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Abstract 
Is inequality good or bad for innovation? I study an endogenous growth model with heterogeneous 

agents; due to credit frictions, inequalities in wealth lead to misallocation of talent. A more unequal 

reward scheme incentivises innovation in any given period, but it leads to a more unequal  distribution 

of opportunities that may exacerbate the misallocation of talent in the next period.  Empirically, I show 

that the flow of patents in a US state is negatively correlated with inequality of opportunity, but 

positively with inequality of effort; and that the elimination of state death taxes, as a proxy for an 

increase in the financial incentives towards risky activities, had a positive short-term but a negative long-

term effect on the growth rate of patents.   
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1 Introduction

Inequality has been rising in many wealthy countries in recent decades. For example,

the average income of the richest 10% is almost ten times that of the poorest 10% across

OECD countries, up from seven times a quarter of a century ago (Keeley, 2015); in the

US, the share of all income accruing to the top 1% increased by 11 percentage points

from 1979 to 2017 (Saez, 2019). In the years since the financial crisis, concerns about

this increase have entered the political and economic mainstream, sparking a new wave

of economic literature on the following question: is inequality good or bad for growth?

Opinions are still very much divided, and many possible mechanisms have been proposed.

For example, it has been argued that inequality may negatively impact growth if, in the

presence of credit market imperfections, it causes misallocation of talent (e.g. Galor and

Zeira, 1993, Banerjee and Newman, 1993, Krueger, 2012); conversely, it may enhance

growth by providing the financial incentives for agents to embark on risky activities, exert

unobservable effort, and work hard (e.g. Mirrlees, 1971, Okun, 1975, Mankiw, 2013).

In this paper, I contribute to this open debate in three ways. First, by studying the

relationship between inequality and innovation, one of the major drivers of economic

growth (Barro and Sala-I-Martin, 1995). Second, by dividing total inequality into two

components, which may affect innovation in different ways. Following Roemer (1993,

1998), I consider total inequality as a composite measure of inequality of opportunity,

i.e. inequality stemming from circumstances beyond individual responsibility (like socio-

economic background), and inequality of effort, i.e. inequality that results from causes

that are within their control (like unequal exerted effort). Third, by taking a dynamic

perspective: the interplay between both types of inequality and innovation not only

contributes to observed differences in outcomes in any given period, but these differences

are also likely to be transmitted across generations, thus shaping the future playing field.

Anecdotally, there seems to be no clear relationship between total inequality and in-

novation, but a negative correlation between inequality of opportunity and innovation.

The first two panels of Figure 1, for example, map the average per capita number of

patents filed in a given US county and the corresponding income Gini index, respectively.

By comparing the two panels, one can see that there exist groups of counties that rank

high on one index and low in the other, and groups that maintain the same relative posi-

tion.1 Consistently, Figure 1c shows a near-zero correlation between these two measures

for metropolitan counties. Conversely, Figure 2 presents two measures of inequality of

opportunity at the US county level: panel 2a maps the Opportunity Index, an annual re-

port developed by Opportunity Nation and Child Trends (2019) that summarises data on

1For example, most counties in the Great Lakes regions have a relatively high number of patents and
rather low inequality, whereas in the West South Central the opposite happens. Counties in Florida
and the San Francisco Bay area tend to score high on both patents and inequality, whereas those in the
middle of the West North Central division score low on both statistics.
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education, health, community, and economy to show what “opportunity looks like in the

United States”, whereas panel 2b maps a proxy for intergenerational income mobility, a

concept closely related to inequality of opportunity (Brunori et al., 2013). By comparing

these with the number of patents in Figure 1a, there seems to be an overlap: relatively

innovative counties tend to also score high on opportunities and social mobility, whereas

counties with low mobility and opportunities also tend to have a low number of patents

per capita.2 This is confirmed by the last two panels of Figure 2, which depict a clear

positive relationship between these two measures and the number of patents per capita

for metropolitan counties. Armed with this anecdotal evidence, this paper investigates

the following questions: What is the relationship between different types of inequality

and innovation? To what extent is there an optimal degree of inequality for innovation?

Can countries be both innovative and have equal societies?

(a) Patents (b) Gini Coefficient

(c) Inequality and Innovation

Figure 1: Patents and Total Inequality by US Counties

Notes. The fist panel reports quintiles of the average number of utility patents (per hundred thousand
residents) granted between 2000 and 2010 by the United States Patent and Trademark Office to a patent
inventor resident in the county (data elaborated from United States Census Bureau, 2016a, United
States Patent and Trademark Office, 2019). The second panel reports quintiles of the 2000’s income Gini
index (United States Census Bureau, 2016b). For both panels, darker colours represent relatively higher
indexes. The third panel reports the scatter-plot of these two measures for metropolitan counties only
(as defined by Ingram and Franco, 2014).

2For example, counties in the New England, Middle Atlantic, and Pacific divisions score high on all
indicators, whereas counties in the South Central, the South Mountain, and part of the West North
Central divisions tend to score relatively low.
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(a) Opportunity Index (b) Social Mobility

(c) Opportunities and Innovation (d) Social Mobility and Innovation

Figure 2: Patents and Opportunities by US Counties

Notes. The fist panel reports quintiles of the 2011 - 2018 average Opportunity Index (data elaborated
from Opportunity Nation and Child Trends, 2019). The second panel reports quintiles of the fraction
of children with parents in the 25th percentile of income who grew up in a given county and then in
adulthood had an individual income in the top 20% in adulthood (Chetty et al., 2018). Darker colours
represent higher indexes. The last two panels report scatter-plots of the average Opportunity Index and
the measure of social mobility, respectively, with the average number of utility patents (per hundred
thousand residents) granted between 2000 and 2010 to a patent inventor resident in the county (data
elaborated from United States Census Bureau, 2016a, United States Patent and Trademark Office, 2019),
considering metropolitan counties only (as defined by Ingram and Franco, 2014).

To investigate these questions, I first construct a theoretical model with three compo-

nents: (i) Schumpeterian innovations, (ii) heterogeneous agents, and (iii) credit frictions.

The foundation of the model is a canonical Schumpeterian framework, where growth is

the result of a random sequence of quality-improving innovations. The novelty is that

agents are assumed to be heterogeneous in unobservable talent and observable wealth,

and must choose between working for a wage or becoming inventors. Incentivised by the

prospect of monopoly rents, inventors exert effort to create better machines; workers are

instead employed by a representative firm. If capital markets worked perfectly, only tal-

ented agents would become inventors. However, becoming an inventor requires an initial

investment and, since talent is unobservable by the lenders, collateral is used to screen

borrowers. As a consequence, inequalities in wealth translate into unequal opportunities

that lead to a misallocation of talent: poor talented agents must become workers, and

are thus displaced by relatively wealthier but untalented inventors.
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On the one hand, I show that a more equal distribution of observable wealth is always

associated with an increase in the number of talented innovators, as long as the economy is

relatively wealthy. Indeed, this translates into a more equal distribution of opportunities,

a more widespread access to credit, and less misallocation of talent. Conversely, a more

unequal wealth distribution, and thus more inequality of opportunity, may be beneficial

for innovation when the economy is poor, since it allows at least some agents to overcome

setup costs that are large in relation to average wealth. On the other hand, I show that

the number of innovations in any given period positively depends on the relative reward

to a successful inventor. Indeed, a more unequal reward scheme (more inequality of effort)

increases the financial incentives for agents to embark on the risky innovation process and

exert effort.

I then extend the model dynamically, by assuming that old agents are periodically

replaced by a new generation, to whom they bequeath wealth. As a consequence, the

distribution of opportunities, the evolution of the quality of the machines, and the rel-

ative rewards to different occupations become endogenous. The relative profits of the

innovators, for example, partly depend on the quality of the machines, whose evolution,

in turn, depends on the occupational choices of the agents; these are shaped by the inher-

ited wealth distribution, and thus by the rewards to different occupations in the previous

generation. In such a setting, initial conditions, like the initial wealth distribution or the

initial quality of the machines, have long-run effects on the growth prospect of the econ-

omy. For example, I show that poor and/or technologically disadvantaged countries may

be stuck in a no innovation trap. Moreover, an intertemporal trade-off emerges: a more

unequal reward scheme incentivises innovation in any given period, but in the presence of

bequests this translates into a more unequal playing field for the next generation, which

may hamper innovation in the future.

In the second part of the paper, I empirically test the main implications of the theoret-

ical model. First, I investigate the relationship between innovation and various measures

of inequality at the US state level. I measure innovation using data on patents and ci-

tations from the United States Patent and Trademark Office, going back to 1976. I use

labour income data since 1968 from the Panel Study of Income Dynamics to calculate

the total inequality rate at the state level. I employ a widely-used technique in the in-

equality of opportunity literature to separate total inequality in each state and year into

inequality between socio-economic groups (classified by race and parental education) and

inequality within groups. The first component represents a proxy for inequality resulting

from circumstances beyond the individual’s control, and is thus used in the social sciences

as a lower bound for inequality of opportunity; by controlling for these circumstances, the

latter becomes a proxy for inequality that arises from an individual’s conscious choices,

and is thus used in the social sciences as an upper bound for inequality of effort. By re-

gressing innovation on these lagged measures of inequality, I find that, whereas innovation
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is uncorrelated with total inequality, this is the result of a negative significant correlation

with inequality of opportunity and a positive significant correlation with inequality of

effort.

Second, I provide some indicative evidence of the dynamic trade-off highlighted above.

I exploit the wide variation in the chronology of elimination of US state estate, inheritance,

and gift taxes as a proxy for state-level changes in the political attitudes to economic

inequality. In particular, and consistently with the arguments often put forward by

critics and supporters of state “death” taxes, I consider their elimination as indicative

of a short-term increase in the incentives to undertake risky activities (i.e. an increase in

inequality of effort) but a long-term decrease in equality of opportunity. I use an event

study to compare the growth rates in the flow number of utility patents granted in a given

state with the annual growth rate at the US level. I find that most states experienced a

positive abnormal growth rate in the five years immediately following the elimination of

the taxes, but a negative cumulative one twenty years down the line.

The remainder of this paper is organised as follows. Section 2 reviews previous lit-

erature on the relationship between inequality and innovation. Section 3 presents the

theoretical model. Section 4 describe its static equilibrium, a series of implications, and

the dynamics. Section 5 outlines the empirical analyses. Finally, Section 6 concludes.

2 Previous Literature

This paper bridges the Schumpeterian growth theory literature pioneered by Aghion and

Howitt (1992) with the literature on the effect of misallocation on growth (see Murphy

et al., 1989, Banerjee and Newman, 1993, Galor and Zeira, 1993, for some seminal con-

tributions). More broadly, this paper is also related to the literature on the consequences

of occupational choices for inequality (Kambourov and Manovskii, 2009), on innovation

incentives (e.g. Holmström, 1989, Aghion and Tirole, 1994, Manso, 2011, Spiganti, forth-

coming), and on occupational persistence across generations (e.g. Caselli and Gennaioli,

2013, Lo Bello and Morchio, 2016).

More specifically, this paper belongs to a growing literature on the relationship be-

tween inequality and innovation.3 Recently, Aghion et al. (2019) and Jones and Kim

(2018) have built Schumpeterian models that link the dynamics of top income inequality

to innovation, and showed that creative destruction makes growth more inclusive. Ace-

moglu et al. (2017) positively link innovative activities of an economy to a more unequal

reward structure, whereas Spiganti (2018) finds a non-monotonic relationship between

3In this paper, I study neither the effect on income inequality of the introduction of new technologies
(see Violante, 2008, for a brief survey on skill-biased technological change), nor the effect of inequality on
the incentives to innovate through demand composition (Murphy et al., 1989, Zweimüller, 2000, Foellmi
and Zweimüller, 2006, 2017, Hatipoğlu, 2012).
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wealth inequality and innovation. Differently from these papers, I focus on both wealth

and income inequality, and the feedback effect between them due to the presence of

intergenerational linkages.

The long term effect of the misallocation of talent in innovative activities when there

are intergenerational linkages is also the focus of Jaimovich (2011) and Celik (2018).

