algorithms confirms the results already

presented above. First, boosting models, in particular XGB, outperform the other methods

in terms of accuracy of the default forecast. Second, the inclusion of nonlinear effects deliv-

ers a more accurate forecast. Figures and tables about the extended comparison are avail-

able in the Supplementary Appendix. In the next section, we focus on the two best

performing models (i.e., GB and XGB) to investigate the most important drivers at explain-

ing the occurrence of a default.

4.4 Default Drivers

The previous results indicate that the ML models have a significant advantage over the lo-

gistic regression in out-of-sample forecasts. It is now interesting to understand which fac-

tors are driving the performance of these models and examine existing differences across

countries. Figure 6 reports the box plot of the variable importance across regions for the

two estimated boosting models. As expected, the variable importance for the models is

quite similar for the two models, with a correlation coefficient equal to 0.75. Overall, our

results point at loan-related variables, namely, current LTV and current interest rate, as the

most relevant in predicting the occurrence of a default: both variables have been identified

Table 5 Percentage of rejections of the null hypothesis of equivalence in forecast performance

against the alternative that model A outperforms model B based on the BS and LS

Score GB � LG XGB � LG XGB � GB

BS 63.54% 68.75% 59.38%

LC 63.54% 90.62% 89.58%

The models A and B are the Penalized Logistic (LG), GB, and XGB. The confidence level is 5% and the p-val-

ues are corrected with the Benjamini and Hochberg (1995) correction for multiple testing.
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in the literature as close proxies to the loan’s riskiness and their movement can be linked to

the default decision (e.g., Elul et al., 2010; Fitzpatrick and Mues, 2016). In addition, the

importance of the interest rate seems greater in countries such as Spain, France, Italy, and

Portugal where there is a prevalence of floating rate mortgages as shown in Table 2. This

result is consistent with the findings of Fuster and Willen (2017) of a relationship between

the changes in the interest rate for adjustable-rate mortgages and default rates in the United

States.

The geographical differences in variable importance can be better appreciated by look-

ing at Figure 9, which shows the most important variable and group for each region, where

groups are defined in Table 3. Looking at the most important variable group, we observe

the large prevalence of loan-related variables for all countries. Among these, the bottom

graph indicates current interest rate as the most important determinant of default for most

regions. Regional macrovariables are also important in Ireland, the Spanish Mediterranean

coastline, and the central part of Italy, which are the regions that were particularly affected

by the 2008 economic and financial crisis.

Variables containing borrower-related information or loan’s characteristics other than

current LTV and interest rate are rarely selected among the most relevant ones. For in-

stance, the income of the primary borrower is among the less important variables, except

for the Netherlands, where is the second most important regressor in predicting default.

Similar conclusions apply to the amount of credit granted or to the borrower’s employment

status. Although this might seem counterintuitive, notice that the loan- and borrower-

specific variables, other than current LTV and interest rate, are measured at the time of the

origination of the loan. Looking at the importance of regional variables, while heteroge-

neous across and within countries, we observe that local economic conditions do matter in

BE ES FR IE IT NL PT
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Figure 6 Box plot of the variable importance by country, estimated by GB and XGB.
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countries, such as Spain, Ireland, Portugal, and Italy. The box plots reported in Figure 6

provide also an idea of the variability of the variable importance within a country: a high

standard deviation for a given country indicates that the variable importance is not homo-

geneous, but rather varies largely across regions. We observe a within country standard de-

viation particularly high for many variables in Spain, France, Italy, and Portugal, thus

supporting the choice of estimating the model at the regional level rather than producing

one single model for each country.

Figure 7 reports the ALE plots for the two most relevant variables, namely, the current

LTV (top panel) and the current interest rate (bottom panel). The y-axis reports the ALE

evaluated at a specific value of the regressor, appearing on the x-axis, and keeping all other

variables constant. As detailed in Section 3.3, the ALE plots are centered, meaning that a

positive value of ALE indicates a rise in the probability of default, and vice versa. The solid

line is the average ALE by country and the confidence bands are obtained as the standard

deviation from the mean of the ALE estimates in the NUTS2 region.10 Both current LTV
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Figure 7 ALE for current LTV (a) and interest rate (b) by country for the XGB estimates. The bands rep-

resent the standard deviation of the ALE estimates in the NUTS2 regions of a country.

10 We exclude Ireland from the ALE plots, since it would consist of only two NUTS2 regions.
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and interest rate are positively related to the ALE, indicating that higher values of LTV or

interest rate are associated with a higher probability of default, but not always approxi-

mately linear as we would assume in a logistic regression model. For instance, the ALE of

the LTV in Spain, the Netherlands, and Portugal is quite flat for low LTV values, while it

spikes up for LTV values larger than 75. Similarly, the ALE of the interest rate in Belgium

and France starts quite flat, grows rapidly for intermediate values of interest rate, and then

flattens again. Comparable nonlinear effect have been found in the literature (e.g.,

Fitzpatrick and Mues, 2016; Sirignano, Sadhwani, and Giesecke, 2018), and support the

use of ML methods rather than standard linear approximations. The ALE plots allow us to

explore the across-country differences of the effect of one variable on the probability of de-

fault. Focusing on the current LTV, we see that in Italy the ALE is positive, thus indicating

a rise in the probability of default, for values of LTV larger than 40%, whereas in other

countries, the ALE becomes positive only for higher LTV values. For the interest rate, we

observe that the ALE of Spain, Italy, and Portugal is positive for values of the interest rate

larger than 1%, while in Belgium, France, and the Netherlands it becomes positive only for

an interest rate larger than 4%.

