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Hierarchical Graphical Model

for Learning Functional Network

Determinants

Emanuele Aliverti, Laura Forastiere, Tullia Padellini,

Sally Paganin and Ernst Wit

Abstract Analysis of brain functionality is a stimulating research topic from both a

neuroscientific and statistical perspective. Although several works have improved our

comprehension of the relationship between subject-specific information and brain

architecture, many questions remain open. The aim of this paper is to relate functional

connectivity patterns with subject-specific features and brain constraints, such as age

and mental illness of the subject and lobes membership for brain regions, and illustrate

whether these phenotypes affect the neurophysiological dynamics. To address such

goal we consider a modular approach that allows to remove noise from the fMRI

data, estimate the functional dependency structure and relate functional architecture

with structural and phenotypical information.
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1 Introduction

In recent years, neuroscience has been a great source of inspiration in statistical

methodology (e.g., [5, 19, 32]). The reason behind this interest, beside the obvious

fascination with the quest for insights on how the brain works, is that neuroimaging

modeling is at the crossroad between spatial statistics, time series, network analysis

and high dimensional inference, thus allowing for an exciting interplay between

different branches of statistics and other sciences. An area that is increasingly growing

is the analysis of functional connectivity, which seeks to identify brain areas that

behave similarly, potentially despite their spatial proximity or their membership to

the same lobes and hemisphere.

The focus of this work is on estimating the relation between phenotypes and

anatomical structure with functional brain behavior, employing functional magnetic

resonance imaging (fMRI) as a measure of brain activity.

There is a rich literature related to the statistical study of functional connectivity

patterns within the brain. Several approaches focus on representing the functional

relationship among brain regions by means of a network, whose edges connect areas

of the brain sharing similar behaviors in terms of functional properties. Nodes of

the network are usually defined as regions of interest (ROIs), typically provided by

experts in neuroscience (e.g., [7, 15]). Alternatively, ROIs can be identified with

data-driven approaches [12] recovering lower dimensional structures in the high-

dimensional fMRI data, such as Principal Component Analysis [3] or Independent

Component Analysis.

A common approach to determine the functional edges interconnecting brain

regions consists in thresholding the empirical correlations between fMRI series. The

functional connectivity among subjects is then analyzed by assessing network prop-

erties (e.g. small-world, scale free connectivity) and comparisons are made using

network summary statistics; see [10, 25] and references mentioned therein for a gen-

eral review of these methods. A naive correlation-based approach, however, provides

an incomplete representation of the brain’s functional connectivity, since it does not

take into account covariates and has been shown to produce nonzero estimates for the

correlation of independent brain regions [32]. Furthermore, when the number of brain

regions is relatively big with respect to the lengths of the fMRI series, the empirical

estimator of the correlation matrix may exhibit poor performance, especially if the

covariance matrix is close to singularity.

Several alternative approaches have been investigated to obtain more reliable

representations and robust descriptions of the functional networks, such as wavelet

based correlation analysis [1] and graphical models [14], along with a broad discus-

sion about properties of the resulting networks. Nevertheless, these approaches still

fail to acknowledge the impact of covariates, and more in general, little work has

been done in assessing the relation between such networks and brain structure or

subject-specific covariates.

We address such issue by proposing a sequential hierarchical approach, which

estimates the functional connectivity from denoised signals and then relates it to
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observed phenotypes. Although we build on hierarchical models in defining the

probabilistic representation of the available quantities, we bypass the joint estimation

procedure in order to provide a fast exploratory method, able to assess the relationship

between phenotypes, brain constraints and neurophysiological dynamics. For the

model fitting we adopt a modular strategy that leverages available methods in the

literature. The modularization procedure consists of decomposing the hierarchical

model in three sub-models: (i) a smoothing procedure to remove noise from the fMRI

signal, (ii) a graphical model which encodes the functional brain connectivity and

(iii) a regression model investigating the relation between phenotypes and functional

connectivity patterns. Our approach retains ease of interpretation while accounting

for functional relations across all the subjects; moreover, the robustness of inferential

conclusions is assessed by means of a multiscale analysis.