However, there are several differences between our papers. First, in Celik’s (2018) quan-

titative model, inventors are skilled workers employed by firms for a fixed wage, whereas in

Jaimovich (2011), horizontal innovation occurs when agents open up new sectors match-

ing their intrinsic skills. In this paper, innovation is vertical and Schumpeterian: inventors

are entrepreneurs who are willing to face the risk of failure to discover better vintages of

existing machines and pursue monopoly rents. This allows me to study how the occupa-

tional choice into innovation is shaped by an endogenous reward structure. Second, in

Celik (2018) everyone would like an innovative job, as it pays exogenously better than

routine jobs, but the number of training opportunities necessary to become skilled is

scarce and subject to a tournament mechanism; in Jaimovich (2011), there is no occu-

pational choice as everyone is an entrepreneur, but adverse selection may prevent credit

flowing to the most productive sectors (i.e. with a better match between an entrepreneur’s

skill and a sector’s characteristics). Here, observable wealth is used by banks to screen

different borrowers: as a consequence, endogenous wealth classes arise in equilibrium,

each associated with different occupational choices.4 Since the wealth distribution affects

the composition of the wealth classes and the occupational choices of the agents, it affects

the resulting growth rate of the economy. Moreover, this indirectly affects the new wealth

distribution. This allows me to study how the number of innovators and their average

quality change vis-à-vis the state of the economy.

Empirically, there is a very recent and flowering literature on the relationship between

inequality and innovation. For example, Akcigit et al. (2017), Aghion et al. (2018), Celik

(2018), and Bell et al. (2019) merge individual income data with individual patenting

data and find a positive relationship between parental resources and the probability of

becoming an inventor. Conversely, Aghion et al. (2019) find a positive effect of patenting

on top income inequality, using a US state level panel. In this paper, I follow techniques

that are widely used in the inequality of opportunity literature (see Roemer and Trannoy,

2016, for a review) to decompose total inequality at the US state level into inequality of

opportunity and inequality of effort. This allows me, for the first time, to investigate the

relationship between innovation and both components, whereas the above papers consider

only one.

4On the modelling side, the interplay between adverse selection, moral hazard, and occupational
choices in this paper is reminiscent of e.g. Grüner (2003), Ghatak et al. (2007), Inci (2013), and Spiganti
(2018). Differently from these papers, I extend this framework to a dynamic setting and embed it into
a Schumpeterian model of innovation.
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3 The Model

Time is discrete and infinite, t = 1, 2, . . . ,∞. In any given period t, there is a continuum

of one-period lived agents of mass one, indexed by h, with the same instantaneous utility

function,

u(ct,h, bt,h) = c1−δt,h b
δ
t,h, (1)

where δ ∈ (0, 1), ct,h is consumption of the final good, and bt,h is bequest in period t.5

Agents are heterogeneous in two dimensions. First, they differ in their innovative

ability a: in any period t, a proportion λ ∈ (0, 1) of agents is talented, the remaining pro-

portion 1−λ is untalented. Second, agents differ in their wealth endowment, At ∈ (0,∞),

which is distributed according to the (continuously differentiable) cumulative distribu-

tion function Φt(A), whose probability density function is φt(A).6 Let Āt =
∫∞
0
AtdΦt(A)

be average (and total) wealth in t. For simplicity, I assume that ability and wealth are

uncorrelated: this implies that abilities are also intergenerationally uncorrelated and that

there is an equal proportion of talented and untalented agents for every wealth level. At

the beginning of their life, agents receive their wealth in the form of a bequest from their

parent.

3.1 Final Good Production

Agents consume an homogeneous final good, yt. This is produced competitively by a

representative firm combining unskilled labour and a continuum of machines indexed on

the interval [0, 1] according to

yt = f(lt, xt,m) = l1−αt

∫ 1

0

Q1−α
t,m xαt,mdm, (2)

where α ∈ (0, 1), lt is labour, Qt,m is the quality of machine of type m used, and xt,m is the

quantity of this machine.7 Let Qt ≡
∫ 1

0
Qt,mdm be the average quality of the machines,

an aggregate quality index of the economy.

5In line with the “warm glow” or “joy of giving” literature that follows from Andreoni (1989, 1990),
I assume that bequests, rather than offspring’s utility, enter the utility function directly. Under this
assumption, utility is linear in end-of-period wealth, and this makes the model more tractable (see e.g.
Galor and Zeira, 1993, Banerjee and Newman, 1993, Jaimovich, 2011, for similar assumptions).

6In the terminology of Becker (1993), individuals differ with respect to both “opportunities” and
“abilities”.

7Similar formulations of this multisector Schumpeterian model of endogenous growth (i.e. where
growth is generated by a random sequence of vertical improvements) appear in Aghion and Howitt
(2009, Ch. 4) and Acemoglu et al. (2012). Note that there is nothing of importance lost by having lt
and Qt,m raised to the same power (see Aghion and Howitt, 2009, Ch. 4, problem 2), and that I am
implicitly assuming that production uses only the highest quality machine for each type.
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The profit-maximization problem of the final good producer is

max
lt,{xt,m}1m=0≥0

ptf(lt, xt,m)− wtlt −
∫ 1

0

rt,mxt,mdm, (3)

where pt is the price of the final good, wt is the wage rate, and rt,m is the price of machine

of type m used. The first order conditions are

(1− α)ptl
−α
t

∫ 1

0

Q1−α
t,m xαt,mdm = wt (4a)

αptl
1−α
t Q1−α

t,m xα−1t,m = rt,m (4b)

and thus the following iso-elastic demand curves are obtained (for ease of reading, I am

ignoring that some of the right-hand side variables are policy functions):

lt(pt;wt, rt,m) =

(
pt(1− α)

wt

∫ 1

0

Q1−α
t,m xαt,mdm

) 1
α

(5a)

xt,m(pt;wt, rt,m) =

(
αpt
rt,m

) 1
1−α

Qt,mlt. (5b)

3.2 Innovation

Innovation in each machine takes place as follows. Becoming an inventor requires an

exogenous sunk cost of It. An innovator is then matched randomly with one machine

(one to one, no congestion). Producing one unit of any machine costs ψ units of final

good.

Innovation is stochastic, with probabilities of success depending on the innovative tal-

ent of the agent. Untalented agents always result successful with probability ρL. Talented

individuals can raise the probability of success to ρH by working hard, but this comes

at a positive cost et, which is measured in monetary units.8 Hereafter, effort-exerting

talented agents are denoted by H (mnemonic for high-ability), whereas untalented and

shirking talented agents are denoted by L (for low-ability). The talent of the agents and

their effort level are known only by them, but the distribution of talent in every wealth

level is public information.

In case of success, an innovator increases the quality of the machine from Qt−1,m

to Qt,m = (1 + γ)Qt−1,m > Qt−1,m and, in line with the endogenous technical change

literature, becomes the sole producer of the machine m. The profit-maximization problem

8The talent distribution in the population can thus be thought of as a distribution of the cost of
effort, which is prohibitively high for untalented individuals. Intuitively, everyone in this economy is
born untalented: some individuals have the potential to undertake some costly activity to increase their
talent, whereas those that remain lack the natural ability. Similarly to Grüner (2003), Inci (2013), and
Spiganti (2018), moral hazard is necessary to have some poor talented workers in equilibrium (since
wealth is assumed to be non-negative).
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of the inventor of a new machine m is

max
rMt,m,X

M
t,m≥0

(rMt,m − ψ)XM
t,m s.t. XM

t,m ≥ xt,m in (5b), (6)

where rMt,m and XM
t,m are the price and quantity supplied of the monopolistically-produced

machine m in t. Since demand is iso-elastic, the monopoly price is a constant mark-

up over marginal cost, rMt,m = ψ/α,9 and thus the equilibrium demand function for

monopolistically-produced machines, xMt,m, becomes

xMt,m =

(
α2pt
ψ

) 1
1−α

Qt,mlt. (7)

Here, I make a further simplifying assumption. Similarly to Aghion and Howitt (2009,

Ch. 6), I assume that the starting quality for any given machine m at date t has the

average quality parameter Qt−1 across all machines last period, rather than the quality

parameter Qt−1,m of that machine last period.10 Therefore, an innovator that is successful

in inventing a new machine, would profit

πt (pt;wt;Qt−1) ≡
(
ψ

α
− ψ

)(
α2pt
ψ

) 1
1−α

(1 + γ)Qt−1lt (8)

from selling the machine.

With probability 1−ρi, ∀i = {H,L}, the innovation does not materialise. In such case,

the old machine is produced competitively. Let XC
t,m be the quantity of the competitively-

produced machine m in t. Since the unsuccessful innovator prices the machine at the

marginal cost, rCt,m = ψ, the equilibrium demand function for competitively-produced

machines is

xCt,m =

(
αpt
ψ

) 1
1−α

Qt−1lt. (9)

The unsuccessful innovator breaks even.

3.3 Credit Contracts

In each period, there are several banks competing à la Bertrand, each owned equally by

all agents. Workers deposit their wealth in the banks for a risk-free rate of return, Rt:

an investment of one unit in t yields a return of Rt units at the end of the period. All

agents take this rate of return as given when making their occupational choices. Banks

use these deposits to lend money to innovators who ask for it: without loss of generality,

9I am implicitly assuming, for simplicity, that innovation is drastic, in the sense of Tirole (1988): the
monopolist can charge any price she wants without fearing entry from potential competitors.

10I make this assumption to avoid further complications arising from having to include the quality of
the machine in the optimal contract derived below.
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I assume that an agent with wealth At only borrows up to It − At > 0 to finance the

set-up cost; conversely, rich innovators deposit At− It > 0.11 In the next sections, unless

otherwise specified, I focus on the credit constrained agents when deriving the optimal

contracts, as unconstrained agents are free to take their first-best choice.

Banks observe the wealth of the borrowers, and whether they succeeded or not in

discovering a new machine, but ability is unobservable.12 They take prices, including

the riskless rate of return, as given, and can offer a distinct menu of contracts for every

wealth level. Banks hold the same beliefs, which they form simultaneously, about how

agents decide when offered a given menu of contracts. This menu of contracts consists of

a repayment schedule, given the factor prices and qualities of the machines, contingent

on the outcome of the innovation process and the announced type. I assume limited

liability protects the agents, in the sense that an innovator cannot be left with negative

end-of-period payoff. As a consequence, and since in the failure state innovators break

even, they will be able to pay back a positive amount only in the case of success.13 A

loan contract offered by a given bank then takes the following form (since it does not

generate confusion, I shall drop the subscript indicating a given bank and t):

σ(A,Ω) =

[
σH(A,Ω)

σL(A,Ω)

]
=

[
DS
H(A,Ω)

DS
L(A,Ω)

]
, (10)

where σi is the contract designed for the i-type agents with wealth A and Ω is a vector

of prices, interest rate, and average quality of the machine at t (i.e. the state of the

economy). These contracts set the repayments to the bank by the i-type agent in the

success state, DS
i .

Therefore, with probability ρi, the innovator is successful in inventing a new machine,

and thus profit π (Ω) from selling the machine. She will then pay DS
i (A,Ω) to the bank.

Let the subsequent realised net payoff of an i-type innovator in the success state be

given by V S
i ; limited liability implies V S

i ≥ 0. Conversely, an unsuccessful innovator

would break even from the production of machines, and the financiers would recover zero

income. Thus, the expected payoff of an innovator is Vi(A,Ω) ≡ ρiV
S
i − ei, ∀i = {H,L},

where eH = e and eL = 0. Conversely, the payoff of an agent who becomes a worker is

11It is well-known, see e.g. DeMeza and Webb (1987), that there must be maximum self-finance in
equilibrium, because this comes with better terms than borrowing for high ability agents (thus, if there
are agents who are not using their entire wealth, they must be untalented).

12Since abilities are intergenerationally uncorrelated, parents’ historical outcomes provide no useful
information to the banks. In real life, business plans are also likely to be used as screening devices in
bank loan applications: however, adding a three-signal structure, where the probability of getting the
better signals increases with ability, to the current model would not qualitatively change the partial
static equilibrium.

13This means that the repayment in case of failure cannot be positive, but, in principle, it may be the
case that banks offer money to unsuccessful innovators. Given risk-neutrality, however, imposing the
repayments to be zero in the failure state is without loss of generality. Appendix A.2 presents the proofs
without imposing this.
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Wi(A,Ω) ≡ w +RA, ∀i = {H,L}: I call this payoff “the outside option” to innovation.

