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Abstract	

This	paper	deals	with	Leibniz’s	well-known	reductio	argument	against	the	infinite	number.	I	will	show	
that	while	the	argument	is	 in	itself	valid,	the	assumption	that	Leibniz	reduces	to	absurdity	does	not	
play	a	relevant	role.	The	last	paragraph	of	the	paper	reformulates	the	whole	Leibnizian	argument	in	
plural	terms	(i.e.	by	means	of	a	plural	logic)	to	show	that	it	is	possible	to	derive	the	contradiction	that	
Leibniz	uses	in	his	argument	even	in	the	absence	of	the	premise	that	he	refutes.	

	

1.	Introduction	

It	is	common	to	identify	the	birth	of	set	theory	with	the	work	of	Georg	Cantor	(1845–1918)	
as	 the	 official	 entrance	 into	 mathematics	 of	 the	 actual	 infinite:	 not	 an	 indefinite	 series	
without	 a	 greatest	 element	 (a	 potential	 infinite),	 but	 rather	 a	 set	 with	 an	 amount	 of	
infinitely	many	elements.	Cantor	managed	to	build	an	arithmetic	of	infinity,	i.e.	he	defined	
mathematical	operations	 (as	 sum,	product,	 exponentiation,	 etc.)	between	 infinite	 sets.	 In	
virtue	of	this,	he	was	legitimated	to	extend	the	concept	of	number	from	the	standard	finite	
numbers	to	 infinite	numbers	(i.e.	numbers	denoting	the	quantities	of	elements	of	infinite	
collections).	
Two	 centuries	 before	 Cantor,	 G.W.	 Leibniz	 also	 argued	 for	 the	 necessity	 of	 the	 actual	

infinite;	however,	he	also	argued	for	the	non-existence	of	an	infinite	number.	Contrary	to	
Cantor,	who	believed	that	the	legitimacy	of	actual	infinite	collections	was	enough	to	ground	
the	 legitimacy	of	 infinite	numbers,	Leibniz	 thought	 that	 the	 legitimacy	of	 the	 former	was	
not	 enough	 to	 ground	 the	 legitimacy	 of	 the	 latter.	Moreover,	 he	was	 convinced	 that	 the	
notion	 of	 infinite	 number	 was	 a	 self-contradictory	 notion.	 In	 different	 places	 Leibniz	
developed	 an	 argument	 (a	 reductio	 ad	 absurdum)	 to	 show	 that	 the	 hypothesis	 of	 the	
existence	of	an	infinite	number	leads	to	a	contradiction.	The	present	paper	aims	to	advance	
the	 discussion	 of	 such	 an	 argument.	 In	 particular,	we	 propose	 to	 reformulate	 the	whole	
Leibnizian	 argument	 in	 plural	 terms	 (i.e.	 by	means	 of	 a	 plural	 logic),	 and	we	 argue	 that,	
thanks	to	the	plural	formulation,	it	is	possible	to	derive	the	contradiction	that	Leibniz	uses	
in	his	argument	even	in	the	absence	of	the	premise	that	he	refutes.	
The	paper	is	structured	as	follows:	section	2	introduces	Leibniz’s	argument	against	the	

infinite	number.	We	shall	 explain	why	Leibniz’s	 argument	 is	 in	 itself	 valid,	 and	 that	both	
the	Leibnizian	and	the	Cantorian	views	can	be	legitimately	taken	in	the	face	of	it.	In	section	
3	and	section	4	we	present,	respectively,	a	set-theoretical	and	a	mereological	reformulation	
of	 the	 argument.	 The	 aim	 of	 these	 formulations	 is	 to	 show	 that	 we	 can	 change	 the	
background	theories	with	which	we	may	evaluate	the	argument,	but	its	structure	remains	



 
 

the	same:	nothing	thus	depends	on	the	notions	that	are	compared	 in	these	 formulations,	
such	 as	 the	 notion	 of	 Leibnizian	 aggregate	 (or	 whole),	 set	 or	 mereological	 fusion.1	 In	
section	5	we	push	these	lines	of	thought	further,	by	presenting	a	plural	formulation	of	the	
argument.	The	plural	version	has	the	merit	of	revealing	that	the	argument	is	based	on	two	
different	standards	of	comparison	for	sizes	of	collections,	 the	one-to-one	correspondence	
and	some	version	of	the	part-whole	principle.	These	two	standards	converge	in	the	finite,	
but	diverge	in	the	infinite,	i.e.	if	we	are	willing	to	admit	infinite	collections,	then	they	give	
us	different	and	incompatible	results.	Section	6	concludes.2	

2.	The	Leibnizian	argument	against	the	infinite	number	

It	 is	well-known	 that	Leibniz	admits	 the	actual	 infinite	 in	physics.	For	 instance,	he	holds	
that	the	totality	of	monads	does	not	constitute	a	potential	infinite,	and	thus	it	is	an	actual	
infinite;	 it	 is	 not	 the	 case	 that	 we	 can	 divide	 matter	 indefinitely,	 but	 rather	 matter	 is	
actually	divided	and	has	infinitely	many	parts.3	For	such	a	view,	there	are	actually	infinite	
many	monads	and	created	things.	When	confronted	with	such	a	position,	one	is	tempted	to	
ask	what	 prevents	 Leibniz	 from	 concluding	 that	 the	 number	 of	 all	monads	 is	 an	 infinite	
number,	i.e.	that	the	number	of	an	infinite	multiplicity	of	terms	is	an	infinite	number.	For	
instance,	Gregory	Brown	writes:	

absent	 a	 sound	 argument	 to	 the	 effect	 that	 infinite	 number	 is	 generally	 contradictory,	 we	may	
reasonably	say	that	 if	 the	world	contains	an	actual	infinity	of	creatures,	as	Leibniz	does,	then	the	
cardinality	of	the	set	of	creatures	is	an	infinite	number.	(Brown	2000,	31)	

However,	Leibniz	believes	this	to	be	false.	In	fact,	he	gives	an	argument	to	support	the	non-
existence	of	infinite	number.	The	argument	allows	him	to	reject	the	implication	that	leads	
from	 ‘there	 is	an	 infinite	plurality	of	elements’	 to	 ‘the	number	of	 this	plurality	 is	 infinite’.	
The	 argument	 aims	 to	 establish	 the	 claim	 that	 the	 notion	 of	 infinite	 number	 is	 self-
contradictory,	 in	 the	 precise	 sense	 that	 once	 admitted,	 a	 contradiction	 can	 be	 derived.	
Leibniz	presents	this	argument	in	different	places.4	Perhaps	the	most	famous	of	these	is	the	
following:	

There	is	no	maximum	in	things,	or	what	is	the	same	thing,	the	infinite	number	of	all	unities	is	not	
one	whole	 [non	 est	 unum	totum],	 but	 is	 comparable	 to	 nothing.	 For	 if	 the	 infinite	 number	 of	 all	
unities,	or	what	is	the	same	thing,	the	infinite	number	of	all	numbers,	is	a	whole,	it	will	follow	that	
one	of	its	parts	is	equal	to	it;	which	is	absurd.	I	will	show	the	force	of	this	consequence	as	follows.	
The	number	of	all	square	numbers	is	a	part	of	the	number	of	all	numbers:	but	any	number	is	the	

                                                   

1	 We	have	firmly	kept	distinct	Leibnizian	aggregates,	i.e.	the	concept	of	aggregate	or	whole	which	Leibniz	
works	with,	 from	 the	 contemporary	 notion	 of	mereological	 fusion	 or	 sum,	 the	 reason	being	 that	 such	
concepts	are	characterised	differently.	We	shall	 say	something	about	Leibniz’s	mereological	notions	 in	
§5.	