The rest of the paper is organized as follows. In the following Sect. 2, we introduce

the notation and define the general hierarchical specification of our modular approach.

In Sect. 3 we detail the methods used in each module, along with the application to

the data. Finally, Sect. 4 is dedicated to final remarks and our conclusions.

2 Hierarchical Model

Our motivating application is drawn from the NKI1 pilot study, part of the “Enhanced

Nathan Kline Institute-Rockland Sample project” conducted over 24 healthy sub-

jects; the dataset used in this application was kindly provided by Greg Kiar and Eric

Bridgeford (NeuroData—Johns Hopkins University). The resting

state fMRI raw measurement have been preprocessed using the ndmg pipeline [24]

and the C-PAC software; for additional details on this procedure, see
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https://fcp-indi.github.io/. Two subjects were removed from the anal-

ysis due to missing data in several features, and the final sample size for this appli-

cation is equal to n = 22 subjects.

For each subject i = 1, . . . , 22, fMRI signals referred to v = 1, . . . , 70 regions

of interest (ROI) of the brain were collected at t = 1, . . . , 404 equally spaced times,

with a time span between measurements of 1400 ms. Let Yi t = (yi t[1], . . . , yi t[70])

denote the vector of length 70 encoding the fMRI measurement for subject i at

time t , for all the ROIs considered jointly, with generic element yi t[v] referred to the

v-th ROI. Along with fMRI data, some additional features are available for every

subject, such as age, mental status and handedness, which comprise the vector xi for

each i = 1, . . . , 22. Some features related to the brain architecture, such as the lobe

membership of each ROI, are also provided; these covariates are denoted as zv , for

v = 1, . . . , 70. Although each subject was scanned twice, we decided not to use data

from the second scan, as it was not available for every subjects.

In order to study the presence and the type of relation between the measured

brain signals and the available features, we consider a global generative mechanism

for the observed quantities, summarized in Fig. 1. We assume that the fMRI data

stems from a generative process in which subject-specific features and brain anatomy

affect the functional brain behavior, and such characteristics are associated with a

set of parameters θ = {θx , θz} with elements referring respectively to the observed

subject-specific features and ROI-specific properties. Furthermore, we suppose that

the observed covariates affect the dependence structure among the functional time

series, which we characterize by a graphical model or, equivalently, by its associated

adjacency matrix Ki . In the neuroscientific literature, Ki covers a central role, since it

characterizes the functional network among brain regions (e.g., [10]). In our specific

setting, each node of the functional network—or, equivalently, each row and column

of the associated adjacency matrix—represents one of the 70 regions of interest.

The edges summarize dependence among ROIs in a functional perspective; if two

nodes are connected, the corresponding brain regions will mutually influence their

functional activity, resulting in cross-correlated measurements of the clean signal,

that we denote with Y ∗
i t . If we suppose that the true signal can be accurately identified

removing accidental noise from the observed data Yi t , the crucial aim of this appli-

cation is to estimate properly the set of parameters θ , since those quantities measure

the effect of phenothypical variation on the neurophysiological dynamics.

A joint model specification for all the quantities involved in Fig. 1 might be fairly

complicated, since it requires the specification of a joint likelihood for the observed

series Yi t as a function of all the unknown quantities and observed covariates; the

inclusion of subject-specific information within the estimation of the dependency

structure of the functional network is particularly challenging. The same conclusion

holds for a potential joint estimation of the cross-sectional dependencies among the

signal. In this application, we will consider a modular approach for estimating the

model in Fig. 1, in order to provide preliminary insights about the phenotypical effect

on brain functional dynamics, and potentially guide further investigations.