4 Partial Equilibrium Analysis

In this section, I first analyse the static counterpart of the model: I focus on a given

period, and thus the ability and wealth distributions, as well as the average quality of

the machines, are given. I thus derive the set of credit contracts offered by banks and

the optimal occupational choices of the agents. Later, I study the dynamic evolution

of the economy. Throughout this section, I abstract from general equilibrium effects in

the credit and labour markets, i.e. I take the risk-free interest rate and the wage rate as

exogenously given.14

I take the standard assumption that talented innovation is efficient, whereas untal-

ented innovation is not. This means that, if agents could self-finance completely, only

talented agents would find it profitable to enter the innovation sector. However, un-

talented agents may still find it profitable to become innovators if cross-subsidised by

talented agents. This is formalised as follows,

Assumption 1 (Static Efficiency). ρHπ (Ω)− e > w +RI > ρLπ (Ω) > w +RI(ρL/ρ̄),

where ρ̄ = λρH + (1− λ)ρL is the Bayesian probability of success of a random applicant.

I impose a Bertrand-Nash equilibrium concept in the static framework. As it is

well-known from Rothschild and Stiglitz (1976), this may lead to non-existence of a

competitive screening equilibrium. I circumvent this by restricting the set of feasible

contracts to loan contracts only, i.e. non-negative repayments made by entrepreneurs to

the banks.15

Definition 1. Assume banks are Bertrand-Nash players following pure strategies, offer-

ing loan contracts, and paying an interest R on deposits, which they take as given. A

static partial equilibrium consists of choices for individuals (c?h, b
?
h), the final good producer

(l?, {x?m}
1
m=0), and the innovators ({r?m, X?

m}
1
m=0); prices (w?, p?); profits for banks, final

good producer, and innovators; sector allocations and effort decisions; and an individually

rational and incentive compatible menu of contracts for each wealth class, such that: (i)

14For example, this would be the case if the economy is small and with access to perfect international
capital and labour markets. Financial intermediaries (depositors) would be able to draw (deposit) liq-
uid funds from (in) an international credit market, with a perfectly elastic supply and demand at the
international rate of return R. Firms would be able to hire workers with a perfectly elastic supply.

15Practically, this means that banks cannot lure in additional depositors by increasing the interest
rates they offer to lenders. As explained below, this restriction means that banks will make positive
profits on the contracts offered to particular wealth classes, like in Jaimovich (2011). This is, however,
a Bertrand-Nash equilibrium as there are no profitable deviations in the set of feasible contracts. One
could, alternatively, enlarge the set of feasible contracts and then either impose a Bertrand-Wilson’s
(1977) anticipatory equilibrium concept, as in Inci (2013), or allow banks two rounds of play, like in
Hellwig (1987). In any case, the qualitative results of the model do not change. See Appendix A.2 for
more detail.
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banks earn non-negative profits at every wealth level, (ii) the machine and final good pro-

ducers maximise their profits, (iii) the menu of contracts is a Bertrand-Nash equilibrium,

(iv) the machines and final good markets clear, (v) individuals choose the occupation that

maximises their expected end-of-period wealth, and (vi) talented individuals choose inno-

vation if indifferent between the two occupations, whereas untalented individuals choose

wage-earning when indifferent.

Note that this definition lacks market clearing conditions for the credit and labour

markets, since I am analysing the partial equilibrium counterpart.

4.1 The Equilibrium Under Full Information

Suppose information about agents’ talent were complete, so that in equilibrium, banks

would charge an interest rate that accurately reflects an agent’s intrinsic risk of failure.

Since there cannot be any cross-subsidisation in an equilibrium without adverse selection,

talented individuals become innovators, facing a rate of return equal to Rt/ρH , and an

expected end-of-period payoff of VFBt (At,Ωt) = ρHπ(Ωt)−Rt(It−At)−et. Conversely, un-

talented agents become workers, with an end-of-period payoff ofWFB
t (At,Ωt) = wt+RtAt.

Note that, by Assumption 1, the talent premium is positive, VFBt (At,Ωt)−WFB
t (At,Ωt) >

0. As shown below, it reaches its maximum value when information asymmetries are ab-

sent.

Under full information, the average probability of success of the innovators is equal

to ρH , and there are λ innovators each period. Thus, the expected number of successful

innovations in any given period is given by ρHλ. Conversely, the expected number of

unsuccessful innovations is 1−ρHλ. Since innovations increase the quality of the machines

to (1 + γ)Qt−1, whereas failure leaves the quality equal to Qt−1, the average quality of

the machines increases over time with a constant growth rate of gFB = γρHλ.16

4.2 Static Equilibrium

Below, I intuitively derive the static partial equilibrium of the model, i.e. the contracts

offered and the subsequent occupational choices of the agents, taking the state of the

economy and the wealth distribution as given. The proofs are formally given in Appendix

A.2. For readability, I drop the time subscript.

Following the literature on adverse selection, one should expect two types of equi-

librium contracts: pooling, in which types remain undistinguishable, or separating, in

which types reveal their unobservable ability by selecting different terms. Here, one can

16Note that, in first best, all machines would be produced competitively, whereas here there is still an
inefficiency due to the presence of monopoly rights granted to the successful innovators. The resulting
underutilisation of machines can easily be corrected with a subsidy in the use of (new vintages of)
machines, such that their net price is identical to the marginal cost.
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easily exclude that there exists a separating loan contract, for a given wealth class, such

that both talented and untalented agents become innovators. To see this, consider the

following zero-profit conditions from separating contracts,

ρH
(
π (Ω)− V S

H

)
= R(I − A) (11a)

ρL
(
π (Ω)− V S

L

)
= R(I − A), (11b)

where the first line refers to talented agents, and the second one to untalented agents with

wealth A. The implied levels of VH and VL suggest that this menu of contracts cannot be

incentive compatible, as the untalented agents would always prefer the contract designed

for the talented innovators.

Hence, an equilibrium contract must be either a pooling contract or a separating

contract that only the talented type accepts.17 In a zero-profit pooling contract, the

repayment of a random borrower with wealth A in the success state is given by DS =

R(I −A)/ρ̄. For a given state of the world Ω, an i-type agent would accept this contract

if her participation constraint is satisfied,

ρi

(
π (Ω)− R (I − A)

ρ̄

)
− ei ≥ w +RA. (12)

At the same time, talented agents would be willing to exert effort only if

ρH

(
π (Ω)− R (I − A)

ρ̄

)
− eH ≥ ρL

(
π (Ω)− R (I − A)

ρ̄

)
. (13)

Solving these for A reveals that talented agents exert effort with a pooling contract

if their wealth is greater than a threshold Ae, and they enter the innovation sector if

their wealth is greater than a threshold AH . Conversely, untalented agents become inno-

vators only if their wealth is lower than a threshold AL. These thresholds are given by,

respectively,

Ae ≡ I +
ρ̄ (e− (ρH − ρL) π (Ω))

R (ρH − ρL)
(14a)

AH ≡
ρ̄(w + e) + ρH (RI − ρ̄π (Ω))

R (ρH − ρ̄)
(14b)

AL ≡
ρL (ρ̄π (Ω)−RI)− ρ̄w

R (ρ̄− ρL)
. (14c)

Talented agents are only willing to accept a pooling contract if the amount they need

to borrow is small: indeed, since banks underestimate their probability of success, they

are obliged to subsidise the untalented agents. Conversely, untalented agents only accept

17It is easy to prove, given the probabilities of success, that it can never be the case that a loan
contract, for a given wealth level, attracts the untalented agent but not the talented agent.
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pooling contracts if they can enjoy large cross-subsidies.

Note that by Assumption 1, AL > 0. Throughout this paper, I focus on the most

interesting case by further assuming that AL > Ae > 0: this ensures that there is both

adverse selection and some poor talented workers in equilibrium. This in turn implies

that Ae > AH . Wherever AH lies, for agents with A < Ae, this pooling contract cannot

be offered: indeed, the average probability of success of the innovators in this class would

be ρL, resulting in negative profits for the banks. As a consequence, the only contract

that can be offered for these wealth levels is the one on the zero-profit condition from

untalented innovation, with DS = R(I −A)/ρL. Since everyone is treated as untalented,

by Assumption 1 all agents in this wealth bracket prefer to become workers.

The other possibility is that, for a given wealth class, only the effort-exerting talented

agents enter the innovation sector. A putative separating contract on the zero-profit

condition entails DS
H = R(I−A)/ρH : I refer to this contract as “the zero-profit separating

contract”. Obviously, this contract can be offered only if an untalented agent with the

same wealth does not have any incentive to imitate the talented agent, i.e. if

w +RA ≥ ρL

(
π (Ω)− R (I − A)

ρH

)
. (15)

This condition requires that her initial wealth is higher than a threshold AHH given by

AHH ≡
ρL (ρHπ (Ω)−RI)− ρHw

R (ρH − ρL)
, (16)

where AHH ∈ (AL, I) by Assumption 1.

Since for A ∈ (AL, AHH) the zero-profit separating contract above does not satisfy

the incentive compatibility constraint of an untalented agent with identical wealth, these

talented agents will have to receive a different contract. The solution involves raising the

interest rate demanded of the talented agents in such a way that makes the untalented

agents indifferent between entering the innovation sector and becoming workers. This is

achieved by imposing ρL
(
π (Ω)−DS

H

)
= w + RA, or, equivalently, DS

H = π (Ω) − (w +

RA)/ρL. I refer to this contract as “the profitable separating contract”.

Given the set of contracts offered to each wealth class, it is easy to derive the resulting

occupational choices of the agents. Proposition 1 outlines the static partial equilibrium

that ensues.

Proposition 1 (Static partial equilibrium). Banks offer contracts on the zero-profit con-

dition from untalented innovation to agents with wealth in [0, Ae], pooling contracts to

agents in [Ae, AL], profitable separating contracts to agents in [AL, AHH ], and zero-profit

separating contracts to agents in [AHH , I]. This is associated with the following occu-

pational choices: all agents in [0, Ae] become workers, all agents in [Ae, AL] become

innovators, talented agents with A ≥ AL become innovators, whereas their untalented

15



counterparts become workers.

4.2.1 Wealth Classes

Proposition 1 underlines that we can split the population into different pools of borrowers

depending on their wealth level. Indeed, the contractual structure of the lending mar-

ket endogenously introduces four wealth classes, that I label working, lemons, rich, and

unconstrained.

The working-class agents have wealth between [0, Ae]. Given the size of the loan that

they would need, talented agents do not apply for loans, and thus the only offer banks can

make is an interest rate of R/ρL. As a consequence, every agent in this class becomes a

worker, with an end-of-period wealth of w+RA. The lemons-class agents have wealth in

[Ae, AL]. Banks offer only pooling contracts, with an interest rate of R/ρ̄, and both types

of agents become innovators. The expected end-of-period wealth of an i-type agent in this

class is ρi (π −R(I − A)/ρ̄). The rich-class agents have wealth in [AL, AHH ]. Banks can

offer separating contracts to agents in this class, but with an interest rate that is slightly

higher than the one consistent with the risk profile of the talented innovators.18 Given

the terms of the optimal contract, the expected end-of-period wealth of a talented agent

in this class is ρH (w +RA) /ρL. Finally, the unconstrained-class agents have A ≥ AHH .

Only talented agents in this wealth class become innovators, with an expected income of

ρHπ −R(I − A), whereas untalented agents become workers.

Denote by Ui(A,Ω) the expected income level achieved by an i-type with wealth A

in an economy with state Ω. From the end-of-period wealth of the agents in the static

partial equilibrium, this lemma follows.

Lemma 1. Let ∆(A,Ω) ≡ UH(A,Ω) − UL(A,Ω). Then: (i) ∆(·) ≥ 0, ∀A. More-

over, (ii) ∆′A(·) = 0, ∀A ∈ (0, Ae)
⋃

(AHH ,∞),; (iii) ∆′A(·) > 0, ∀A ∈ [Ae, AHH ],;

(iv) ∆(A,Ω) ≡ VFB(A,Ω) −WFB(A,Ω) + e, ∀A ≥ AHH . Furthermore, (v) ∆′Q(·) = 0,

∀A ∈ (0, Ae)
⋃

(AL, AHH); (vi) ∆′Q(·) > 0, ∀A ∈ [Ae, AL]
⋃

(AHH ,∞).

The talent premium, ∆(A,Ω), is weakly increasing in wealth and machines’ quality, and

only reaches its full information counterpart in the unconstrained class. This means that

talented agents benefit more from an increase in wealth and/or average quality than

untalented agents.