2	 The	main	concern	of	the	paper	is	clearly	more	theoretical	than	historical.	For	a	more	historical	approach	
to	Leibniz’s	argument	see	for	example	Esquisabel	and	Raffo	Quintana	2017.	

3	 On	this	point	see	for	instance	Antognazza	2015	and	Arthur	2015,	2018a.	
4	 It	must	be	borne	in	mind	that	when	Leibniz	speaks	of	the	infinite	number,	he	has	in	mind	a	hypothetical	

number	of	all	(finite)	numbers.	It	is	thus	the	greatest	number.	After	Cantor,	we	know	that	the	admission	
of	an	 infinite	number	does	not	 imply	 the	admission	of	a	greatest	number:	 in	 the	 transfinite	hierarchy,	
there	are	infinitely	many	infinite	numbers,	but	none	of	them	is	the	greatest.	Cantor	would	have	perfectly	
agreed	with	Leibniz	 in	 rejecting	 the	existence	of	a	maximum	number.	In	what	follows,	we	will	 analyse	
Leibniz’s	argument	insofar	it	denies	the	legitimacy	of	an	infinite	number,	and	not	of	a	greatest	number.	



 
 

root	of	 some	square	number,	 for	 if	 it	 is	multiplied	 into	 itself,	 it	makes	a	 square	number.	But	 the	
same	number	cannot	be	the	root	of	different	squares,	nor	can	the	same	square	have	different	roots.	
Therefore	there	are	as	many	numbers	as	there	are	square	numbers,	that	is,	the	number	of	numbers	
is	equal	to	the	number	of	squares,	the	whole	to	the	part,	which	is	absurd.	(Leibniz,	De	Minimo	et	
Maximo,	98)5	

Following	Van	Atten	(2011,	§1),	we	can	analyse	the	argument	in	the	following	way:6	

(1)	 The	 infinite	 multitude	 of	 numbers	 forms	 an	 aggregate,	 a	 whole	
(Assumption	C);	

(2)	 Each	square	is	a	number,	but	not	each	number	is	a	square	(premise);	

(3)	 The	multitude	of	squares	is	equal	to	(has	the	same	number	of	elements	
of)	a	part	of	the	multitude	of	all	numbers	(from	1	and	2);	

(4)	 There	 is	 a	 one-to-one	 correspondence	 between	 the	 numbers	 and	 the	
squares	(premise);	

(5)		 The	multitude	 of	 squares	 is	 equal	 to	 the	multitude	 of	 number,	 i.e.	 the	
number	 of	 squares	 is	 the	 same	 as	 the	 number	 of	 all	 numbers	 (from	1	
and	4);	

(6)	 A	 part	 of	 all	 the	 number	 (or	 a	 part	 of	 the	whole	 of	 numbers)	 is	 equal	
(equinumerous)	to	the	whole	of	numbers	(from	3	and	5);	

(7)	 The	whole	 is	 greater	 than	each	of	 its	own	proper	pars	 (premise:	part-
whole	principle,	from	now	on	PW);	

(8)	 Contradiction	(from	6	and	7);	

(9)	 Therefore,	the	infinite	multitude	of	numbers	do	not	form	a	whole	(¬C).	

The	 argument	 is	 a	 reductio	 ad	 absurdum.	Leibniz	 supposes	 that	 the	 infinite	 of	 numbers	
forms	a	whole,	and	it	exploits	this	assumption	to	derive	a	contradiction.	It	is	clear	that	by	
reducing	to	absurdity	premise	1,	Leibniz	is	claiming	that	the	notions	of	part	and	whole	do	
not	apply	to	the	infinite	case,	and	thus	we	cannot	exploit	PW	to	conclude	that	the	whole	of	
natural	numbers	is	bigger	than	the	whole	of	square	numbers.	In	this	way,	the	infinite	is	not	
a	counter	example	to	PW,	simply	because	PW	cannot	be	applied	to	it7.	PW	is	a	premise	of	
the	argument	that	Leibniz	strongly	believed	to	be	true8.		As	such,	the	Leibnizian	argument	
is	 valid.	 In	 effect,	 Cantor	 could	 accept	 the	 argument	 up	 to	 line	 8,	 and	 conclude	with	 the	
                                                   

5	 Leibniz’s	argument	exploits	what	is	known	in	the	literature	as	Galileo’s	Paradox.	
6	 The	presentation	of	the	argument	is	not	a	direct	quotation	from	Van	Atten’s	text.	
7	 See	Levey	2015,	p.	178.	
8	 Leibniz	did	not	take	PW	as	an	evident	truth,	but	he	tries	to	prove	it.	His	proof	is	based	on	defining	when	

(an	entity)	B	is	less	than	(an	entity)	A:	B	is	less	than	A	(or,	which	is	the	same,	A	is	greater	than	B)	if	and	only	
if	B	is	equal	to	a	proper	part	of	A.	This	is	the	same	as	defining	‘proper	part’	as	a	part	which	is	not	equal	to	
the	whole.	Given	this	definition,	it	is	clear	that	no	proper	part	can	result	in	being	numerically	equivalent	
to	the	whole.	



 
 

denial	of	PW	instead	of	Assumption	C.	At	first	sight,	it	seems	that	both	the	Leibnizian	and	
the	Cantorian	options	seem	legitimate9.	
In	 the	 paragraphs	 below,	 we	 shall	 show	 that	 Assumption	 C	 that	 Leibniz	 reduces	 to	

absurdity	does	not	play	any	relevant	role	in	the	argument.	On	the	contrary,	we	argue	that	
the	 origin	 of	 the	 contradiction	 should	 be	 traced	 back	 to	 the	 presence	 of	 two	 different	
standards	of	comparison	for	sizes	of	collections:	the	common	one-to-one	correspondence	
and	PW.	Our	argumentative	 strategy	proceeds	 in	 two	steps:	 first,	we	 shall	present	a	 set-
theoretical	and	a	mereological	reformulation	of	the	argument.	The	two	reformulations	will	
give	 us	 two	 different	 characterisations	 of	 Assumption	 C.	 In	 the	 first	 case	 Assumption	 C	
becomes	the	claim	that	there	exists	the	set	of	all	(finite)	numbers,	while	in	the	second	case	
it	becomes	the	claim	that	there	exists	the	mereological	fusion	of	all	the	(finite)	numbers.	We	
argue	 that	 the	 resulting	 arguments	 share	 exactly	 the	 same	 structure	 and	 nature	 of	 the	
formulation	as	the	Leibnizian	one,	and	thus	irrespective	of	whether	one	takes	the	numbers	
to	form	a	Leibnizian	aggregate,	a	set	or	a	mereological	fusion,	one	still	has	to	reckon	with	
the	same	contradiction.	