The statistical model in Fig. 1 can be decomposed in stages or “modules”, with

each component specifying a single model for one or more variables at time. For
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every module, several strategies of analysis are feasible, each of which has been

extensively investigated and employed in the neuroscientific literature. We will con-

sider then a separate approach in the estimation process, fitting each module and

plugging-in the results from the previous step in the subsequent procedure. This plug-

in approach, often called modularization [28] or two-step estimation [30], allows to

build a complete model by combining different methods sequentially, with the out-

put of a former stage used as input for the latter. Notable examples of application

of modular approaches can be found in casual inference area with propensity score

[31], pharmacology [6] and meta-analysis [27].

3 Modular Estimation Using Connectome Data

Modularization leads to two noticeable advantages in the estimation process. The

first one is computational: since blocks are estimated disjointly, the parameter space

to be explored in every module is small, and thus we can rely on relatively quickly

estimation routines. This also allows for the possibility to conduct analysis under

different settings in order to validate robustness of the results. The second benefit

is that modularization reduces the effect of model misspecification, since fitting

each step separately mitigates the propagation of error among consecutive steps and,

potentially, reduces the impact of severe errors.

Our approach is particularly general and enables the inclusion of several tech-

niques within each separate module; in the following we describe in details the

modeling strategies adopted in every step along with their application to the data

under investigation. For the ease of illustration, the hierarchical model in Fig. 1 was

discussed from top to bottom, i.e. starting from what inference will focus on and

describing how those quantities relate to the observed data; estimation, instead, will

proceed in the opposite direction, using observed raw data as input to make inference

on the parameters of interest.

3.1 Denoising

We firstly focus on obtaining the signal component from the observed time series

data. Despite the elaborate preprocessing procedures, neuroimaging data are typically

corrupted by noise that masks the true signal; especially with fMRI data, it is common

to filter them before the analysis to increase the signal to noise ratio and hence the

reliability of the results. Recall that Yi t , t = 1, . . . , 404, denotes the multivariate

time series referred to the i-th subject for i = 1, . . . , 22, encoding the fMRI signal

recorded over time. It is reasonable to assume that the path of the series over time

domain is contaminated by some additive random noise that masks the original

properties of the series itself; hence we assume that, at each time t , the observed

fMRI signal for the i-th subject can be decomposed as
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Yi t = Y ∗
i t + εi t i = 1, . . . , 22 t = 1, . . . 404 (1)

where Y ∗
i t is the clean signal and εi t represents the noise component. Noise correction

is a crucial step of mapping resting state signal fluctuations, however which method

is the most appropriate to remove noise from such signal is still an open question,

since it is not clear what the “ground truth” signal consists of when the subject is

not focused on well identified activities [8]. Several methods can be employed to

perform this denoising, for example smoothing splines or total variation (e.g., [16,

Chapter 6]). We opt for a smoothing approach to denoising, and to estimate the clean

signal Y ∗
i t , as denoted in Eq. (1), by means of smoothing splines (e.g., [4]). Let yi t[v]

denote the univariate time series for ROI v in subject i , with v = 1, . . . , 70 and

i = 1, . . . , 22, let y∗
i t[v] denote its smoothed counterpart. The smoothed time series

is the solution to the following minimization problem:

argmin
y∗

i ·[v]

{

T
∑

t=1

(

yi t[v] − y∗
i t[v]

)2
+ λ

∫ (

∂2

∂t2
y∗

i t[v]

)2

dt

}

, (2)

where y∗
i ·[v] = (y∗

i1[v], . . . y∗
i404[v]). Smoothing the signal from each ROI separately,

we neglect the spatial dimension of the fMRI data; however, since our aim is not

focused on modelling the effect of spatial constraints, we did not include such infor-

mation on purpose. This strategy also avoids the potential issues involved with spatial

smoothing, for example changes in the correlation structure of the data and strength-

ening of spurious spatial dependency [2].