Three recent empirical studies have found that an individual’s propensity of be-

coming an innovator increases with parental resources (Akcigit et al., 2017, Aghion

et al., 2018, Bell et al., 2019). Here, one could split the population in two groups: one

consisting of working- and lemons-class agents, and one with rich- and unconstrained-

class agents. The propensity of becoming an innovator of the former group would be

18Precisely, banks ask for an interest rate of (ρLπ − w −RA) / (ρL (I −A)) on these loans.
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[Φ (AL)− Φ (Ae)] /Φ (AL), whereas the propensity of the latter group would be equal to

λ [1− Φ (AL)]: therefore, this empirical prediction can be matched for certain parameter

values.19 Moreover, Bell et al. (2019) find that inventors from unconstrained groups are,

on average, of higher talent than from the discriminated group, which is consistent with

this paper.

4.2.2 Number of Innovators and Equilibrium Growth

Proposition 1 implies that the number of talented, nH , and untalented innovators, nL, in

the static partial equilibrium are given by, respectively,

nH (Ω) = λ [1− Φ (Ae (Ω))] (17a)

nL (Ω) = (1− λ) [Φ (AL (Ω))− Φ (Ae (Ω))] . (17b)

The total number of innovators and their average quality are, respectively,

n (Ω) = nH (Ω) + nL (Ω) (18a)

ρ (Ω) =
ρHnH (Ω) + ρLnL (Ω)

n (Ω)
. (18b)

The expected number of successful innovations is given by ρn: for each of these

machines, initial quality improves by a factor 1 + γ. Conversely, the expected number of

unsuccessful innovations is 1 − ρn: for these machines, quality does not increase. As a

consequence, in the static partial equilibrium, the growth rate of average quality is given

by g = γρn. The following lemma outlines some comparative statics of the static partial

equilibrium.

Lemma 2. (i) Consider two identical economies, but for the expected reward for inno-

vation, such that π > π′. Then nH ≥ n′H and nL ≥ n′L, therefore g ≥ g′; (ii) Consider

two identical economies but for the initial wealth distributions, Φ(A) and Φ′(A), such that

Φ(A) first-order stochastically dominates Φ′(A). Then nH ≥ n′H .

The intuition for Lemma 2 is straightforward. Part (i) exploits the fact that, whereas

the wealth threshold Ae is strictly decreasing in the profit of the successful innovator, AL

(and AHH) is strictly increasing in it: the economy with a higher reward for innovation

(both absolutely and relatively to the wage) will have a larger lemon-class and a smaller

working-class, and thus more innovators. Since the growth rate is increasing in the number

of innovators, this economy grows faster, even if some of the additional innovators are

19These studies, however, find that the relationship is highly non-linear and particularly steep at high
levels of parental resources: the prediction of the model would be improved by allowing for e.g. more
types of agents, risk aversion, variable project size, and correlation between wealth and ability, at the
cost of added complexity.
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of low ability.20 Among other things, this implies that more technologically advanced

economies grow faster, as the expected reward of the innovator is increasing in the average

quality of the machine. Part (ii) says that, other things equal, wealthier economies tend

to have more talented innovators. This is because, as the economy becomes wealthier,

more agents will find themselves in the upper classes, where the adverse selection problem

turns into an efficient redistribution (rich-class) or disappears (unconstrained-class).21

4.2.3 Innovation and Inequality of Opportunity

Here, I focus on the effect of the initial level of inequality on the static partial equilibrium.

In particular, I consider two identical economies but for the initial wealth distributions,

such that one is obtained through a single mean-preserving spread of the other (á la

Rothschild and Stiglitz, 1970). Using a mean-preserving spread amounts to ranking

distributions with the same average (and, here, total) wealth by second-order stochastic

dominance. Since Atkinson (1970), second-order stochastic dominance has become a

standard way in which to rank distributions in terms of inequality. Indeed, it is equivalent

to (generalized) Lorenz dominance, the most commonly used ordering in the literature

on the comparisons of income and wealth distributions.

Lemma 3. Consider two identical economies but for the initial wealth distributions, Φ(A)

and Φ′(A), such that Φ′(A) is obtained by a single mean-preserving spread of Φ(A): thus,

Φ(A) crosses Φ′(A) only once, and from below. Denote this crossing as Ã. Then, (i) if

Ã < Ae, nH < n′H ; (ii) if Ã = Ae, nH = n′H and nL > n′L; (iii) if Ae < Ã < AL, nH > n′H
and nL > n′L; (iv) if AL < Ã, nH > n′H .

Indirectly, lemma 3 establishes the presence of a threshold for average wealth above

which equality-enhancing redistributions are always associated with an increase in the

number of talented innovators. Below this threshold, the contrary holds true: more

inequality is beneficial when the economy is poor, since it allows at least some (talented)

individuals to overcome setup costs that are large in relations to average wealth (an effect

already stressed by e.g. Barro, 2000). The exact position of this threshold depends on the

20Indeed, it is possible for the growth rate in the constrained equilibrium to be greater than the
growth rate under full information. This happens if ρH(λ−nH)− ρLnL, a measure of the cost of having
displaced the poor talented innovators, is negative. That having too many innovators may hurt the
economy becomes clearer when we consider total output. Since the number of successful innovations
corresponds to the number of monopolistically produced machines with demand given by (7), whereas
the remaining machines have demand given by (9), the production of final good in the static partial

equilibrium is equal to y = l (αp/ψ)
α

1−α Q̂, where Q̂ ≡
(
ρn
(
α

α
1−α − 1

)
+ 1
)
Q is the average corrected

quality of the machines at the end of the period, which takes into account that certain machines are
produced competitively and others monopolistically. Whereas Q is monotonically increasing in ρn, Q̂ is
hump-shaped.

21Whether this is also associated with fewer untalented innovators depend on the particular wealth
distribution i.e. on the relative flows of agents in and out of the lemon class. In a simplified version of
the model with no effort, and thus no working class, the number of untalented innovators would always
decrease as the economy gets richer.
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particular wealth distribution. In many commonly used income and wealth distributions

subject to a single mean-preserving spread, like shifted Pareto and Lognormal, the single-

crossing point is not smaller than the mean, Ã ≥ Ā, and the distance Ã − Ā is weakly

increasing in the mean-preserving spread. Thus, as long as the average agent is not

among the poorest individuals of the working class, in these distributions, more equal

wealth distributions are always associated with more talented innovators.

4.3 Dynamics

The analysis in the previous section has been conducted within a static framework, as

the quality of the machines and the wealth distribution at the beginning of the period

were taken as given. Since these are actually endogenous, and reciprocally influence each

other over time, here I present the dynamics of Qt and Φt(A).

Given the utility function in (1), individuals will optimally bequeath a fraction δ of

their end-of-period income to their offspring. This amount will in turn fully determine

the initial wealth of the new individuals. Henceforth, I split the population of agents

in lineages indexed by h ∈ [0, 1]. Since types are intergenerationally uncorrelated by

assumption, the wealth transition equations for any lineage are given by

At+1,h = δ [wt +RAt,h] if At,h < At,e;

At+1,h =

δ [π(Ωt)−Rt(It − At,h)/ρ̄] , ρ̄

0, 1− ρ̄
if At,h ∈ [At,e, At,L] ;

At+1,h =


δ [(wt +RtAt,h) /ρL] , λρH

0, λ(1− ρH)

δ [wt +RtAt,h] , (1− λ)

if At,h ∈ [At,L, At,HH ] ;

At+1,h =


δ [π(Ωt)−Rt(It − At,h)/ρH ] , λρH

0, λ(1− ρH)

δ [wt +RtAt,h] , (1− λ)

if At,h ∈ [At,HH , It] ;

At+1,h =


δ [π(Ωt) +Rt(At,h − It)] , λρH

δ [Rt(At,h − It)] , λ(1− ρH)

δ [wt +RtAt,h] , (1− λ)

if At,h ≥ It.

The dynamic path of the economy is dictated by the following system:

Qt = (1 + γρt−1nt−1)Qt−1 (20a)

Φt(A) = Γt−1 [Φt−1(A)] , (20b)
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where the operator Γt−1 [·] maps the wealth distribution in t − 1 into the initial wealth

distribution in t, given the transition equations above. This operator evolves over time,

as the transition equations depend on the average quality of the machines. The dynamic

evolution of Qt, in turn, depends on the wealth distribution, through the occupational

choices of the agents. As a consequence, the dynamic system in (20) is non-stationary,

and thus complicated to study analytically. Nevertheless, under certain conditions, I can

show the existence of a balanced growth path equilibrium.

4.3.1 Balanced Growth Path Equilibrium

Growth in this economy is driven by the improvements in the machines done by successful

innovators. In this section, I focus on the balanced growth path equilibrium where aggre-

gate variables grow at the constant rate g = γρn. In order to do so, I make the following

simplifying assumptions: the initial investment is a linear function of the average quality

of the machines, It = ιQt; the effort cost is given by et = ε (ρ̄πt −RIt − wt) ,∀t, where ε

is a function of parameters (this ensures that At,L > At,e > 0,∀t, as shown in Appendix

B.4); the interest rate is constant, Rt = R, ∀t; and the number of workers and the price

of the final good are normalised to one, lt = 1, and pt = 1,∀t. In Section D, I let markets

determine Rt and wt as well, and provide numerical results.

Proposition 2 (Balanced Growth Path). The balanced growth path equilibrium of the

economy has the following form: (i) the number of innovators and their average quality

are time-invariant, i.e. nt = n and ρt = ρ, ∀t, (ii) aggregate variables Āt, Qt, and yt, and

rewards wt and πt grow at constant rate g = γρn.

There are three generic cases depending on the equilibrium number of innovators and

their average talent: (i) a steady-state with no innovators and zero growth rate, (ii) an

equilibrium in which agents do not need to borrow, and thus the growth rate is the same

as under perfect information, and (iii) an equilibrium with both talented and untalented

innovators, and a positive growth rate.

The first steady state represents a no innovation trap. For this situation to arise, it

must be the case that, in a given period, all agents are in the working class. Since there

are no innovators, the average quality of the machines does not increase, and the wealth

thresholds remain constant. If δ(w+RAe) < Ae, even the offspring of the wealthiest agent

will find herself in the working class in the next period, and so in all future generations. In

the long-run, wealth converges to a degenerate distribution, withAt,h = δw/(1−δR),∀t, h.

For the second case, consider a situation in which all agents are able to self-finance

themselves in a given period. As explained previously, in such an economy agents self-

select in the efficient occupations. The offspring of an unsuccessful innovator inherits a

positive amount: depending on parameters, she can be wealthier than her parents and

able to self-finance, and so are the offspring of workers and successful innovators. In
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this case, all future generations of agents are also able to self-finance themselves, and

gt = gFB,∀t.
In the last case, the number of innovators is positive, and thus the average quality of

the machines grows at a positive rate. However, the flows of agents entering and exiting

the lower classes match across generations, and thus misallocation of talent persists over

time.

5 The Empirical Analysis

In this section, I run two empirical analyses. First, I show that the relationship between

innovation and inequality depends on which type of inequality is considered. Then, I

study the dynamic effects of changes in inequality on innovation.22

5.1 Innovation and Different Types of Inequality

In this section, I empirically analyse the relationship between inequality and innovation

at the US state level. I first calculate various measures of inequality using the Panel

Study of Income Dynamics (PSID). I then measure innovation in each state using data

from the United States Patent and Trademark Office (USPTO). Finally, I empirically

characterize the effect of inequality on innovation.

5.1.1 Inequality Measures

It is well-known that measuring inequality is empirically challenging (e.g. Keeley, 2015).

Moreover, inequality measures are seldom comparable across countries. Data on wealth

inequality, especially, is hard to come by; when available, it does not go back in time very

far. On the contrary, data requirements to study the long-term effects of inequality are

very stringent: one not only needs comparable measures of inequality but also information

for at least two distant periods in time, generally ten years (e.g. Marrero and Rodŕıguez,

2013). Given these limitations, I carry the analysis at the US state level, using data from

the PSID; moreover, instead of focusing on wealth inequality, I construct a more general

measure of inequality of opportunity.

The PSID is the world’s longest running household panel survey: it started in the

1968, with over 18,000 individuals living in 5,000 families in the United States, and it is

still running. I use the weights supplied by the PSID to make the sample representative

at the national level, by compensating for unequal selection probabilities and differential

attrition.23 My analysis, however, is run at the state level. Unfortunately, PSID samples

22The analysis is run using Stata 15 by StataCorp (2017) and the user-written program by Liao (2016c).
23For longitudinal consistency, I disregard the Latino sample, that was added to the PSID data only

between 1990 and 1995.
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may not be representable at the state level, and state sample sizes are small. To limit the

impact of these problems, I drop states with fewer than 50 observations in a given year.

