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Centered Partition Processes: Informative
Priors for Clustering (with Discussion)

Sally Paganin∗, Amy H. Herring†, Andrew F. Olshan‡, David B. Dunson§, and
The National Birth Defects Prevention Study

Abstract. There is a very rich literature proposing Bayesian approaches for clus-
tering starting with a prior probability distribution on partitions. Most approaches
assume exchangeability, leading to simple representations in terms of Exchange-
able Partition Probability Functions (EPPF). Gibbs-type priors encompass a
broad class of such cases, including Dirichlet and Pitman-Yor processes. Even
though there have been some proposals to relax the exchangeability assumption,
allowing covariate-dependence and partial exchangeability, limited consideration
has been given on how to include concrete prior knowledge on the partition. For
example, we are motivated by an epidemiological application, in which we wish to
cluster birth defects into groups and we have prior knowledge of an initial cluster-
ing provided by experts. As a general approach for including such prior knowledge,
we propose a Centered Partition (CP) process that modifies the EPPF to favor
partitions close to an initial one. Some properties of the CP prior are described,
a general algorithm for posterior computation is developed, and we illustrate the
methodology through simulation examples and an application to the motivating
epidemiology study of birth defects.

Keywords: Bayesian clustering, Bayesian nonparametrics, centered process,
Dirichlet Process, exchangeable probability partition function, mixture model,
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1 Introduction

Clustering is one of the canonical data analysis goals in statistics. There are two main
strategies that have been used for clustering; namely, distance and model-based clus-
tering. Distance-based methods leverage upon a distance metric between data points,
and do not in general require a generative probability model of the data. Model-based
methods rely on discrete mixture models, which model the data in different clusters as
arising from kernels having different parameter values. The majority of the model-based
literature uses maximum likelihood estimation, commonly relying on the EM algorithm.
Bayesian approaches that aim to approximate a full posterior distribution on the clus-
ters have advantages in terms of uncertainty quantification, while also having the ability
to incorporate prior information.
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We congratulate the authors on an interesting paper, which provides a concrete con-
tribution in Bayesian nonparametric methods. The proposed centered partition (cp)
process p(c | c0) is an exponential contamination of a baseline process p0(c) towards
a fixed partition c0. The authors suggest a Gibbs-type specification for the baseline
distribution p0(c), since this class displays a nice balance between flexibility and com-
plexity (Lijoi et al., 2007). The cp informs the clustering process exploiting existing
prior knowledge about the partition.

The cp process is defined as p(c | c0) ∝ p0(c) exp{−ψd(c, c0)}, with ψ > 0 being a
penalization parameter, and d(c, c0) being a metric between partitions, such as the Vari-
ation of Information (vi). The cp process can be also interpreted as a generalized Bayes
posterior, in the sense of Bissiri et al. (2016). Within such a framework, the baseline
distribution p0(c) represents the prior belief about an unknown partition, whereas c0 is
regarded as a data point. Moreover, in the generalized Bayes terminology the distance
d(c, c0) is the loss function, meaning that the parameter ψ > 0 balances the importance
of the observations relative to the prior. This perspective leads to an alternative inter-
pretation of cp processes, where p(c | c0) can be regarded as the posterior belief about
the partition conditionally on the observation c0.

Such a generalized Bayes interpretation leads to interesting modeling extensions. In
many practical contexts, it might be difficult to select a single c0 encapsulating our prior
knowledge about the partition. Instead, it might be easier to identify several plausible
partitions that well describe the phenomenon under consideration. For example, in
the application considered by the authors, different investigators could provide equally
plausible mechanistic groups of the birth defects c0,1, . . . , c0,S . Following Bissiri et al.
(2016), it is natural to include all these representative partitions in an additive manner,
namely

p(c | c0,1, . . . , c0,S) ∝ p0(c) exp

{
−ψ

S∑

s=1

d(c, c0,s)

}
. (1)

The above conditional distribution can be regarded as the posterior distribution of c
given the observations c0,1, . . . , c0,S . As ψ → 0 the distribution p(c | c0,1, . . . , c0,S)
converges to the baseline law p0(c). However, when ψ → ∞ then p(c | c0,1, . . . , c0,S)
converges to a discrete distribution function placing mass over the set of partitions
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Figure 1: Prior probabilities of the 52 partitions of N = 5 elements for the cp process
with p0(c) ∝ 1. Left panel corresponds to the cp process centered on a single partition
c0 = {1, 2}{3, 4}{5}. Right panel refers to a cp process centered on two partitions:
c0,1 = {1, 2}{3, 4}{5} and c0,2 = {1}{2}{3, 4}{5}. The cumulative probabilities across
different values of the penalization parameter ψ are joined to form the curves, so that
the probability of a given partition corresponds to the area between the curves. Blue
areas correspond to the centering partitions c0 (left plot), and c0,1, c0,2 (right plot).

ĉ1, . . . , ĉM , corresponding to the minimizers of

min
c

S∑

s=1

d(c, c0,s),

where M represents the number of solutions of the above minimization problem. Broadly
speaking, each ĉm, for m = 1, . . . , M , is an “average” partition summarizing the in-
formation contained in the observations c0,1, . . . , c0,S . Hence, the distribution p(c |
c0,1, . . . , c0,S) can be arguably regarded as a cp process with multiple centers ĉ1, . . . , ĉM .
Such a generalization of the cp is fairly straightforward and it might have useful prac-
tical implications, especially if there is uncertainty about the fixed partition c0. In
addition, the Gibbs sampling devised by Paganin et al. (2021) can be easily modified
to account for this extension.

In Figure 1 we reproduce Figure 2 of Paganin et al. (2021) and we illustrate the effect
of our multi-centers extension. We compare the model of Paganin et al. (2021) when
p0(c) ∝ 1 and c0 = {1, 2}{3, 4}{5}, with the extension in (1) when p0(c) ∝ 1, S = 2,
and c0,1 = {1, 2}{3, 4}{5}, c0,2 = {1}{2}{3, 4}{5}. Larger values of ψ increase the prior
probability assigned to c0 in the left panel, and to each of the centers ĉ1, . . . , ĉM in the
right panel. These centers represent the partitions that are more similar in terms of vi
to c0,1 and c0,2. In this specific scenario, the centers ĉ1, . . . , ĉM actually coincide with
the data points c0,1, c0,2 and S = M = 2, but this is not always the case.
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