3.	A	set-theoretical	version	of	the	argument	

Leibniz’s	 argument	 is	 cast	out	 in	mereological	 terms	which	are	not	 completely	 clear	and	
are	 sometimes	ambiguous.	However,	 a	very	natural	way	 for	 the	 contemporary	 reader	 to	
interpret	 the	 argument	 is	 by	 means	 of	 set-theoretical	 notions.	 Ambiguous	 talk	 of	
aggregates,	wholes	or	multitudes	is	to	be	substituted	with	talk	about	sets;	in	particular,	the	
part-whole	relation	must	receive	a	set-theoretical	interpretation.	Talk	of	square	numbers	
as	part	of	the	natural	numbers	can	be	translated	in	the	talk	of	square	numbers	as	forming	a	
subset	of	 the	 set	of	 the	natural	numbers.	This	means	 that	 the	 relation	of	 ‘part	of’	 can	be	
interpreted	as	the	subset-relation10.	We	shall	assume	a	very	broad	conception	of	set:	a	set	
is	always	a	further	entity	with	regard	to	its	elements11.		The	argument	becomes	as	follows:	

(1)	 There	is	a	set	of	all	(finite)	numbers	(Assumption	C-set)	

(2)	 Each	square	is	a	number,	but	not	all	numbers	are	square	(premise);	

(3)	 The	set	of	squares	 is	a	proper	subset	of	 the	set	of	all	numbers	(from	1	
and	2);	

(4)	 There	 is	 a	 one-to-one	 correspondence	 between	 the	 set	of	 all	 numbers	
and	the	set	of	squares	(premise);	

(5)	 The	cardinality	of	the	set	of	squares	is	equal	to	the	cardinality	of	the	set	
                                                   

9	 It	is	interesting	to	note	the	similarity	between	Leibniz’s	claim	that	the	multiplicity	of	numbers	does	not	
form	a	whole,	and	so	no	number	corresponds	to	it,	and	the	claim	–	often	made	by	set-theorists	–	that	the	
absolute	 (i.e.	 the	 multiplicity	 of	 all	 sets)	 does	 not	 form	 a	 set,	 but	 rather	 a	 proper	 class.	 Somewhat	
anachronistically,	one	can	say	that	for	Leibniz	(finite)	numbers	form	a	proper	class.			

10	 It	is	well-known	that	David	Lewis	did	the	same	by	interpreting	the	‘subset	relation’	between	sets	as	the	
‘part	of’	relation	in	his	attempt	to	provide	a	mereological	foundation	of	set	theory	(see	Lewis	1991).			

11	 Just	for	the	sake	of	simplicity,	I	only	assume	well-founded	sets,	i.e.	sets	that	do	not	contain	themselves	as	
elements.	



 
 

of	numbers,	i.e.	the	number	of	squares	is	the	same	as	the	number	of	all	
numbers	(from	1	and	4);	

(6)	 A	subset	of	the	set	of	numbers	is	equinumerous	to	(i.e.	 it	has	the	same	
cardinality	of)	the	set	of	numbers	(from	3	and	5);	

(7)	 Any	 set	 is	 bigger	 (i.e.	more	 numerous)	 than	 any	 of	 its	 proper	 subsets	
(premise:	PW);	

(8)	 Contradiction	(from	6	and	7);	

(9)	 Therefore,	the	infinite	multitude	of	(finite)	numbers	does	not	form	a	set	
(¬C-set).	

In	this	set-theoretical	formulation,	PW	becomes	the	claim	that	any	set	is	bigger	than	any	
of	 its	 proper	 subsets,	while	 the	one-to-one	 correspondence	 can	 be	 defined	 as	 usual	 as	 a	
bijective	 function	 from	a	set	(the	domain)	 to	another	set	(the	co-domain).	 In	 this	specific	
case,	we	 can	 take	 the	 set	 of	 all	 (finite)	 numbers	 as	 the	 domain	 and	 the	 set	 of	 all	 square	
numbers	 as	 the	 co-domain.	 Again,	 both	 the	 Leibnizian	 and	 the	 Cantorian	 options	 are	
available:	 either	 one	 considers	 PW	 as	 a	 truth	 holding	 for	 all	 sets,	 and	 so	 one	 denies	
Assumption	 C-set,	which	 –	 in	 this	 context	 –	means	 to	 deny	 the	 existence	 of	 infinite	 sets	
(their	 existence	would	 contradict	 the	 truth	of	PW)12,	 or	one	simply	denies	PW	as	Cantor	
did.	The	present	argument	has	thus	the	same	structure	as	the	previous	formulation.	

4.	A	mereological	version	of	the	argument	

It	is	well-known	that	Leibniz	defended	a	mereological	conception	of	number	along	with	the	
Euclidean	idea	according	to	which	a	number	is	an	aggregate	of	unities,	which	are	the	parts	
of	the	aggregate13.	For	this	reason,	Leibniz	speaks	of	the	square	numbers	as	a	part	of	the	
natural	 numbers	 (the	 roots).	 It	 is	 therefore	 natural,	 and	 historically	 more	 accurate,	 to	
formulate	 the	 argument	 in	 mereological	 terms.	 Here	 we	 shall	 present	 a	 reformulation	
based	 on	 contemporary	 classical	 mereology.	 We	 shall	 assume	 as	 the	 background	
mereological	 theory	GEM,	General	Extensional	Mereology14.	GEM	embodies	a	principle	of	
Unrestricted	 Composition,	 which	 we	 may	 express	 with	 the	 claim	 that	 for	 an	 arbitrary	
condition	φ	and	some	objects	a,	b,	c,	…	satisfying	φ,	there	exists	the	mereological	sum	(or	
fusion)	of	the	objects	a,	b,	c,	….	In	the	case	of	(natural)	numbers,	φ	is	the	property	of	being	a	
natural	 number,	 while	 a,	 b,	 c,	 …	 are	 the	 numbers	 .	 1,	 2,	 3,	 ….	 Unrestricted	 Composition	
implies	that	there	is	the	sum	(or	fusion)	of	all	(natural)	numbers15.	The	argument	becomes	
as	follows:	

                                                   

12	 Of	 course	 the	 resulting	 set	 theory	would	 be	 very	 different	 from	 the	 standard	 one	 having	 its	 roots	 in	
Cantor’s	work.	

13	 More	on	this	in	section	5.	
14	 General	 Extensional	 Mereology	 is	 the	 classical	 mereological	 system	 of	 Lesnieski	 and	 of	 Leonard	 and	

Goodmann.	On	mereology	and	GEM	in	particular	see	Varzi	2016.	
15	 I	shall	use	the	terms	(mereological)	fusion	or	sum	to	refer	to	the	contemporary	mereological	concepts.	In	

contrast,	when	I	speak	of	aggregate	or	whole,	I	refer	to	the	Leibnizian	notions.	



 
 

(1)	 There	 exists	 the	 mereological	 fusion	 of	 all	 numbers	 (Assumption	 C-
fusion).	