This results in an unbalanced panel of 32 states distributed throughout the whole US

territory: West (Arizona, California, Colorado, Oregon, Utah, Washington), South (Al-

abama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North

Carolina, South Carolina, Tennessee, Texas, Virginia, plus District of Columbia), Midwest

(Iowa, Illinois, Indiana, Michigan, Minnesota, Missouri, Ohio, Wisconsin), and Northeast

(Connecticut, Massachusetts, New Jersey, New York, Pennsylvania).

Since some information is not available for wives in all waves, I restrict my attention

to individuals who are household heads (male in married family unit, but also female oth-

erwise). I only consider individuals aged between 18 and 65 at the time of the interview. I

calculate my measures of inequality based on the labour income of the respondents, given

that information about other sources of income is not consistently available in the PSID.

To account for composition effect, I first regress gross labour income on a second-order

polynomial of potential experience. I then collect residuals from these regressions, and

since they are centered around zero, I add a constant to match the minimum of the series.

Recycling notation from the theoretical model, let xi be the so-calculated gross income

of individual i = {1, . . . , N} in a given state s and year t (for ease of reading, I drop these

subscripts below), x̄ the weighted mean income of the state-year sample, and fi the

sampling fraction of i in the state-year sample (i.e. i’s sampling weight over the weight’s

sum for state s in year t). For each state s in year t, I estimate the corresponding Theil’s

T index. This is defined as

T =
N∑
i=1

fi
xi
x̄

ln
(xi
x̄

)
. (21)

Theil (1967) argued that this measure of entropy, or degree of disorder, provides

a useful device for measuring inequality.24 Theil’s measure has been widely used in

social science: one reason for its popularity is that, unlike the Gini coefficient, the total

amount of inequality can be additively decomposed into a between-group component and

a within-group component (see e.g. Liao, 2016a and 2016b). For this purpose, I partition

the individuals in a given state and year into a mutually exclusive and exhaustive set

of types, based on their father’s education (i.e. no education, primary, secondary, and

tertiary education) and race (i.e. white and non-white). I thus obtain (up to) eight types:

all individuals in each type m share the same circumstances. Race and parental education,

as proxies for more general socio-economic background (e.g. wealth, transmission of ability

and connections, investments in human capital) are the circumstances most widely used

in the empirical literature. The between-group inequality component for a given state in

24Hereafter, Theil index refers to Theil’s first measure, or Theil’s T . I estimate Theil’s T and its
decomposition non-parametrically, like in Marrero and Rodŕıguez (2013), rather than parametrically,
like in Ferreira and Gignoux (2011), given the structure of the database.
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a given year is calculated as

Tb =
M∑
m=1

ym ln
( x̄m
x̄

)
, (22)

where ym is type m’s weighted income share expressed as a proportion of the weighted

sample total income, and x̄m is the weighted mean income of group m.

To summarise, Tb measures inequality due to differences between circumstances: since

these are beyond the individual’s control, Tb is used in the social sciences as a proxy

for inequality of opportunity. Conversely, the within-group component, Tw = T − Tb,

expresses inequality within groups, and is thus seen as a proxy for inequality due to

individual’s choices or effort (over which the individual has control). Since one can

realistically control for only a limited set of circumstances, Tb is actually a lower-bound

on the real inequality of opportunity (Ferreira and Gignoux, 2011, Marrero and Rodŕıguez,

2013).25

5.1.1.1 Inequality in the US

Figure 3a shows that both total inequality and inequality of opportunity at the US level

were relatively stable up until the 1980s, while they have increased since then. The trend

for total inequality is consistent with well-known facts, see e.g. US Census Bureau and

Solt (2019). Figure 3b shows that the percentage of total inequality due to different

opportunities (arising from race and parental education) is modest but not insignificant

(similarly to e.g. Ferreira and Gignoux, 2011, for six countries in Latin America, Marrero

and Rodŕıguez, 2012, for 23 European countries, and Marrero and Rodŕıguez, 2013, for

26 US states), and seems to have been moving upwards in recent decades.

Figure 4 shows 50-year average of the estimated inequality indexes for all available US

states, sorted from the most to the least unequal. Figure 5 maps these values. Broadly

speaking, these show that there are both groups of states whose positions remain basically

unchanged across the different indexes and states that rank high on some index but low

on another one. For example, Maryland, Florida, and New Jersey are at the top of

all rankings, whereas Connecticut, Iowa, and Oregon are at the bottom. Conversely,

Massachusetts, California, and Pennsylvania score relatively high on inequality of effort

but low on inequality on opportunity, whereas the contrary holds for Louisiana and

Alabama.

Consistently, Figure 6 shows the relationship between total inequality and the esti-

mated inequality of opportunity index, and between inequality of effort and inequality of

opportunity indexes, respectively, using decade averages for each state. Their coefficients

of determination is 0.46 for the former relationship, positive but far from unity, and it

25Though luck plays an important role in the theoretical model, it is not considered in the decom-
position of the Theil’s index. See Lefranc et al. (2009) for a model of equality of opportunity that
encompasses circumstances, effort, and luck, and how these can be empirically identified.

23



(a) Values (b) Ratio

Figure 3: Time Evolution of Inequality, US

Notes. The total inequality index (Theil’s T ) and its decomposition are calculated by the author using
data from the Panel Study of Income Dynamics.

reduces to 0.30 for the latter one.

5.1.2 Innovation

My measure of innovation builds on patent data. A patent is an exclusionary right

conferred for a set period to the patent holder, in exchange for sharing the details of the

invention. In the US, the USPTO is the agency that issues patents. Since 1976, it has

provided information on the state of residence of the inventors and citation links between

individual patents.

From the great amount of information available from the USPTO, Aghion et al.

(2019, Supplementary Data) provide a ready-to-use dataset containing information on

utility patents granted between 1976 and 2009 (up to 2006 when using quality-adjusted

measures). In particular, for each state and year, they provide the flow numbers of

patents, both as is and weighted for various proxies for a patent’s quality, like the number

of citations received.

As a measure of innovation, I use the number of patents granted, weighted by the

number of citations received within 5 years of the application date, and corrected for the

different propensity to cite in different sectors and time periods (Hall et al., 2001). A

patent is associated with the state of residence of the patent inventor; a patent is split

proportionally across states if co-inventors live in different states.26 The total number of

patents in a state is then weighted by the number of residents. Figures 7 provides some

visual representations.

26See Aghion et al. (2019, Section 3.1.2) for more information. Results are similar when I use only the
number of patents and when I adjust for different quality-measures: these are available on request.
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(a) Total Inequality (b) Inequality of Effort

(c) Inequality of Opportunity (d) Inequality of Opportunity Ratio (in %)

Figure 4: Inequality Rankings

Notes. Inequality indexes are 1968 - 2017 averages of the decompositions of the Theil’s T index calculated
by the author using data from the Panel Study of Income Dynamics. Only years with more than 50
observations are used.

5.1.3 Results

In this section, I look at the effect of inequality on innovation. My estimated equation is

log (innovi,t) = β1log (ineqi,t−10) + β2xi,t−10 + αi + εi,t, (23)

where innovi,t is the flow of (quality-adjusted) patents per capita in state i in year t,

ineqi,t−10 is a vector of inequality indexes in year t− 10, and xi,t−10 is a vector of control

variables. The error term has two components: εi,t is an idiosyncratic error, whereas

αi captures unobservable heterogeneity across states that is invariant across times. The

vector of controls is parsimonious and includes only the unemployment rate (to control for

the business cycle), lagged GDP per capita (in logs), the growth rate of total population,

population density, the share of the manufacturing sector, and the size of the government

sector: whereas the resulting estimation may suffer from omitted-variable bias problems,
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(a) Total Inequality (b) Inequality of Effort

(c) Inequality of Opportunity (d) Inequality of Opportunity Ratio

Figure 5: Geography of Inequality

Notes. Inequality indexes are 1968 - 2017 averages of the decompositions of the Theil’s T index calculated
by the author using data from the Panel Study of Income Dynamics. Only years with more than 50
observations are used. For all these measures, darker colours represent relatively higher indexes.

I avoid introducing significant collinearity problems.

I first estimate equation (23) using Pooled OLS, and thus estimate the relationship

between inequality and innovation across states. I then implement a within regression,

and thus estimate the correlation between changes in innovation and changes in inequality

within a given state.

Results are presented in Table 1, where the first two columns refer to the OLS esti-

mation, whereas the second two columns refer to the FE estimation. In columns 2 and

4, I break down total inequality into the between-group component (the inequality of

opportunity term) and the within-group component (the inequality of effort term). By

including the inequality of opportunity term, I control for the observed circumstances, i.e.

father’s education and race. Whereas most terms are insignificant when I employ FE,27

in the OLS framework the coefficient of the between component is strongly significant

and negative, whereas the within-group term is associated with a significantly positive

effect. In particular, a one standard deviation increase in the inequality of opportunity

measure is associated with a 43 point decrease in the measure of innovation; conversely,

a one standard deviation increase in the within component is associated with a 21 point

27Whereas OLS ignore the error structure, the fixed effect technique is problematic because it relies
mostly on within-state variability. Panizza (2002) suggests regressing inequality on time and state dum-
mies, and use the resulting R-squared measure as a proxy of within-state and within-period variability.
R-squareds around to 0.30 indicate that indeed the inequality measures mostly vary cross-sectionally.
This low within-state variability exacerbates the measurement error of the within regression (Panizza,
2002).

26



(a) Values (b) Ratio

Figure 6: Inequality by US Regions

Notes. Inequality indexes are averages for the 1970s, 1980s, 1990s, 2000s, and 2010s of the decompositions
of the Theil’s T index calculated by the author using data from the Panel Study of Income Dynamics
(from 1968 to 2017). The last panel is the ratio of inequality of opportunity to total inequality (in %).
Only years with more than 50 observations are used.

increase.28 These effects are hidden behind a positive, but smaller in magnitude and

insignificant, coefficient when I consider only total inequality.

5.2 An Event Study Using State Death Taxes

In this section, I study the dynamic effects of a change in inequality on innovation.

In particular, I use an event study to measure the effect of the elimination of estate,

inheritance, and gift (henceforth, EIG) taxes at the US state level on the number of

patents granted in that state.29

I take the elimination of EIG taxes as an imperfect proxy for a state level change in

the political attitudes to economic inequality. Indeed, the legal literature in favour of in-

heritance and estate taxes proposes equality of opportunity as a guiding principle (see e.g.

Gross et al., 2017), whereas critics of the “death” taxes argue that they have disincentive

effects toward risky activities (see e.g. Fleenor and Foster, 1994). As a consequence, I as-

sume that the elimination of EIG taxes entails a short-term increase in inequality of effort

and a long-term increase in inequality of opportunity: I thus hypothesise, following the

elimination of EIG taxes, a short-term increase but a long-term decrease in innovation.

28These results include only those states that have at least 50 observations when calculating the Theil’s
indexes, but the results are robust to selection criteria equal to 20, 30, or 100 observations. Moreover,
signs and significance are robust to changes in the lags of the regressors to 5, 15, or 20 years.

29There is a growing empirical literature that exploits variation in estate, inheritance, and gift taxes
treatment to study the effect on e.g. entrepreneurial activity (Bruce and Mohsin, 2006), charitable
donations (Bakija et al., 2003, Conway and Rork, 2006), and migration (Bakija and Slemrod, 2004).
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(a) Number of Patents (b) Quality-Adjusted Number of Patents

(c) Number of Patents (d) Quality-Adjusted Number of Patents

Figure 7: Innovation by US State

Notes. The left panels present 1976 - 2009 averages of the flow number of utility patents granted per 100k
residents. The right panels present 1976 - 2005 averages of the flow number of patents per 100k residents,
weighted by the number of citations received within 5 years of the application date, and corrected for
the different propensity to cite in different sectors and time periods. A patent is associated with the
state of residence of the patent inventor; a patent is split proportionally across states if co-inventors live
in different states. Data elaborated by the authors from Aghion et al. (2019).