We now turn to investigate more in details the role of local economic conditions on loan

default. This is very important, given that region-specific variables might be seen as proxies

for shocks in local economic conditions that are latent in our dataset. Figure 8 shows the

average variable importance of all region-specific variables against the regional GDP

growth observed precrisis (2004–2008) and postcrisis periods (2008–2013). One interesting

finding is that regions that experienced a sharp drop in output after the onset of the Great

Recession are those for which the local economic conditions are the most important in

explaining default. This result points at income shocks as a possible explanation of default,

where borrowers, for example, lose their jobs and are not able to repay their mortgage any-

more. This is somewhat expected, given the nonrecourse nature of mortgages in European

countries that reduce the strategic motive for defaulting. Interestingly, Gerardi et al. (2018)

find for U.S. data that the “can’t pay” motive plays a larger role relative to “won’t pay.”

Our results seem to support these results also for European countries, where income shocks

occurring during the Great Recession are likely to have made mortgages not affordable in

several regions.

Figure 10 reports the scatter plots of the current LTV and interest rate against the associ-

ated ALE, with the color of the dots representing the NUTS2 GDP (left panel) and un-

employment (right panel) growth in the period 2008–2013. Pooling all countries together,

we observe that the degree of nonlinearity of current LTV and interest rate, already noted

in Figure 7, varies largely across NUTS regions and strongly interacts with local economic

variables. Regions that suffered a deeper downturn of GDP after the 2008 financial crisis,

present a pronounced nonlinear effect with a sharp rise in ALE for high values of current

LTV and interest rate. Looking at the interaction with unemployment rate, there is an even

clearer distinction between regions that experienced consistent growth in unemployment,

where current LTV and current interest rate have large and nonlinear effects on the prob-

ability of default, and regions with low unemployment growth, where the ALE of current

LTV and current interest rate are mostly flat. Hence, these results indicate that the local

economic conditions do not only have a direct impact on loan default, but, most important-

ly, they have an indirect effect by shaping the impact of loan-specific variables on loan de-

fault. ALE plots provide supporting evidence of the regional heterogeneity already
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able (bottom) by region from GB (left) and XGB (right) estimations.
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highlighted in the previous paragraphs and show the importance of allowing for nonlinear

interactions among variables when predicting default, being in line with the better perform-

ance of ML models against the linear benchmark.

5 Concluding Remarks

A better understanding of the default drivers is of primary importance for policymakers in

order to reduce the societal costs associated with a default and avoid the inefficient alloca-

tion of resources. We study the ED dataset that provides information on millions of individ-

ual residential mortgages and on their borrowers across seven European countries, namely,

Belgium, France, Ireland, Italy, the Netherlands, Portugal, and Spain. The information is

reported at the regional level and we add local macroeconomic variables as additional con-

trols. We predict the default occurrence at the NUTS2 level using different methodologies,

including the penalized logistic regression, tree-based ML techniques, and deep learning

models.

Our results show that the XGB attains significantly higher out-of-sample performance

in terms of prediction accuracy. The most important variables to predict the default occur-

rence are current interest rate and LTV, together with local economic conditions.

Conversely, other loan and borrower-specific variables (e.g., the income of the borrower or

its employment status) are less important, even though these features are of primary import-

ance when evaluating the possibility of granting the loan. We show the nonlinear effects of

the most important variables on predicting default, which is in line with the better perform-

ance of ML methods with respect to the linear logistic benchmark. Our results highlight the

presence of across- and within-country heterogeneity in variable importance. In particular,

Figure 10 Scatter plot of the current LTV (top) and current interest rate (bottom) and their ALE, with the

color of the dot representing the NUTS2 GDP growth 2008–2013 (left) and NUTS2 unemployment rate

growth (right) for the XGB estimates.
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local economic conditions are of primary importance at predicting default in regions that

suffered the largest macroeconomic shocks after the 2008 financial crisis, possibly indicat-

ing that such variables serve as proxy for shocks to borrower’s income, which are unob-

served in our dataset.

Overall, in Europe, the main trigger for a residential loan default is the borrower’s in-

ability to pay due to income shocks, such as a job loss, or due to an adverse change in eco-

nomic conditions, such as an increase in interest rates that makes servicing the loan more

difficult. We also show the presence of country fixed effects, but also of some intracountry

variability in terms of forecast performance and of variable importance. This suggests that

regionally tailored risk assessment and policies could potentially achieve more accurate de-

fault forecasts and reduce the inefficient allocation of resources to uncreditworthy bor-

rowers. Risk assessment procedures could largely benefit from the application of ML

methods, financial institutions could decide whether to grant a loan more conscious of the

risk associated to each borrower type and follow more accurately the risk profile evolution

of the loan over time. Drawing from the interpretable ML literature, our analysis shows

how to identify the more relevant default drivers and explore the nature of their effects, eas-

ing the communication of the analysis to a nontechnical audience.

There are some open questions left from our analysis. One relates to the role played by

the lending policies of the different financial institutions in determining the loan default

across regions. In several European countries, regional saving banks are still major players

which have the effect of making the local economy dependent to the lending practices of

these banks. Future research might investigate the presence of bank-specific effects and

exploring their impact on default behavior at the regional level. A second question could in-

vestigate the validity of such loan-level analysis on credit data other than residential mort-

gages. The ED is a rich source of information about European credit markets and provides

also data about car leasing, SME loans, consumer finance, and credit card lines. A better

understanding of the default behavior and of the regional differences in these other credit

markets could help policy makers to undertake more effective risk-mitigating actions.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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