(2)	 Each	square	is	a	number,	but	not	all	numbers	are	squares	(premise);	

(3)	 The	fusion	of	squares	is	a	proper	part	of	the	fusion	of	all	numbers,	i.e.	it	
is	a	part	of	the	fusion	of	all	numbers	and	it	is	not	identical	with	it	(from	
1	and	2);	

(4)	 There	 is	 a	 one-to-one	 correspondence	 between	 the	 members	 of	 the	
fusion	 of	 all	 numbers	 and	 the	 members	 of	 the	 fusion	 of	 all	 squares	
(premise);	

(5)	 The	 fusion	 of	 the	 squares	 has	 as	 many	 members	 as	 the	 fusion	 of	 all	
numbers	(from	1	and	4);	

(6)	 A	fusion	which	is	a	part	of	the	fusion	of	all	numbers	is	equinumerous	to	
the	fusion	of	all	numbers	(from	3	and	5);	

(7)	 Any	fusion	is	bigger	than	any	of	its	proper	part	(premise:	PW);	

(8)	 Contradiction	(from	6	and	7);	

(9)	 Therefore,	 the	 infinite	 multitude	 of	 numbers	 does	 not	 form	 a	
mereological	fusion	(¬C-fusion).	

In	standard	presentations	of	mereology,	 the	key	mereological	concepts	are	 introduced	
by	means	of	set-theoretical	notions.	For	 instance,	Unrestricted	Composition	 is	sometimes	
expressed	 by	 the	 claim	 that	 any	 specifiable	non-empty	 set	 of	 objects	 has	 a	mereological	
sum16.	Or	line	4	of	the	argument	above	can	be	understood	as	claiming	that	there	is	a	one-
to-one	 correspondence	 between	 the	 set	 of	 all	numbers	 and	 the	 set	of	 all	 squares.	 If	 this	
were	 the	 only	 way	 in	 which	 mereological	 notions	 can	 be	 understood,	 then	 the	 present	
formulation	of	the	argument	would	be	parasitic	to	the	set-theoretical	formulation.	But	we	
are	not	forced	to	use	set	theory	to	express	mereology.	In	fact,	we	can	drop	any	talk	of	set,	
and	express	mereological	concepts	by	means	of	plural	terms	(i.e.	terms	that	refer	to	many	
individuals	 at	 once),	 as	 we	 actually	 did	 in	 the	 argument.	 Unrestricted	 Composition	
becomes	 the	 claim	 that	 any	 plurality	 of	 objects	 has	 a	 sum,	 and	 the	 one-to-one	
correspondence	 can	 be	 defined	with	 regard	 to	 the	members	 of	 the	 fusion	 of	 natural	 and	
square	numbers.	In	other	words,	to	say	that	there	is	a	one-to-one	correspondence	between	
the	 fusion	 of	 the	 (finite)	 numbers	 and	 the	 fusion	of	 the	 square	 numbers	 amounts	 to	 the	
claim	 that	 there	 is	 a	bijective	 function	whose	domain	 is	 the	plurality	 of	 (finite)	numbers	
and	 the	 co-domain	 is	 the	 plurality	 of	 square	 numbers17.	 In	 the	 next	 paragraph	we	 shall	
explain	in	detail	what	plurals	are.	For	the	time	being,	we	note	that	even	this	formulation	of	

                                                   

16	 See	Varzi	2019,	§4.4	
17	 From	a	formal	point	of	view,	this	requires	implementing	the	language	of	GEM	(the	theory	in	which	such	a	

formulation	of	the	argument	is	developed)	by	means	of	plural	resources.	



 
 

Leibniz’s	 argument	 presents	 the	 same	 structure	 as	 those	 above:	 one	 can	 accept	 PW	
unconditionally	 and	 deny	 that	 numbers	 form	 a	mereological	 fusion	 (PW	 applies	 only	 to	
fusions,	which	means	that	it	makes	sense	to	say	that	x	is	a	part	of	something	only	if	there	is	
a	 fusion	 (a	 sum)	 of	 which	 x	 is	 a	 part).	 Alternatively,	 one	 can	 drop	 PW,	 and	 follow	 the	
traditional	Cantorian	path.	

5.	A	plural	version	of	the	argument18	

In	the	previous	paragraphs,	we	saw	three	different	versions	of	the	argument.	The	first	was	
based	 on	 Leibniz’s	 own	 mereological	 terminology,	 the	 second	 on	 set-theoretical	 terms,	
while	 the	 last	 on	 contemporary	mereological	 terms.	 The	 fact	 that	we	 can	 formulate	 the	
argument	within	 these	 different	 background	 theories	 shows	 that	 there	 is	 nothing	 in	 the	
concepts	of	Leibnizian	aggregate,	set	and	mereological	 fusion	on	which	the	contradiction	
depends.	 In	 the	present	paragraph,	we	push	this	 line	of	 thought	 further,	by	developing	a	
strategy	 to	 show	 that	 we	 can	 completely	 avoid	 any	 of	 these	 notions	 in	 formulating	 the	
argument	above,	which	definitely	shows	that	 the	contradiction	 in	line	8	does	not	depend	
on	any	version	of	Assumption	C.	Our	strategy	makes	appeal	to	plural	logic,	i.e.	a	logic	that	
admits	 plural	 terms	 denoting	 more	 individuals	 at	 once.19	 If	 we	 use	 the	 terms	 plural,	
plurality	or	multiplicity	to	indicate	the	things	to	which	a	plural	term	refers,	then	it	is	useful	
to	 clarify	 the	 nature	 of	 pluralities	 by	 comparing	 them	 to	 sets.	 Where	 a	 set	 is	 always	 a	
further	 object	with	 regard	 to	 its	 elements,20	 a	 plurality	 is	 not	 a	 different	 entity	 from	 its	
members;	 rather,	 it	 simply	 consists	 in	 those	members	 taken	 simultaneously.	 Here	 is	 an	
example:	

There	are	five	children	in	the	garden	(the	children	in	the	garden	are	five)	

The	plural	 term	 ‘the	children’	does	not	refer	 to	a	single	object,	which	 is	distinct	 from	the	
children	 and	 collects	 them,	 because	 this	object	 (the	 set	 of	 children)	 is	one,	 not	 five;	 nor	
does	 it	 refer	 to	 the	 single	 child	 taken	 one	 by	 one,	 because	 each	 child	 is	 one,	 not	 five.	
Instead,	 the	 term	 ‘children’	 as	 the	 predicate	 ‘being	 five’	 refers	 to	 the	 children	
simultaneously	(the	predicate	‘being	five’	is	a	collective	predicate).	This	shows	the	salient	
features	of	pluralities	in	comparison	with	sets:	while	a	set	is	an	ontological	unity	distinct	
from	its	elements,	a	plurality	is	–	from	an	ontological	point	of	view	–	many:	the	unity	of	the	
objects	in	plurality	is	simply	given	by	the	semantic	unity	of	our	referring	to	many	things	at	
once.	 In	other	words,	 the	ontological	commitment	towards	a	plurality	coincides	with	the	
commitment	 towards	 its	 members,	 while	 the	 ontological	 commitment	 towards	 the	

                                                   

18 A similar approach has been anticipated in Levey 2015, which uses the notion of plurality to interpret the 
Leibnizian claim that natural numbers do not form a whole. At the time of writing this paper, I was not aware of 
Levey’s contribution; I have to thank an anonymous referee at this journal for having brought it to my attention 

19	 Plural	 logic	 has	 been	 developed	 by	 Boolos	 in	 the	 ’80s.	 Boolos	 showed	 that	 second-order	 logic	 is	
interpretable	into	plural	first-order	logic.	From	this	result,	he	drew	the	philosophical	consequence	that	it	
is	possible	to	interpret	second-order	logic	 in	such	a	way	that	 it	does	not	commit	us	to	the	existence	of	
sets	and	classes.	