5.2.1 The Death of State Death Taxes

As explained by Conway and Rork (2004), five states (Alabama, Arkansas, Florida, Geor-

gia, and Nevada) eliminated EIG taxes prior to 1960 or never had them, thus deciding

to rely only on the so-called “pick-up” tax whereby individual states capture a fraction

of the federal estate tax revenue without increasing the total tax liability of the estate.

Since 1976, most of the remaining contiguous states have eliminated their EIG taxes in

favour of only the pick-up tax.30 Table 2 summarises the chronology of these events,

which shows a high degree of time-series variation and a very limited geographical pat-

tern. Because of limited data availability on patents for the most recent years, I focus

my analysis on states that abolished EIG taxes before the year 1993.

30Nevada only took advantage of the pick-up tax in the late 1980s. Arizona effectively only had EIG
taxes in place between 1977 and 1979.
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Table 1: Innovation and Different Types of Inequality

OLS FE

Total Inequality 0.23 0.05
(0.29) (0.13)

Inequality of Opportunity -8.06∗∗∗ 0.35
(0.92) (0.45)

Inequality of Effort 2.12∗∗∗ -0.01
(0.32) (0.15)

GDP per capita 3.49∗∗∗ 3.28∗∗∗ -0.11 -0.13
(0.18) (0.18) (0.19) (0.18)

Unemployment -0.08∗∗∗ -0.07∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.02) (0.02) (0.01) (0.01)
Population Growth 1.88∗∗∗ 2.24∗∗∗ -0.45∗ -0.48

(0.26) (0.25) (0.32) (0.34)
Population Density -0.00∗∗∗ -0.00∗∗∗ 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Manufacturing Sector 2.82∗∗∗ 2.99∗∗∗ 2.10∗∗∗ 2.09∗∗∗

(0.41) (0.38) (0.62) (0.63)
Government Sector 0.12∗∗∗ 0.16∗∗∗ -0.07 -0.07

(0.03) (0.03) (0.05) (0.04)

N 819 819 818 818
R2 0.64 0.68 0.90 0.90

The dependent variable is the log of (citations-adjusted) per capita number of patents

Cluster robust standard errors are reported in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

A constant and time dummies are included

5.2.2 Strategy

I take the event as being the effective elimination of EIG taxes at the state level. Recycling

previously used notation, let t represents the year of the event. For each state i, I calculate

the growth rate of the flow number of patents granted in t with respect to the previous

year, gi,t. To appraise the event’s impact, I measure the difference between the actual

growth rate in state i and year t and the annual growth rate in utility patent grants at

the US level, gUS,t. I use data from Aghion et al. (2019) for the former, and from United

States Patent and Trademark Office (2016) for the latter. For state i and year t, I thus

define the abnormal growth rate as

agi,t = gi,t − gUS,t. (24)

Abnormal growth rates are then indexed in event time using τ , where τ = 0 indicates

the event time. I aggregate abnormal growth rates through times but within states.
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Table 2: Year of Elimination of State EIG Taxes

Date States Date States

Prior to 1976 Alabama, Arkansas, Florida, 1988 Idaho
Georgia, Nevada 1991 Rhode Island

1976 New Mexico 1992 South Carolina, Wisconsin
1977 Utah 1993 Michigan
1979 North Dakota 1997 Massachusetts
1980 Arizona, Colorado, Vermont, 1998 Kansas

Virginia 1999 Delaware, North Carolina
1981 Missouri 2000 Mississippi, New York
1982 California, Washington 2001 Montana, South Dakota
1983 Illinois, Texas, Wyoming 2003 New Hampshire
1985 West Virginia 2004 Louisiana
1986 Maine, Minnesota 2005 Connecticut
1987 Oregon

Source: Conway and Rork (2004).

Define cagi(τ1, τ2) as the cumulative abnormal growth rate from τ1 to τ2 in state i, i.e.

the sum of the included abnormal growth rate,

cagi(τ1, τ2) =

τ2∑
τ=τ1

agi,τ . (25)

I study these cumulative abnormal growth rate over different periods, or event windows:

I consider a short-term event window around and immediately after the event, i.e. τ1 = 0

and τ2 = 5; and a long-term window, which covers the ten-year interval from τ1 = 10 to

τ2 = 19. I construct a standard test statistic by dividing the cumulative absolute growth

rate in state i by an estimate of its standard deviation (i.e. the sample standard deviation):

this statistic is assumed to be unit normal in the absence of abnormal performances

(MacKinlay, 1997).

5.2.3 Results and Limitations

Results are summarised in Table 3. The results of this analysis support the hypothesis

that rising inequality, here proxied by the elimination of the EIG taxes, has short-term

positive effects on innovation, but long-term negative effects. Out of our sample of 19

states, almost all of them experienced a faster than average increase in the growth rate of

patents granted in the five-year windows following the event (with a significant positive

change for more than 53% of them). However, ten years after the event, patents were

growing at a slower rate than the national average for almost 75% of the states in the

sample (37% of all states in the sample experienced a significant slow-down).
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Table 3: Cumulative Abnormal Growth Rates

State
Short-Term Long-Term
cagi sdi cagi sdi

California 0.510∗ (0.133) -0.657∗ (0.149)
Colorado 0.066 (0.226) -0.545 (0.183)
Idaho 2.810∗∗∗ (0.489) -1.054∗∗∗ (0.137)
Illinois 0.440∗∗∗ (0.072) -0.822∗ (0.160)
Maine 1.273∗ (0.340) -0.600 (0.283)
Minnesota 0.612∗ (0.181) -0.820∗∗∗ (0.092)
New Mexico -0.005 (0.561) -0.210 (0.208)
North Dakota 0.246 (0.392) 1.488 (0.566)
Oregon 0.709∗ (0.225) -0.756∗ (0.185)
Rhode Island 1.257∗∗ (0.310) -0.661∗∗ (0.232)
South Carolina 0.417∗∗ (0.090) 0.009 (0.000)
Texas 0.645∗∗∗ (0.055) -0.984∗∗ (0.194)
Utah -0.242 (0.183) -0.153 (0.213)
Vermont 1.031 (0.443) 0.451 (0.318)
Virginia -0.036 (0.116) -0.652 (0.176)
Washington 0.616 (0.222) -0.238 (0.190)
West Virginia 1.043∗∗ (0.313) -0.266 (0.447)
Wisconsin 0.250 (0.133) -0.377 (0.000)
Wyoming 2.165 (0.929) 0.028 (0.516)

cagi stands for cumulative abnormal growth rate in state i.

sdi stands for standard deviation in state i.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 based on one-side tests.

This analysis is only suggestive, in part because the elimination of EIG taxes is a very

imprecise proxy for changes in the level of inequality in a state. Moreover, the date of

the effective elimination may not be the best indicator: first, as noted by Conway and

Rork (2004), many states reduced their EIG taxes during the period analysed here even

if they did not eliminate them; second, it is likely that there was a significant lag between

the time at which the decision was made and when the change become effective; finally,

many of these changes were clustered around major changes in the federal tax law.

Whereas we have analysed the cumulative abnormal growth rate at the state level, one

would usually calculate an average of those to see if the so-obtained abnormal growth rate

is statistical different from zero. Here, the resulting p-value is 0.001 for the short-term

effect and 0.016 for the long-term one, clearly indicating that the cumulative abnormal

growth rate were significantly different from zero. Unfortunately, such test is based on the

assumption that there is no overlaps in the event windows of the included states, which

is clearly not satisfied here (but see MacKinlay, 1997, for some possibile workarounds).
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6 Conclusions

Is inequality good or bad for innovation? In this paper, I have argued, both theoreti-

cally and empirically, that to study the relationship between inequality and innovation

is important to distinguish between inequality stemming from circumstances beyond the

individual’s responsibility, like socio-economic background, and inequality caused by in-

dividual responsible choices, like the level of effort exerted. These two types of inequality,

indeed, are likely to influence innovation in opposite ways. Moreover, I have underlined

that a dynamic perspective is needed, as these two types of inequality influence each

other over time through intergenerational linkages.

I have offered an endogenous growth model, with the novelty that agents differ in

observable wealth and unobservable ability. Due to credit market frictions, inequalities

in wealth translate into unequal opportunities that lead to a misallocation of talent:

poor talented agents are displaced by relatively wealthier but untalented inventors. I

have shown that the number of innovations in any given period positively depends on

the relative reward to a successful inventor, but may negatively depend on the degree

of inequality in the distribution of opportunity. Dynamically, an intertemporal trade-off

emerges: inequality in the reward scheme incentivises innovation in any given period, but

in the presence of bequests this translates into a more unequal distribution of opportunity,

which hampers innovation in the future.

I have also provided indicative evidence in support of these theoretical predictions.

I have found that whereas the quality-adjusted number of patents in a given year and

US state is uncorrelated with total income inequality, this is the result of a negative

correlation with inequality of opportunity and a positive correlation with inequality of

effort. Moreover, I have shown that, following the elimination of state estate, inheritance,

and gift taxes, most US states experienced a positive abnormal growth rate in the number

of patents granted in the short-run (perhaps due to an increase in the incentives), but a

negative one in the long-run (perhaps due to more unequal opportunities).

I have made many simplifying assumptions to keep the model tractable, e.g. (i) I

assumed that abilities and wealth are uncorrelated, and thus that abilities are also in-

tergenerationally uncorrelated; (ii) I have taken the riskless interest rate and the wage

rate as exogenously given, thus abstracting from important sources of general equilib-

rium effects (see e.g. Grüner, 2003, Inci, 2013, Spiganti, 2018); (iii) I considered only two

types of agent, whereas introducing more types may lead to different policy implications.

Moreover, the empirical analysis lacks a number of important features: (i) I have not

controlled for conditional convergence across states; (ii) due to data limitations, I have

only controlled for two circumstances (parental education and race) and thus nothing

can be said about other sources of inequality of opportunity and, at the same time, the

measure of inequality of effort still contains a certain amount of inequality of opportu-
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nity; (iii) results may suffer from omitted variable bias,31 and, in general, endogeneity

problems may be present; (iv) standard errors are not robust to autocorrelation. I leave

these interesting extensions to future research.

31For example Akcigit et al. (2017) argue that financial development is an important determinant of
innovation; as explained by Panizza (2002), one should compare the results obtained here with those
resulting from a model with more covariates, which may suffer from collinearity problems.
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A Appendix

A.1 Glossary of variables and parameters

Variables and parameters definition

ct,i consumption of the final good
bt,i bequest
δ budget share
λt proportion of talented agent
A wealth endowment
yt final good
α output share
lt labour
xt,m quantity of machine m
Qt,m quality of machine m
pt price of the final good
wt wage rate
rt,m price of machine m
ρi probability of innovating
γ increase in quality after innovation
Rt riskless rate of return
It setup cost
Ds
i repayment in realised state s

V s
i realised payoff of the innovator
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A.2 Proofs and Maths

Monopoly price is a constant markup over cost. Define the point elasticity with respect
to demand as

e =
∂Q

∂P
× P

Q
→ ∂Q

∂P
= e× Q

P
,

where Q is quantity and P is price. Express the profit function of the monopolist as
π = PQ(P )− cost(Q(P )) so that the FOC with respect to price is

|e|
|e| − 1

×MC = P ?.

Here, MC = ψ and e = −1/(1− α) and thus rm = ψ/α.

Proof of Proposition 1. Below, we derive the various contracts that banks offer to given
wealth classes. The proofs are similar to any adverse selection model in financial markets
(e.g. Grüner, 2003, Jaimovich, 2011, Inci, 2013).

For generality, we do not impose the repayment in the failure state equals to zero:
nevertheless, given limited liability, this must be non-positive. A general contract then is

σz(A,Ω) =

[
σH(A,Ω)
σL(A,Ω)

]
=

[
DS
H(A,Ω) DF

H(A,Ω)
DS
L(A,Ω) DF

L (A,Ω)

]
, (A.1)

where DS
i and DF

i are the repayments to the bank by the i-type agent in the success
and failure state, respectively. Let the net payoff of an i-type innovator in the success
state be given by V S

i = π (Ω)−DS
i (A,Ω)− ei; limited liability implies V S

i ≥ 0. Let the
net payoff of an i-type innovator in the failure state be given by V F

i = −DF
i (A,Ω)− ei;

limited liability implies V F
i ≥ −ei. Thus, the expected payoff of an innovator, is

Vi(A,Ω) ≡ ρiV
S
i + (1− ρi)V F

i , ∀i = {H,L}.