The parameter λ in Eq. 2 controls the trade-off between complexity and goodness-

of-fit of the smoothed series, and its choice determines implicitly the amount of noise

we wish to remove. Existing methods for selecting the tuning parameters take into

account the temporal structure of the data, however they are built for noisier fMRI

signals and tend to oversmooth in the case of resting state fMRI [13]. Although it is

reasonable to tune this parameter with automated methods such as Generalized Cross

Validation, we considered conducing a sensitivity analysis with respect to the choice

of this parameter, and evaluate whether inferential conclusions are stable when the

smoothed series capture different trends. In Fig. 2 we reported, for two subjects,

original and smoothed fMRI data referred to a region in the inferiotemporal lobes

of the left hemisphere. Smoothed series are reported with two different levels of

smoothing, respectively λ = 2 and λ = 10. Figure 2 suggests that when the value of

λ is increased, the estimated series become smoother and highlight the large scale

variability, while when λ is fixed to a small value the estimated series tend to follow

the accidental fluctuation.
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Subject 3, lh − inferiortemporal, λ = 10

Subject 3, lh − inferiortemporal, λ = 2
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Fig. 2 An example of the original time series Yi t (solid line) and denoised estimates Y ∗
i t (dashed

line), for subjects 3 and 14 with two different levels of the smoothing parameter λ

3.2 Estimation of the Graphical Model

The dependence structure among the signal measured at different ROI is a key quan-

tity in our model, since it connects the brain constraints and subject-specific features

to the observed fMRI series, and describes the synchronization in brain activity for

each pair of brain regions in each subject. Neuroscientific literature commonly refers

to such structure as functional network, and several methods have been employed

to provide a reasonable estimator for such quantity. A typical approach consists

in representing functional connectivity by means of graphical models; in particular,

Gaussian graphical models are becoming increasingly popular in neuroimaging (e.g.,

[14]), since they are able to capture conditional dependencies between brain regions

with fast estimation routines and robust guarantees [17].
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In order to estimate the functional network among brain regions, we first centered

each smoothed time series with respect to its empirical mean. Assuming that for the

i-th subject, at each time t = 1, . . . , 404, we observe a realization of a 70-variate

Normal distribution with mean vector zero and precision matrix Ωi , conditional

independence can be assessed estimating the precision matrix Ωi . Note that, even if

the normality assumption is violated, Ωi still provides a measure of the association

between the functional series for the i-th subject. A popular and reasonable approach

to estimate a graphical model induces sparsity in the estimation of the precision

matrix Ωi through an ℓ1 penalty, favouring some elements of the estimated matrix to

be shrunken toward zero and providing a well defined estimator when the covariance

matrix is singular [17].

The problem solves, in its general form,

Ω̂i = argmax
Ωi ∈G70

{

log |Ωi | − Tr(Ω
⊺

i Si ) − ξi ||Ωi ||1

}

, (3)

where Gk is the manifold of positive defined matrices of dimension k, Si is the sample

covariance matrix, ξi is a penalization parameter, | · | indicates the matrix determinant

while || · ||1 the ℓ1-norm; see [11, 18] for detailed information on this particular

optimization problem. Let Ki denote the binary version of Ωi , with generic element

ki [u,v] = I(Ωi [u,v] �= 0). Every Ki can be interpreted as the adjacency matrix of the

functional network for subject i , and the generic element ki [u,v] indicates whether,

for subject i , region u and region v are connected, for subjects i = 1, . . . , n and brain

regions u = 2, . . . , 70 and v = 1, . . . , u − 1.

The parameters ξi in Eq. 3 control the sparsity of the resulting matrix, and can be

selected with several information criteria or stability principles [34]. Since we are

assuming that the graphical models stem from the same generative process, we fix

the value of ξi = ξ across subjects. Moreover, the choice of the smoothing level in

the previous module has an important role in determining the characteristics of the

resulting estimated graph, and since we aim to compare inferential conclusions at

different level of the smoothed series, we opted for a fixed procedure in the choice

of ξ .