20	 I	 have	 in	 mind	 the	 iterative	 conception	 of	 set,	 which	 is	 nowadays	 acknowledged	 to	 be	 the	 basis	 of	
Zermelo-Fraenkel	set	theory.	According	to	such	a	conception,	sets	are	always	well-founded,	i.e.	no	set	can	
be	an	element	of	 itself.	See	Boolos	1971,	 in	Boolos	1998,	13–29,	and	Boolos	1989,	 in	Boolos	1998,	88–
104.	



 
 

elements	of	a	set	does	not	imply	the	commitment	towards	the	set.21			
The	idea	of	exploiting	plural	logics	simply	consists	in	rewriting	the	whole	argument	in	

plural	 terms,	 i.e.	 we	 need	 to	 paraphrase	 the	 argument	 by	 means	 of	 plural	 terms.	 For	
instance,	instead	of	saying	that	the	collection	of	squares	is	a	sub-collection	(or	a	subset)	of	
the	collection	of	all	 finite	numbers	(which	seems	to	commit	us	 to	 the	existence	of	special	
objects	as	collections	or	sets),	we	shall	say	that	the	squared	numbers	are	only	some	of	the	
finite	numbers	(where	‘only	some’	substitutes	‘a	part	of’);	or	instead	of	saying	the	whole	of	
number	 is	bigger	than	the	part	of	 the	squares,	we	shall	say	the	numbers	(roots)	are	more	
than	 the	 squares,	 or	 there	 are	 more	 numbers	 (roots)	 than	 squares.	 Moreover,	 following	
Leibniz,	we	are	assuming	that	it	is	not	possible	to	speak	of	the	number	of	a	multiplicity	if	
this	multiplicity	does	not	 form	a	whole	(whatever	this	notion	means).	As	a	consequence,	
the	argument	completely	avoids	to	speak	of	numbers	at	all.		However,	from	this	we	do	not	
conclude	–	as	Leibniz	seems	to	do	–	that	it	is	not	possible	to	establish	relationships	of	size	
between	 multiplicities	 that	 do	 not	 form	 a	 whole	 in	 any	 case.	 Since	 it	 is	 possible	 to	
paraphrase	 in	plural	 terms	 both	 PW	and	 the	notion	 of	 equality	 based	 on	 the	one-to-one	
correspondence,	 and	 because	 these	 give	 us	 two	methods	 of	 establishing	 relationships	 of	
size	 independently	 from	 the	 existence	 of	 numerical	 systems,	 it	 is	 possible	 to	 compare	
different	pluralities	of	objects	(without	supposing	that	they	form	a	whole).	But	then,	since	
both	PW	and	the	one-to-one	correspondence	are	present,	we	are	in	the	position	of	deriving	
the	contradiction.	The	plural	version	of	the	argument	is	the	following:	

(1)	 There	are	 infinitely	many	numbers	 (in	 the	 sense	of	 the	actual	 infinite,	
not	the	potential).	

(2)	 Every	square	is	a	number,	but	not	vice	versa	(premise).	

(3)	 The	squares	are	as	many	as	some	of	 the	numbers	(but	 they	are	not	as	
many	as	all	the	numbers)	(from	1	and	2).	

(4)	 There	 is	 a	 one-to-one	 correspondence	 between	 the	 natural	 numbers	
and	the	squares	(premise).	

(5)	 The	squares	are	as	many	as	the	numbers	(from	1	and	4).	

(6)	 Some	numbers	(the	squares)	are	equal	to	(i.e.	 it	has	as	many	members	
as)	all	the	numbers	(from	3	and	5).	

(7)	 All	numbers	 (i.e.	 the	plurality	of	 all	numbers)	are	more	 than	any	 sub-
plurality	of	numbers	(this	is	a	sort	of	plural	version	of	PW).	

(8)	 Contradiction	(from	6	and	7).	

                                                   

21	 To	be	honest,	there	is	a	wide-ranging	debate	on	the	ontological	innocence	of	plurals.	See	Boolos	1985,	in	
Boolos	1998,	54–72	for	a	defence	of	the	innocence	of	plurals,	and	Linnebo	2003,	for	a	critique	of	Boolos’	
position.	Here	we	shall	assume	that	plurals	are	ontologically	innocent.	If	this	were	not	the	case,	then	the	
same	Leibnizian	notion	of	a	multiplicity	(plural)	that	does	not	form	a	whole	would	be	inconsistent.			



 
 

Once	 again,	 the	 present	 argument	 shares	 the	 same	 structure	 as	 the	 former	 versions.	
However,	 premise	 1	 only	 assumes	 that	 there	 are	 all	 numbers,	 without	 any	 claim	 about	
numbers	forming	a	whole,	a	set	or	a	fusion.	In	other	words,	the	plural	version	derives	the	
‘same’	contradiction	without	exploiting	Assumption	C.	This	shows	that	the	assumption	that	
Leibniz	reduces	to	absurdity	plays	no	role	in	the	derivation	of	the	contradiction.	
Before	proceeding	I	would	like	to	draw	your	attention	to	the	plural	formulation	of	PW.	

This	 formulation	 completely	 avoids	 any	 use	 of	 the	 notions	 of	 part	 and	 whole.	 This	 is	
fundamental	to	reply	to	the	following	objection.	One	can	in	fact	observe	that	according	to	
the	mereological	system	within	Leibniz	works,	once	the	applicability	of	 the	notion	of	 the	
whole	has	been	refuted,	it	no	longer	makes	any	sense	to	speak	of	the	part22.	In	fact,	Leibniz	
defines	a	part	as	something	that	is	in	the	whole	(relation	of	inesse),	which	means	that	the	
part	implies	the	existence	of	the	whole	of	which	it	is	a	part.	In	our	present	context,	the	fact	
that	the	numbers	do	not	form	a	whole	implies	that	it	makes	no	sense	to	speak	of	parts	of	
them.	 If	 PW	 cannot	 be	 dispensed	 from	 the	 notion	of	 part,	 then	we	 cannot	have	 it	 in	 the	
plural	formulation,	and	so	we	could	note	derive	the	contradiction	in	line	8.			
However,	 line	7	of	 the	plural	 version	of	 the	argument	 is	 a	plural	reformulation	of	PW	

such	 that	 it	 does	 not	 mention	 the	words	 ‘part’	 and	 ‘whole’	 at	 all.	 We	might	 agree	 with	
Leibniz	that	once	you	have	dismissed	talk	of	a	whole,	you	should	also	dismiss	talk	of	parts.	
But	 the	 plural	 version	 of	 the	 argument	 does	 not	 require	 such	 talk,	 because	 PW	 just	
becomes	 the	 claim	 that	all	numbers	are	always	more	 than	 some	numbers	 (where	 ‘some’	
must	be	read	as	‘some,	but	not	all’).	If	you	find	the	standard	version	of	PW	compelling,	then	
–	for	exactly	the	same	reasons	–	you	should	find	this	plural	version	compelling	too.	In	fact,	
why	 is	PW	so	 intuitive?	The	reason	 is	 that	a	proper	part	 is	a	part	such	that	we	must	add	
something	 to	 obtain	 the	whole,	 i.e.	 the	 whole	 contains	 this	 specific	 part	 and	 something	
more.	It	is	therefore	natural	to	hold	that	the	whole	is	always	bigger	than	its	proper	parts.	
But	the	same	reason	also	obtains	in	the	case	of	plural	PW:	all	numbers	contain	the	squares	
and	 some	more	 numbers	 (the	 non-square	 numbers).	 Even	 though	 plural	 PW	 does	 not	
mention	the	words	‘part’	and	‘whole’	at	all,	it	seems	that	if	one	believes	in	PW,	one	should	
believe	in	plural	PW	too.	