The expected payoff of an agent who becomes a worker is Wi(A,Ω) ≡ w + RA, ∀i =
{H,L}: we call this payoff “the outside option” to innovation.

The zero-profit conditions from separating contracts are

ρH
(
π (Ω)− V S

H

)
− (1− ρH)V F

H = R(I − A) (A.2a)

ρL
(
π (Ω)− V S

L

)
− (1− ρL)V F

L = R(I − A), (A.2b)

where the first line refers to talented agents, and the second one to untalented agents
with wealth A. For given levels of VH and VL, respectively, the corresponding iso-profit
lines of the borrowers are

V̄H = ρHV
S
H + (1− ρH)V F

H (A.3a)

V̄L = ρLV
S
L + (1− ρL)V F

L . (A.3b)

The zero-profit condition from a pooling contract is given by

ρAD
S + (1− ρA)DF = R(I − A), (A.4)

where DS and DF are repayments of a random borrower with wealth A in the success
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and failure state, respectively, and ρA is her Bayesian probability of success.
The zero-profit conditions in (A.2) and groups of iso-payoffs in (A.3) are drawn in

Figure A.1a. Each zero-profit condition ZPCi has the same slop as the corresponding iso-
profit IPi; agent’s expected payoff is increasing as we move north-east, bank’s profits are
increasing as we move south-west. Imagine a bank offering two distinct contracts each on
a zero-profit condition: the untalented agent would always pretend to be talented. Indeed,
it is impossible to find a menu of contracts such that the zero-profit conditions hold and
the untalented agents do not prefer the contract designed for the talented innovators.

Which contract can the banks then offer? It turns out that the equilibrium contract
differs depending on the wealth class of the agents. Focus on Figure A.1b, where the
outside option to innovation is given by the point σ1. The iso-profit curve for a talented
and an untalented agent passing through this point are labelled IPH and IPL, respectively.
From the iso-profits in (A.3), we know that the iso-profit of the untalented agent is
steeper. The banks could then offer any contract on the north-west of σ1, like σ2: under
any reasonable belief, such a contract would attract only talented agents, and since we
are below the zero-profit condition with only talented agents (not shown but it would be
above ZPCHL), the deviating bank would make positive profit. But any contract offered
in this area can be undercut by another contract on its left. Due to limited liability,
however, we cannot move further west than V F = 0, like in σ3. But, similarly, σ3 can
be undercut by any contract offering slightly better repayment in case of success. If such
contract is below the zero-profit conditions with both types, ZPCHL, a deviating bank
would still make positive profits. Thus, undercutting goes on until banks make zero-
profit, like in σ?HL, at which point no profitable deviation exists. Since this equilibrium
pooling contract is on the vertical axis and lies on the zero-profit condition with both
types given by (A.4), it follows that

σ?HL(A,Ω) =

[
R(I − A)/ρA 0
R(I − A)/ρA 0

]
. (A.5)

w+RA VF
w+RA

VS

ZPCL

ZPCH

IPL

IPH

(a) No Separating Contract

w+RA VF

w+RA

VS

ZPCHLIP ′
L

IP ′
H

σ ⋆
HL

IPL

IPH

σ⋆

σ2

σ3

45 ∘

(b) Pooling Contact

Figure A.1: Contracts
Notes. IPi are iso-payoffs, ZPCi are zero-profit conditions.

Now consider the situation illustrated in Figure A.2a. Agents are wealthy enough, so
that their outside option is better than any pooling contract on the zero-profit condition
with both types (not shown). A contract like σ1 cannot be an equilibrium: a deviating
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bank could offer any contract in the area between IPL, IPH , and ZPCH : such contract
would be accepted by talented agents only, and would thus entail positive profits. The
equilibrium contract must thus lie on ZPCH , whose equation is given in (A.2a). However,
this time we have a continuum of equilibria in between [σ2,σ

?
H ]. For simplicity, we choose

to focus on the contract on the vertical axis,

σ?H(A,Ω) =

[
R(I − A)/ρH 0
R(I − A)/ρH 0

]
, (A.6)

but this is without loss of generality since all these contracts entail the same expected
payment and the same occupational choices.

Consider now Figure A.2b, which represents a wealth class for which banks can offer
neither the zero-profit pooling contract σ?HL nor the separating contract σ?H . The pooling
contract on the zero-profit condition cannot be offered because it yields an expected pay-
off that is always lower than the outside option. A separating contract on ZPCH cannot
be offered because it would also be accepted by untalented agents. Can the separating
menu of contract [σ2, σ1]

T be offered? Untalented agents are indifferent between σ1, σ2,
and their outside option, so, by assumption, they choose to stay out of the innovation
sector. Talented agents strictly prefer σ2 to σ1 and the outside option, and thus accept
the contract. If banks can offer only loan contracts, then this menu of contract is an equi-
librium in which banks make positive profits, since σ2 is below the zero-profit condition
with only talented agents, and untalented agents do not apply for loans.32 This is the
equilibrium contract we consider in the main text.

w+RA VF

w+RA

VS

45 ∘ IPL

IPH

ZPCH

σ∘

σ2

σ ⋆
H

(a) Separating Contract

w+RA VF

w+RA

VS

45 ∘
IPL

IPH

ZPCH

ZPCHL

σ∘

σ2

(b) Profitable Separating Contract

Figure A.2: Separating Contracts
Notes. IPi are iso-payoffs, ZPCi are zero-profit conditions.

Assume for a moment that banks are not limited to loan contracts alone. Then banks
can undercut each other by offering a contract to the talented agent that is slightly above
σ2 but still below ZPCH , and by paying lenders in both states of the world something
more than the usual interest on deposits. Undercutting goes on until banks make zero-
profit on these contracts, like [σ3, σ4]

T in Figure A.3. Since banks make profits on σ3

32Indeed, there is no profitable deviation. A deviation contract below IPL is not accepted by anyone;
one above IPL but below IP ′H is only accepted by untalented agents; a contract with V F < 0 would
violate limited liability; any pair of contracts above IP ′H would be accepted by everyone but would incur
losses because it would be above the zero-profit condition with both types.
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and losses on σ4, a Nash player would cancel σ4: since the other banks are still offering
it, the deviating bank would be better off. A solution to this non-existence problem, is
to impose a Wilson’s (1977) equilibrium concept, where players are non-myopic rational.
In a Wilson’s (1977) world, the deviating bank would take into account the effects of its
action on the actions of other banks. The non-myopic player knows that other banks
would react to the cancelling of σ4 by withdrawing σ4 as well, and thus would incur
losses: as a consequence, it would not deviate in the first place. Whether I impose a
Nash-Bertrand equilibrium concept with a restricted set of contracts, or this Wilson’s
(1977) equilibrium concept with a larger set of feasible contracts, the qualitative results
are unchanged.

w+RA VF

w+RA

VS

45 ∘
IPL

IPH

IP ′
H

IP ′
L

ZPCH

ZPCHL

σ∘

σ2 σ3

σ4

Figure A.3: Wilson’s (1977) Separating Contract
Notes. IPi are iso-payoffs, ZPCi are zero-profit conditions.

Given the contracts derived above, and the participation and incentive compatibility
constraints given in the main text, occupational choices are trivial.

Proof of Lemma 1. Notice that

∆(A,Ω) =


0, A ≤ Ae;

(ρH − ρL) (π −R(I − A)/ρ̄) , A ∈ [Ae, AL] ;

(w +RA) (ρH − ρL) /ρL, A ∈ [AL, AHH ] ;

ρHπ −RI − w, A ≥ AHH .

(A.7)

By visual inspection of (A.7), the talent premium is (i) unaffected by w for the working
and lemons-class, strictly increasing in w for the riches, and strictly decreasing in w for
the unconstrained-class; (ii) independent of R for the working-class, strictly decreasing
in R for the lemons-class, strictly increasing in R for the rich-class, and again strictly
decreasing for the unconstrained agents; (iii) weakly increasing in the average quality of
the machines at the beginning of the period (since the expected profits from innovations
are increasing in the quality of the machines); (iv) weakly increasing in A both within
and across classes (note that the talent premium is continuous across classes, and weakly
increasing within classes).

Proof of Lemma 2. (i) From (14a), it is clear that Ae is strictly decreasing in π and AL
is strictly increasing in π: thus, since π > π′, Ae < A′e and AL > A′L. This means that
there are more agents in the lemon-class and fewer agents in the working-class under π
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than under π′, since everything else is equal. This implies nH ≥ n′H and nL ≥ n′L. Since
the growth rate is increasing in the number of innovators, the economy with π grows
faster than the economy with π′, even if some of the additional innovators are of low
ability. Moreover, note that π is strictly increasing in Q, and thus more technologically
advanced economies grow faster. (ii) If everything but the wealth distributions is equal,
the wealth thresholds are the same. If Φ(A) first-order stochastically dominates Φ′(A),
then by definition Φ(A) ≤ Φ′(A) for all A, with strict equality for some A. Therefore,
surely Φ(Ae) ≤ Φ′(Ae), and thus nH ≥ n′H .

Proof of Lemma 3. (i) If Ã < Ae, by the definition of single mean-preserving spread
Φ (Ae) > Φ′ (Ae), and thus nH < n′H . However, also Φ (AL) > Φ′ (AL), and thus nL ≷ n′L
depending on the shapes of the distributions. (ii) If Ã = Ae, Φ (Ae) = Φ′ (Ae), and
thus nH = n′H . Moreover, Φ (AL) > Φ′ (AL), and thus nL > n′L. (iii) If Ae < Ã ≤ AL,
Φ (Ae) < Φ′ (Ae), and thus nH > n′H . Moreover, Φ (AL) ≥ Φ′ (AL), and thus nL > n′L.
(iv) If AL < Ã, Φ (Ae) < Φ′ (Ae), and thus nH > n′H . However, also Φ (AL) < Φ′ (AL),
and thus nL ≷ n′L depending on the shapes of the distributions.

Proof of Proposition 2. If n and ρ are constant over time, then Qt is growing at the
constant rate g = γρn. Since lt = 1,∀t by assumption, from equation (8) it follows that
πt also grows at rate g. In each period, there are ρn machines produced under monopoly
with demand function given by (7), and 1 − ρn machines produced under competition
with demand function given by (9). Therefore, as shown in Appendix B.2,

yt = l

(
α

ψ

) α
1−α (

ρn
(
α

α
1−α − 1

)
+ 1
)
Qt, (A.8)

which implies that yt also grows at rate g. Since wt is a linear function of yt (see Appendix
B.2), it also grows at rate g. In equilibrium, the market for the final good must clear,
which means that total consumption is equal to output. Given the utility function in
(1), agents optimally consume a fraction 1 − δ of their end-of-period wealth, and they
bequeath the remaining fraction δ. This latter fraction accounts for total (and average)
wealth of the new generation: thus, aggregate consumption, bequests, and average wealth
also grow at rate g.
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Figure A.4: No Innovation Trap
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B Miscellaneous Algebra

B.1 Growth Rate

The growth rate of average quality under full information, gFB, is greater than the growth
rate in the constrained equilibrium, g, if and only if

γρHλ > γρn

ρHλ > ρHnH + ρLnL

ρH (λ− nH) > ρLnL
ρH
ρL

>
nL

λ− nH
ρH
ρL

>
(1− λ) [Φ (AL (Ω))− Φ (Ae (Ω))]

λΦ (Ae (Ω))

B.2 Final Good Production

In equilibrium, there are ρn machines produced under monopoly with demand function
given by (7), and 1 − ρn machines produced under competition with demand function
given by (9). Therefore ∫ 1

0

Q1−α
t,m xαt,mdm =

=

∫ 1

0

Q1−α
t,m

[
ρn
(
xMt,m

)α
+ (1− ρn)

(
xCt,m

)α]
dm =

=

∫ 1

0

Q1−α
t,m

[
ρn

((
α2pt
ψ

) 1
1−α

Qt,mlt

)α

+ (1− ρn)

((
αpt
ψ

) 1
1−α

Qt,mlt

)α]
dm =

=

∫ 1

0

Qt,ml
α
t

[
ρn

(
α2pt
ψ

) α
1−α

+ (1− ρn)

(
αpt
ψ

) α
1−α
]
dm =

=

∫ 1

0

Qt,ml
α
t

(
αpt
ψ

) α
1−α [

ρnα
α

1−α + (1− ρn)
]
dm =

= lαt

(
αpt
ψ

) α
1−α [

ρn
(
α

α
1−α − 1

)
+ 1
] ∫ 1

0

Qt,mdm =

= lαt

(
αpt
ψ

) α
1−α [

ρn
(
α

α
1−α − 1

)
+ 1
]
Qt

The production of final good in the constrained equilibrium is thus

y = l

(
αp

ψ

) α
1−α (

ρn
(
α

α
1−α − 1

)
+ 1
)
Q ≡ l (αp/ψ)

α
1−α Q̂,

where
Q̂ ≡

(
ρn
(
α

α
1−α − 1

)
+ 1
)
Q.