In choosing the global penalization value, however, standard criteria often selected

over-sparse solutions. Although extra sparsity does not constitute a serious issue in

high-dimensional graphical models, when interest is on describing the functional

networks more conservative configuration are preferred [10]. We restricted the range

of the penalization parameter ξ indirectly, by placing constraints on the resulting

minimum value of the functional networks density, measured as proportion of non-

zero entries of the network’s adjacency matrix. Different values for the minimum

density were tried, ranging in the interval (0.05–0.20), with resulting estimates robust

against different choices of the parameter.

In Fig. 3 we reported the estimated functional network for the same subjects

reported in Fig. 2, using λ = 10 and with a constraint on the functional networks

density to values greater or equal to 0.10. We will use this setting for the remaining of

the discussion, unless explicitly specified. Both functional networks report interesting

patterns, for example a block structure that recalls hemisphere division. However,
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Subject 14 Subject 3

Fig. 3 Estimated functional networks for subjects 3 and 14. Black tiles correspond to edges, white

to non-edges

there are also substantial differences between the two networks, that justify the further

step of our procedure.

3.3 Regression with Covariates

The investigation of the relations between functional connectivity patterns and

observed phenotypes is motivated by the subject-specific differences observed in

the estimated graphs. The inclusion of covariates into the analysis of functional con-

nectivity patterns aims to identify whether brain activity relates with personal fea-

tures and behaviours and whether subject-specific information can provide insights

on observed differences. Recent studies highlighted the relation among connectivity

patterns and, among many others, diseases [33], violent behaviours [9, 29], or gender

[20]. Functional networks, as opposed to structural information, contain important

information regarding dynamical patterns of the brain architecture, and there is a

promising extent of agreement between studies based either on functional or struc-

tural networks (e.g., [10]).

We investigate the relation among functional networks and covariates exploiting

a simple model that encourages the interpretation of its coefficients and is able to

provide interpretable insights on the effect of phenotypes over the structural network.

Differently from standard models for network data—such as ERGM [23] or latent

space models [21]—we want to focus on modeling multiple adjacency matrices

K1, . . . , Kn , instead of a single one.
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We assume that the probability of a connection between each pair l = (u, v)

of brain regions, with u = 2, . . . , 70 and v = 1, . . . , u − 1 in the network Ki can

be modeled using an exponential family, with natural parameters as function of

phenotypical information, such as age, mental status, handedness, and brain-region

specific information, such as lobes membership.

More formally, let Pr(kil = 1) = πil define the vectorised probability to observe

a connection for subject i in the pair of brain regions l, with i = 1, . . . , 22 and

l = 1, . . . , 2415 = (70 × 69)/2. We model the logit of the connection probability

as a function of phenotypical and brain-region information as follow:

logit(πil) = α + θT
x xi + θT

z zl

In particular we considered the following variables:

• subject covariates xi : age of the subject, mental health indicating the pres-

ence/absence/unknown status of a mental problem (absence used as reference

class), handedness with three categories for left/right-handed and ambidextrous

(ambidextrous as reference class).

• edge covariates zl : lobe membership, indicating whether the pair l = (u, v) of brain

regions is in the same lobe (not belonging to the same lobe is taken as reference

class).

The resulting estimates, for a value of the smoothing parameter λ = 10, are reported

in Table 1.

Our empirical findings suggest a strong tendency for brain regions located in the

same lobe to create more connections in the functional network. Moreover, subjects

with a positive mental diagnosis report, on average, a lower probability to observe

connected brain regions, with respect to healthy subjects and given the effect of the

remaining covariates. Individuals whose mental status is not known report, instead, a

higher probability to observe a connection. Handedness of the subjects under investi-

gation is not resulted to be a determinant of functional network. Lastly, the age of the

subjects in this study seems to have an effect in the determination of the connections

Table 1 Estimated coefficients for the GLM model, λ = 10

Estimate Std. Err. z value Pr (> |z|)

(Intercept) −1.805 0.056 −32.225 0.000

Age −0.002 0.001 −2.209 0.027

Hand L −0.005 0.054 −0.084 0.933

Hand R 0.004 0.044 0.087 0.931

Diagnosis YES −0.128 0.034 −3.784 0.000

Diagnosis UNK 0.140 0.032 4.366 0.000

Lobes 0.774 0.026 29.676 0.000
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of the functional network, even though the magnitude of this effect is small enough

to be negligible.