5.1.	Pluralities	and	wholes	

Once	the	notion	of	plurality	has	been	 introduced,	one	might	ask	what	relationships	there	
are	 between	 pluralities	 and	 the	 Leibnizian	 notion	 of	 ‘whole’	 (totum),	 which	 is	 the	word	
Leibniz	uses	in	his	argument	(section	2).	Leibniz’s	argument	is	for	the	claim	that	numbers	
do	 not	 form	 a	 whole,	 but	 what	 exactly	 is	 a	 whole?	 In	 the	 previous	 discussion,	 we	

                                                   

22	 Mereology	is	the	study	of	the	part-whole	relation.	By	‘part’	Leibniz	means	something	which	is	in	(inesse)	
the	whole,	and	it	is	homogeneous	to	the	whole.	The	definition	of	part	is	given	relative	to	the	notion	of	the	
whole	(see	De	Risi	2007,	192,	n.	64).	A	part	 is	characterised	as	a	requisitum	for	the	whole,	in	the	sense	
that	the	existence	of	the	whole	implies	the	existence	of	the	part;	a	part	is	diversum	from	the	whole,	which	
simply	means	 that	 Leibniz	 is	 only	 considering	 proper	 parts;	 a	 part	 is	 immediatum	with	 regard	 to	 the	
whole,	in	the	sense	that	the	part	and	the	whole	coexist;	finally,	the	part	is	in	recto	cum	correquisitis,	which	
means	 that	 the	part	 is	 in	 the	whole	 (inesse),	 and	 it	 is	not	 said	of	 the	whole.	The	 last	 feature	seems	 to	
indicate	that	what	characterises	a	part	of	a	whole	does	not	characterise	the	same	whole,	and	therefore	
the	proper	 features	of	 the	part	 cannot	be	predicated	of	 the	whole.	On	 the	contrary,	 the	 inesse	 relation	
seems	to	indicate	that	the	existence	of	a	part	B	implies	the	existence	of	the	whole	A	of	which	B	is	a	proper	
part.	This	 is	a	key	feature	of	Leibniz’s	mereological	system,	because	it	 implies	that	 if	we	cannot	have	a	
whole	–	as	Leibniz	claims	for	the	numbers	–	then	we	cannot	have	parts	either.	



 
 

presupposed	that	the	notion	of	whole	indicates	something	more	than	the	mere	presence	of	
the	elements	that	constitute	the	whole.	This	may	 indicate	a	 further	entity	–	as	 in	 the	set-
theoretical	 interpretation	 –	 or	 this	may	 simply	 indicate	 that	 the	 elements	 form	 a	 sort	 of	
unity	(as	happens	with	mereological	fusions).	In	this	latter	setting,	which	is	certainly	closer	
to	Leibniz’s	view	than	the	set-theoretical	 interpretation,	 the	words	 ‘whole’	and	 ‘plurality’	
are	not	synonyms;	rather,	‘whole’	would	indicate	something	more	than	the	mere	presence	
of	all	elements	of	a	certain	kind.	To	say	that	numbers	do	not	form	a	whole	would	mean	that	
while	 there	 are	 (note	 the	 plural	 form!)	 all	 the	 numbers,	 they	 do	 not	 form	 a	 true	
(metaphysical)	unity.	Just	as	an	aggregate	(such	as	a	flock	of	sheep)	is	not	a	true	unity	(and	
so	is	not	a	true	being),	because	its	unity	derives	from	our	perception,23	so	the	plurality	of	
all	numbers	does	not	have	a	true	metaphysical	unity,	and	so	it	is	not	one	single	totality,	or	–	
as	Leibniz	says	–	it	is	not	a	whole	(non	est	unum	totum).	
This	 interpretation	 of	 the	 notion	 of	 whole	 fits	 well	 with	 some	 defences,	 which	 have	

recently	appeared	in	the	literature,	of	the	idea	that	Leibniz	endorses	the	actual	infinite	in	
the	case	of	numbers	too24.	Such	defences	claims	that	 the	totality	of	all	numbers	does	not	
constitute	 a	 potential	 infinite,	 and	 thus	 it	 is	 an	 actual	 infinite;	 but	 this	 actual	 infinite	 is	
‘syncategorematic’	 in	 the	 precise	 sense	 that	 the	 fact	 that	 numbers	 are	 infinitely	 many	
simply	means	that	 they	exceed	any	 finite	number.	Plural	 tools	are	very	useful	 to	capture	
this	view:	there	is	the	plurality	of	all	numbers,	but	this	plurality	does	not	form	a	whole	(a	
set,	a	fusion,	etc.).	
In	such	a	scenario,	Assumption	C	becomes	the	claim	that	the	plurality	of	numbers	has	a	

true	unity,	and	so	it	is	a	true	being.	The	consequence	is	that	the	plural	reformulation25	of	
the	argument	is	not	based	on	Assumption	C,	which	Leibniz	reduces	to	absurdity.	Moreover,	
as	said	above,	the	plural	argument	does	not	make	any	appeal	to	the	notion	of	number:	for	
instance,	at	line	5	it	is	said	that	‘the	squares	are	as	many	as	all	the	numbers’;	it	is	not	said	
that	‘the	number	of	the	squares	is	equal	to	the	number	of	all	the	numbers’.	In	this	way,	the	
argument	does	not	presuppose	the	legitimacy	of	infinite	numbers.			
The	argument	presupposes	the	possibility	of	comparing	different	pluralities	whenever	

all	 their	 elements	are	 in	 some	sense	given,	 i.e.	whenever	 the	pluralities	 (if	 infinite)	 form	
actual,	 and	 not	 potential,	 infinite.	 If	 the	 pluralities	 (or	 multiplicities)	 of	 integers	 and	
squares	 are	 considered	 to	 be	 actual	 infinite,	 then	 there	 seems	 to	 be	 no	 obstacle	 in	
comparing	 them	 with	 regard	 to	 their	 extension	 (without	 introducing	 the	 notion	 of	
numbers).	One	can	say	that	there	are	as	many	integers	as	squares,	because	for	each	integer	
there	is	a	square,	and	vice	versa;	or	one	can	say	that	there	are	more	integers	than	squares,	
because	each	square	is	an	integer,	but	not	vice	versa.	But	then	the	argument	shows	that	the	
contradiction	 in	 line	 8	 does	 not	 depend	 on	 Assumption	 C,	 because	 we	 can	 derive	 the	
contradiction	 without	 assuming	 C.	 The	 Leibnizian	 strategy	 of	 reducing	 to	 absurdity	 the	
                                                   

23	 On	this	point	I	refer	the	reader	to	the	illuminating	Lodge	2001.	
24	 See	 for	 instance	Arthur	2001a,	2001b,	2018a,	2018b	who	calls	 this	view	 ‘actual	and	syncategorematic	

infinite’,	and	Levey	1998,	2015.	Levey	2015,	178	writes:	 ‘When	Leibniz	denies	 that	 infinity	 is	one	or	a	
whole	he	is	not	saying	that	there	is	no	such	thing	as	infinity,	but	rather	he	is	denying	that	an	infinity	of	
things	 forms	a	unity	or	 single	whole.	[…]	Leibniz’s	position	here	 is	 subtle.	There	are	actually	 infinitely	
many	natural	numbers,	on	his	view,	but	they	do	not	form	a	totality’.	