Note that Q̂ < Q, since
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•
(
α

α
1−α − 1

)
∈ (−0.63, 0)

•
(
ρn
(
α

α
1−α − 1

)
+ 1
)
< 1

Also
∂Q̂t

∂ntρt
= Qt−1

{
γ +

(
α

α
1−α − 1

)
(1 + 2γρtnt)

}
which is negative if

γ +
(
α

α
1−α − 1

)
(1 + 2γρtnt) < 0

γ <
(

1− α
α

1−α

)
(1 + 2γρtnt)

γ(
1− α

α
1−α

) < (1 + 2γρtnt)

1

2
(

1− α
α

1−α

) − 1

2γ
< ρtnt

Q̂ evolves over time according to(
ρtnt

(
α

α
1−α − 1

)
+ 1
)

(1 + γρtnt)Qt−1 −
(
ρt−1nt−1

(
α

α
1−α − 1

)
+ 1
)
Qt−1(

ρt−1nt−1

(
α

α
1−α − 1

)
+ 1
)
Qt−1

.

Obviously, if ρtnt = ρt−1nt−1, then Q̂t grows at the same rate as Qt.
Combining the FOCs in (4) with the production function in (2),

(1− α)pt
yt
lt

= wt → (1− α)pt
yt
wt

= lt

αpt
yt
kt

= rt → αpt
yt
rt

= kt

where kt is an aggregate input considering all machines and rt is the weighted average
price of these machines. Thus

yt =

(
(1− α)ptyt

lt

)1−α(
αptyt
rt

)α
y1−1+α−αt =

(
(1− α)pt

lt

)1−α(
αpt
rt

)α
1 =

(
(1− α)pt

lt

)1−α(
αpt
rt

)α
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B.3 Evolution of Wealth

B.3.1 Evolution of Average Wealth

Consider an economy with average wealth equal to Āt. Given the wealth transition
equations in the main text, average wealth in t+ 1 is given by33

Āt+1 = δ
[
wt +RĀt,W

]
Φ (At,e) +

+
{
δ
[
$(Ωt)−Rt(It − Āt,L)/ρ̄− e

]
λρH + δ

[
$(Ωt)−Rt(It − Āt,L)/ρ̄

]
(1− λ)ρL

}
× [Φ (At,L)− Φ (At,e)] +

+
{
δ
[(
wt +RtĀt,R

)
/ρL − e

]
λρH + δ

[
wt +RtĀt,R

]
(1− λ)

}
[Φ (At,HH)− Φ (At,L)] +

+
{
δ
[
$(Ωt)−Rt(It − Āt,U)− e

]
ρH + δ

[
wt +RtĀt,U

]
(1− λ)

}
[Φ (It)− Φ (At,HH)] +

+ {δ
[
$(Ωt) +Rt(Āt,SR − It)− e

]
λρH + δ

[
Rt(Āt,SR − It)

]
λ(1− ρH)+

+ δ
[
wt +RtĀt,SR

]
(1− λ)} [1− Φ (It)]

where Āt,i is the average wealth of agents in the wealth class i = {W,L,R, U, SR} (i.e.
working, lemon, rich, unconstrained, and super-rich, who are the unconstrained agents
who can completely self-finance themselves).

B.3.2 Evolution of Wealth

In the working class, the wealth transition equation is the same for everybody, δ[wt +
RtAt].

At the wealth threshold Ae, the talented agent is indifferent between exerting and
non exerting effort with the pooling contract; the untalented agent is strictly better
off accepting the contract than taking the outside option (because she is going to be
indifferent in AL)

B.4 Assumptions and Parametrization

Assumption 1 is satisfied in the parametrization if

w ∈
(
ρL$ −RI, ρL$ −RI

ρL
ρ̄

)
.

AL > Ae requires

I <
(ρH − ρL)(ρ̄$ − w)− (ρ̄− ρL)e

R(ρH − ρL)
←→ e <

(ρH − ρL)(ρ̄$ −RI − w)

(ρ̄− ρL)
,

whereas Ae > 0 requires

I >
ρ̄(ρH − ρL)$ − ρ̄e

R(ρH − ρL)
←→ e >

(ρH − ρL)(ρ̄$ −RI)

ρ̄
.

33In addition, banks make positive profits on the contracts offered to rich talented agents. These are
not considered here.
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C Extensions

In this section, we briefly discuss how different extensions would change the main model.

C.1 The Case of a Single Wealth Class

Here, we consider the case where all individuals have the same wealth, Ā. There are
different static equilibria that can be considered: (i) if Ā < Ae all agents become work-
ers, (ii) if Ā ∈ [Ae, AL] all agents become innovators, and (iii) if Ā > AL, all talented
individuals become innovators, whereas the untalented agents become workers.

In case (i), there is no innovation in the economy, and thus the quality of machine is
constant over time, as is the wage. At the end of their life, individuals have wealth equal
to RĀ+ w, of which they consume a proportion 1− δ and bequeath the remaining δ. If
the bequest is smaller than Ā, eventually wealth disappears, and all agents receive δw at
their birth. If the bequest is greater than Ā, i.e. Ā < δw/(1−δR), then agents eventually
accumulate enough wealth to enter (ii).

In case (ii), everyone is an innovator, and thus the average quantity of the machine
increases by a factor γρ̄ (greater than first-best). At the end of the period, there are
three lineages: failed innovators, successful talented innovators, and successful untalented
innovators. On average, talented agents bequeath more than untalented ones. Depending
on the size of δ, an economy may accumulate wealth or not.

In case (iii), all talented agents become innovators, whereas untalented agents become
workers. This is first-best. At the end of the first period, there are three classes af
agents: workers (i.e. untalented individuals), failed innovators, and successful innovators.
Each of this agent has an end-of-period wealth equal to, respectively, w + RĀ + y(A),
R(Ā− I) + y(A), and $ +R(Ā− I)− x(A) + y(A). Thus a non degenerate distribution
of wealth is created starting from the second period.

C.2 The Limited Pledgeability Case

In this section, I briefly analyse how the model is modified if adverse selection is replaced
by limited pledgeability.

Agents are still heterogeneous in talent and wealth, but there is perfect information
on both. However, agents can only pledge up to a fraction ν ∈ [0, 1] of their revenues in
case of success, whereas the remaining 1 − ν fraction can be diverted. This means that
any equilibrium credit contract must satisfy the following borrowing constraint

Rbi(A) ≤ νρi$(Ω), (A.10)

where bi(A) is the amount borrowed by a type-i agent with wealth A.
Assume (A.10) to be binding, and assume that it is optimal for an agent to self-finance

themselves as much as possible, so that bi(A) = (I −A). Thus, agent can borrow to run
a risky innovative project if and only if the following borrowing constraint is satisfied,

R(I − A) ≤ νρi$(Ω)→ −A ≤ νρi$(Ω)

R
− I → A ≥ I − νρi$(Ω)

R
. (A.11)

This means that talented and untalented agents with wealth lower than AH and AL,
respectively, will not be able to become innovators, where these wealth thresholds are
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given by

Ai = I − νρi$(Ω)

R
. (A.12)

An agent will only invest if they are willing to do so. By becoming an inventor, a
type-i agent expects an end-of-period wealth equal to ρi$(Ω)−R(I−A); by becoming a
worker, this would be equal to w+RA. Thus, an agent is willing to borrow and become
an innovator if and only if her participation constraint is satisfied,

ρi$(Ω)−R(I − A) ≥ w +RA→ ρi$(Ω)−RI ≥ w. (A.13)

Assume (A.13) is satisfied with a strict inequality for pL (meaning that it is first-best
efficient in a given period to have everyone innovating).34 As a consequence, we can
partition the wealth distribution into three wealth classes. First, all agents with A < AH
are in the lower-class: since they cannot borrow, they all become workers. Agents with
A ∈ [AH , AL] are in the middle-class, where talented agents innovate whereas untalented
agents work. Finally, agents with A > AL are in the rich-class, where everybody becomes
an innovator.

D General Equilibrium Analysis

In this section, I first carry the model to a general equilibrium by defining the market
clearing conditions for the credit and labour markets and thus finding the endogenous
wage and risk-free interest rates. Due to the complexity involved in analysing the general
equilibrium analytically, I instead provide several quantitative illustrations. The aim of
these illustrations is not to develop a comprehensive quantitative evaluation but to better
understand the mechanism of the model, to highlight the dynamic effects of different
initial conditions, and to suggest potential policy interventions.35

D.1 Endogenous Prices

As explained in Section 4.2.2, the total number of innovators is given by equation (18a),
and their average probability of success is given by equation (18b). Each of these inno-
vators needs I units of capital for the initial investment, and thus the total demand for
capital is n (Ω)× I. The total availability of funds is given by aggregate wealth, Ā, and
thus the credit market clears when

Ā = n× I. (A.14)

Finally, the final good producer demands l (Ω) workers, as given by (5a). Since there
are 1− n (Ω) workers, the labour market clears when

l (Ω) = 1− n (Ω) . (A.15)

The general equilibrium of this economy is found by solving the set of four equations

34If it is not satisfied, all agents prefer to become workers. If it is satisfied only for ρH , then only
talented wealthy agents become innovators, everybody else become a worker.

35Simulations are run using Numpy (Walt et al., 2011); graphs are drawn in Matplotlib (Hunter, 2007).
I used Python 2.7.
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(18a), (18b), (A.14), and (A.15) in the four unknowns R,w, ρ, and n. This is done
computationally in the following quantitative illustrations.

D.2 Parametrization

A period corresponds to 30 years. I normalize the price of the final good, pt = 1,∀t,
and Q0 = 1. I take α = 1/3, so that the share of national income spent on machines
is approximately equal to the share of capital. I set the cost of producing one machine
to ψ = 0.1α, and ι = 0.3. I match the US transfer-wealth ratio of 20% documented by
Modigliani (1988) by imposing δ = 0.2. I set the proportional increase in productivity
resulting from innovation to γ = 1, the probability of success of a talented innovator to
be equal to 0.03 per annum (i.e. ρH ≈ 60%), and the fraction of talented agents to be
λ = 1/3. Untalented innovators are assumed to be half as likely to succeed as talented
ones over their lifetime, ρL ≈ 30%.

I assume initial wealth to be distributed according to a mixture of an atomic and
a continuous distribution, φ0(A) = θφ0,1(A) + (1− θ)φ0,2(A), where θ is the mixture
proportion. The atomic distribution concentrates its unit mass of agents at zero, and
therefore accounts for those individuals with no inherited wealth, i.e. φ0,1(0) = 1. The
continuous distribution accounts for the strictly positive values of initial wealth, and is
specified as a lognormal model, i.e. φ0,2(A) is such that ln(A) ∼ N (µ, σ2), A > 0. This
mixture allows a comprehensive description of the overall distribution, including the spike
at zero that it is observed in most sample data on wealth (see Clementi and Gallegati,
2016, for a review on empirical evidences and parametric models). The corresponding
cumulative distribution function reads Φ0(A) = θΦ0,1(A) + (1− θ) Φ0,2(A), with

Φ0,1(A) =

{
0, if A < 0

1, if A ≥ 0
Φ0,2(A) =

{
0, if A ≤ 0
1
2

+ 1
2

erf
[
lnA−µ√

2σ2

]
, if A > 0,

where erf is the Gauss error function. It follows that

Φ0(A) =


0, if A < 0

θ, if A = 0

θ + (1− θ)
{

1
2

+ 1
2

erf
[
lnA−µ√

2σ2

]}
, if A > 0.

I set θ = 0.25 and σ ≈ 1.80. As a consequence, 25% of the agents at time 0 have
zero wealth, and the initial wealth Gini coefficient is 0.847. These are in line with the
corresponding US statistics found by Clementi and Gallegati (2016).

D.3 Quantitative Illustrations
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(a) Stagnation

(b) Stable Growth (c) Perfect Information

Figure A.5: Long-Run Equilibrium
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