3.4 Multiscale Analysis

In order to assess the robustness of our empirical findings, we performed a multiscale

sensitivity analysis under different settings. The core idea of the multiscale approach

is that whenever a signal can be measured at multiple resolutions, such as different

level of smoothing in our case, information can and should be drawn exploiting all

this information jointly. The principle that there is not one “correct” resolution at

which the analysis should be performed is especially soothing in our context. As

in resting state fMRI, it is not clear how noise may look [8], and it is important to

consider more than just one resolution, or, equivalently, to explore different noise

assumptions.

In the multiscale analysis, we track the evolution of the regression coefficients as

the smoothness level increases. In Table 2, we re-estimated the entire model for dif-

ferent values of λ and evaluate changes in the regression coefficients. Smoother series

(greater value of λ) correspond to sparser graphs; when the smoothness increases,

in fact, the method is able to detect only large scale variations. Since low scale

dependency are suppressed, the resulting graphical models tend to be more sparse.

In general, results for the sensitivity analysis tend to validate findings presented in

the previous section, and estimated coefficient in Table 2 seems coherent with what

shown in Table 1.

In particular, the impact of lobes and diagnosis is quite stable across different

smoothing levels, which can be interpreted as an indication of robustness with respect

to different noise scenario. The handedness of the subject, on the other hand, seems

to have a more erratic effect on the connectivity structure, but its contribution is

not substantial in the cases analyzed. A noticeable change in such behavior can be

observed for values of λ ≥ 18, which we interpreted as a symptomatic effect of

over-smoothing in the denoising step.

Table 2 Results of the multiscale sensitivity analysis conducted over different levels of λ. Estimated

coefficients are reported for some representative levels of λ, with bold coefficients indicating an

associated p-value less than 0.05

λ (Intercept) Age Hand L Hand R Diagnosis

YES

Diagnosis

UNK

Lobes

YES

0 −1.951 −0.001 0.018 0.046 −0.008 0.124 0.880

4 −1.838 −0.002 0.014 −0.004 −0.083 0.147 0.854

8 −1.836 −0.002 0.025 0.015 −0.116 0.146 0.818

10 −1.805 −0.002 −0.005 0.004 −0.128 0.140 0.774

14 −1.957 −0.003 −0.098 −0.035 −0.079 0.068 0.721

18 −2.156 −0.002 −0.171 −0.057 −0.002 0.038 0.695
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4 Discussion

The analysis of neuroimaging data is a stimulating application field that embraces sev-

eral disciplines; statistics covers a determinant role in this context, since it can provide

deep insights on the underlying wiring mechanisms. However, statistical modeling

of multiple brain networks is still in its infancy, and the inclusion of subject-specific

information within repeated networks is incomplete from a literature viewpoint.

The approach suggested in this work has guided some preliminary insights on

the relationship among functional networks, brain constraints and subject-specific

phenotypes. One of the main advantages of our approach is its generality; within the

modular structure, each block can be as complex as data allows for, leaving room for

more appropriate model when needed. We have shown that even with rather simple

modules, our empirical findings seem to give reasonable insights on the covariates

effect on the functional dependence structure, and the sensitivity analysis performed

at different levels of smoothing of the raw data did not seem to provide contradicting

results.

The use of the modular approach is motivated by the computational burden and

possible model misspecification that would otherwise affect a joint model. However,

a two stages approach does not take full advantage of the hierarchical structure of

the model, precluding the possibility to treat all uncertainties simultaneously.

An interesting future direction consists in the inclusion of models specific for

network data, capable to take into account heterogeneity within the brains architec-

ture. This aim could be achieved including random effects pairs for each ROI of the

functional network [26], or using a more appropriate model for multiway data, for

example adapting [22].
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