25	 Pedantically	at	least,	what	I	have	presented	is	not	a	reformulation	of	the	same	Leibnizian	argument,	but	
rather	a	different	argument,	since	once	one	drops	an	assumption	in	an	argument,	what	one	obtains	–	if	it	
is	still	an	argument	–	is	a	different	argument.	In	the	main	text,	I	have	spoken	of	reformulation	for	matter	
of	simplicity,	and	because	I	think	that	there	is	no	danger	of	confusion	here.				



 
 

premise	C	is	no	longer	available	in	the	plural	version	of	the	argument.	
At	this	point,	the	problem	is	how	to	deal	with	the	contradiction	in	line	8.	If	we	accept	1	

as	valid,	i.e.	we	accept	that	there	is	an	actual	infinite	of	numbers,	then	there	are	only	two	
options	available.	Either	we	can	follow	the	orthodox	Cantorian	solution,	and	declare	7	–	the	
plural	version	of	PW	–	false,	or	we	can	follow	the	theory	of	numerosities26,	which	denies	the	
validity	of	the	one-to-one	correspondence	to	measure	(infinite)	sets,	and	accepts	PW	(this	
implies	the	denial	of	passage	from	1	and	4	to	5).	Of	course,	avoiding	the	contradiction	by	
accepting	 only	 one	 of	 the	 standards,	 while	 rejecting	 the	 other,	 exactly	 presupposes	 the	
recognition	 that	 the	 contradiction	 comes	 from	 the	 combination	 of	 different	 standards	 of	
sizes	 for	 collections	 of	 objects.	 However,	 I	 think	 that	 neither	 solution	 would	 have	 any	
appeal	 for	Leibniz.	Since	his	definition	of	equality	(see	n.	7),	PW	turns	out	 to	be	a	 logical	
truth,	 and	 so	 the	 Cantorian	 approach	 is	 not	 available	 to	 him.	 But	 also	 the	 alternative	
solution	 –	 to	 dismiss	 the	 one-to-one	 correspondence	 –	 is	 not	 available	 to	 Leibniz,	 who	
needs	 to	 maintain	 the	 one-to-one	 correspondence	 also	 in	 the	 infinite	 case,	 since	 his	
definition	 of	 the	 infinite	 requires	 it.	 Leibniz’s	 definition	 is	 that	 there	 are	 infinitely	many	
terms	when	there	are	more	 terms	than	any	number:	 the	 ‘more’	 in	 this	very	 last	sentence	
must	 be	 interpreted	 as	 saying	 that	 there	 is	 no	 one-to-one	 correspondence	 between	 an	
infinite	plurality	and	any	(particular)	number.	Here	Leibniz	cannot	appeal	to	PW,	because	
he	 has	 dismissed	 talk	 of	 part	 and	 whole	 in	 the	 infinite	 case.	 At	 this	 point,	 the	 only	
possibility	 available	 is	 to	 deny	 premise	 1	 and	 abandon	 the	 idea	 of	 an	 actual	 infinite.	 Of	
course,	this	would	undermine	the	idea	of	the	‘actual	and	syncategorematic	infinite’,	i.e.	the	
idea	 that	 the	 multiplicity	 of	 numbers	 forms	 an	 actual	 infinite	 that	 exceeds	 any	 finite	
number.	

5.2.	What	if	wholes	are	pluralities?	

However,	one	might	question	 the	 claim	 that	wholes	are	more	 than	 the	mere	presence	of	
their	 constituents.	Only	 substances	–	which	are	 simple,	 i.e.	 they	have	no	parts	–	are	 true	
metaphysical	unities	for	Leibniz,	and	thus	one	might	claim	that	the	notion	of	whole	is	very	
close	to	(if	not	the	same	as)	our	notion	of	plurality.	If	this	is	right,	to	say	that	numbers	do	
not	 form	 a	 whole	 means	 that	 numbers	 do	 not	 form	 an	 actual	 infinite,	 i.e.	 there	 is	 no	
plurality	of	all	integers.	In	this	context,	Assumption	C	becomes	the	claim	that	numbers	form	
an	actual	 infinite	(a	plurality),	and	a	reformulation	 in	plural	 terms	of	Leibniz’s	argument	
would	simply	show	that	the	integers	form	a	potential	infinite.	In	this	sense,	the	argument	
would	really	show	that	Assumption	C	is	false.	This	goes	well	with	some	interpretations	of	
Leibniz,	 according	 to	 which	 he	 admitted	 the	 actual	 infinite	 only	 in	 physics,	 while	 in	
mathematics	he	only	admitted	the	potential	infinite27.	
If	 the	word	 ‘whole’	 is	a	sort	of	synonym	for	 the	term	 ‘plurality’,	 then	premise	1	of	 the	

plural	version	of	the	argument	can	be	read	as	a	more	rigorous	translation	of	Assumption	C,	
and	 the	argument	 can	be	exploited	 to	show	 that	numbers	 cannot	 form	an	actual	 infinite.	
The	 idea	being	 that	 to	say	 that	 the	squares	are	equal	 to	 the	natural	numbers	or	 that	 the	
natural	 numbers	 are	more	 than	 the	 squares,	 both	 the	 squares	 and	 the	 natural	 numbers	
                                                   

26 The theory of numerosities	(see Vieri & Di Nasso 2003; Vieri, et al. 2007; Mancosu 2009) is a non-Cantorian 
set theory that assumes PW and rejects the idea that the one-to-one correspondence between sets indicates that 
those sets have the same numbers of elements. Contrary to Leibniz, such a theory admits infinite numbers. 

27	 For	such	an	interpretation,	see	for	instance	Antognazza	2015	and	Breger	1986.	



 
 

must	have	a	definite	extension,	i.e.	they	must	form	a	plurality.	If	we	deny	such	a	premise,	
the	upshot	is	that	squares	and	naturals	form	a	potential	infinite,	i.e.	an	indefinite	sequence	
that	can	always	be	extended.	This	allows	us	to	argue	that,	even	though	there	 is	a	one-to-
one	 correspondence	 between	 the	 natural	 numbers	 and	 the	 squares	 (premise	 4)	 and	 all	
squares	 are	 as	 many	 as	 some	 natural	 numbers	 (premise	 3),	 we	 cannot	 derive	 the	
contradiction	because	the	sizes	of	the	squares	and	the	natural	numbers	are	indefinite,	and	
so	 it	does	not	make	sense	to	say	that	 they	are	equal	or	 that	one	 is	bigger	than	the	other.	
The	 indefiniteness	of	 the	sequences	does	not	allow	us	to	compare	their	sizes,	since	these	
sizes	 are	 not	 determined.	 In	 this	 regard,	 one	 can	 stress	 the	 fact	 that	 Leibniz	 talked	 of	
infinitely	 many	 things	 only	 distributively,	 not	 collectively.	 Numbers	 forming	 a	 potential	
infinite	would	explain	why	no	collection	of	 them	(no	set,	no	whole,	no	 fusion)	exists	and	
why	 collective	 predication	 fails.	We	 could	 not	 say	 anything	 concerning	 the	 size-relation	
between	 all	 squares	 and	 all	 numbers,	 because	 to	 say	 that	 there	 are	 fewer	 squares	 than	
numbers	seems	to	presuppose	that	we	can	treat	squares	and	numbers	collectively.	
An	important	thing	to	note	here	is	that	even	though	in	this	scenario	the	argument	can	

really	 be	 exploited	 to	 show	 that	 Assumption	 C	 is	 false,	 the	 plural	 formulation	 remains	
interesting,	 since	 plural	 resources	 allow	 for	 a	 clearer	 and	more	 rigorous	 version	 of	 the	
argument.	Moreover,	the	notion	of	plurality	can	be	used	by	a	defender	of	such	a	position	to	
provide	a	clear	interpretation	of	the	ambiguous	notion	of	(Leibnizian)	whole.	
However,	even	if	we	use	the	argument	against	Assumption	C,	it	should	be	clear	that	this	

is	 possible	 precisely	 because	 the	 one-to-one	 correspondence	 and	 PW	 are	 two	 different	
standards	of	comparison	for	sizes	of	collections.	In	fact,	it	is	the	claim	that	numbers	for	a	
potential	sequence	(i.e.	an	indefinite	sequence)	that	allows	one	to	coherently	accept	both	
principles.	More	 precisely,	 one	 can	 simultaneously	 accept	 them,	 because	 one	 has	 denied	
the	existence	of	actual	infinite	pluralities	(i.e.	because	one	has	denied	Assumption	C).	The	
argument	 exactly	 shows	 that	 if	 all	 numbers	 had	 formed	 a	 determined	 actual	 infinite	
plurality,	 i.e.	 a	 plurality	 whose	 extension	 can	 be	 compared	 in	 size	 with	 that	 of	 other	
pluralities,	 then	we	would	have	 faced	the	contradiction.	 If	 it	were	possible	 to	compare	 in	
sizes	 such	pluralities,	 the	one-to-one	correspondence	and	PW	would	have	produced	 two	
different	 verdicts	 on	 their	 sizes.	 This	 clearly	 shows	 that,	 when	 infinite	 pluralities	 are	
admitted,	 PW	 and	 the	 one-to-one	 correspondence	 represent	 two	 different	 standards	 of	
comparison	 for	 sizes	of	 collections.	The	plural	 formulation	has	 the	merit	of	bringing	out	
this	difference	with	great	clarity.	

5.3.	Infinite	numbers	

As	we	saw	above,	the	argument	avoids	any	mention	of	numbers.	The	contradiction	can	be	
derived	without	any	appeal	to	the	concept	of	number,	and	as	such	it	shows	that	numbers	
are	 not	 essential	 to	 the	 argument.	 However,	 the	 argument	 has	 effect	 on	 numbers,	 since	
Leibniz’s	 own	 conception	 of	 number	 is	 a	 mereological	 one,	 where	 numbers	 are	
mereological	aggregates	(wholes)	whose	parts	are	the	unities28.	Therefore,	if	there	were	an	
infinite	 number,	 there	would	 be	 an	 infinite	whole.	 But	 the	 argument	 shows	 that	 infinite	
wholes	cannot	exist,	and	so	infinite	numbers	too.	Whatever	one	takes	a	whole	to	be	(a	set,	a	
fusion	 or	 simply	 a	 plurality),	 an	 infinite	 whole	 presupposes	 that	 its	 members	 form	 an	

                                                   

28	 More	on	the	Leibnizian	concept	of	number	can	be	found	in	Sereda	2015.	



 
 

actual	infinite	plurality.	But	then	we	are	in	a	position	to	develop	the	plural	version	of	the	
argument.	 At	 the	 end	 of	 section	 5.1.	 we	 argued	 that,	 due	 to	 his	 definition	 of	 equality,	
Leibniz’s	 reply	 to	 such	 a	 version	 of	 the	 argument	would	have	 probably	 consisted	 in	 the	
denial	 of	 numbers	 forming	 an	 actual	 infinite,	 which	 clearly	 leaves	 no	 space	 for	 infinite	
numbers.	 As	 such,	 the	 argument	 has	 a	 direct	 bearing	 on	 the	 Leibnizian	 conception	 of	
number,	even	though	numbers	do	not	play	any	essential	role	in	it.	Of	course,	the	fact	that	
ultimately	 the	argument	 is	based	on	 two	different	 standards	 for	 comparison	of	numbers	
allows	us	to	accept	infinite	pluralities,	to	dismiss	one	of	the	two	standards,	and	to	modify	
the	concept	of	numbers	so	as	to	allow	for	infinite	numbers	(Cantorian	transfinite	numbers	
are	just	an	example).	

6.	Conclusion	

In	 this	 paper,	 we	 have	 offered	 a	 plural	 reformulation	 of	 Leibniz’s	 argument	 against	 the	
infinite	number,	which	is	valuable	both	to	those	who	believe	that	Leibniz	only	accepted	the	
potential	infinite	in	mathematics,	and	to	those	who	believe	that	Leibniz	accepted	that	the	
integers	form	an	actual	infinite.	To	the	former,	the	notion	of	plurality	can	give	them	a	more	
rigorous,	 clear,	 and	 direct	 formulation	 of	 the	 argument,	 and	 a	 way	 of	 interpreting	 the	
notion	of	whole.	 To	 the	 latter,	 the	 argument	 shows	 something	 important:	 Assumption	 C	
that	 Leibniz	 reduces	 to	 absurdity	 does	 not	 play	 any	 role	 in	 the	 derivation	 of	 the	
contradiction.	Generally	 speaking,	Leibniz	 seems	 to	miss	 its	 target,	because	 it	 reduces	 to	
absurdity	a	premise	–	namely,	 that	a	multiplicity	has	a	number	only	if	 it	 forms	a	whole	–	
that	plays	no	effective	role	in	the	derivation	of	the	contradiction.	The	contradiction	stems	
from	 using	 two	 different	 standard	 of	 comparison	 for	 sizes	 of	 collection.	 In	 front	 of	 this	
situation	only	three	scenarios	are	possible:	 follow	Cantor	 in	abandoning	PW;	or	abandon	
the	 validity	 of	 the	 one-to-one	 correspondence	 in	 the	 infinite	 case	 (with	 the	 necessity	 of	
abandoning	Leibniz’s	own	definition	of	an	infinite	multiplicity);	or	assume	the	definition	of	
‘less	than’	given	by	Leibniz,	and	therefore	claim	that	no	plurality	can	constitute	an	actual	
infinite.	
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