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1. Introduction

Return series of financial assets are characterized by high order depen-
dence, volatility clustering and high kurtosis. ARCH and GARCH models,
since their introduction by Engle (1982) and Bollerslev (1986), have become
increasingly popular in parameterizing these characteristics. In order to cap-
ture excess kurtosis of the data, GARCH models have been also extended to
t-Student errors (Bollerslev, 1987), but empirical evidence documents that
estimated residuals still exhibit excess kurtosis, often due to the presence of
extreme outliers (Bali and Guirguis, 2007). Outliers are extreme observations
that affect the estimation of parameters (Van Dijk et al., 1999; Galeano and
Tsay, 2010), the tests of conditional homoscedasticity (Carnero et al., 2007;
Grossi and Laurini, 2009) as well as the out-of-sample volatility forecasts
(Chen and Liu, 1993a; Franses and Ghijsels, 1999; Catalan and Trivez, 2007,
Charles, 2008).

Some contributions proposing robust estimators for ARCH and GARCH
models have been recently published. A robust estimator for GARCH(p, q)
models has been introduced by Muler and Yohai (2008). A new estimator
for heavy-tailed and asymmetric GARCH models, based on the negligibly
trimming QML criterion has been suggested and discussed by Hill (2015).
Hung (2014) uses a robust Kalman filter to forecast conditional volatility,
which is used to improve the robust performance of GARCH models. A M-
estimator for multivariate GARCH models with t-Student distribution has
been proposed by Boudt and Croux (2010).

Several proposals to detect outliers in GARCH models can be found in
the literature. The method developed by Hotta and Tsay (2012), based on
a Lagrange multiplier test, suffers from the masking effect, which occurs
when the presence of one influential observation masks the presence of other
outliers. The methods suggested by Franses and Ghijsels (1999), Franses
and Van Dijk (2000), Charles and Darne (2005) and Doornik and Ooms
(2005) are instead extensions of the procedure which was introduced for
ARIMA models by Chen and Liu (1993b). This procedure is iterative and
works on single deletion diagnostics which are based on coefficients estimated
assuming outlier-free data. The result is that, when multiple outliers are
present in the data set, deletion diagnostics can be badly biased by the
presence of other outliers. Alternative procedures for outlier detection in
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GARCH models were proposed by Bilen and Huzurbazar (2002) and Grané
and Veiga (2010), both based on wavelets. According to Grané and Veiga’s
results, the main advantage of the wavelet-based procedures is that they avoid
the masking effect and, in particular, noticeably lower the detection rate of
false outliers. The method introduced by Laurent et al. (2014), based on
a semi-parametric statistical test for outlier detection, does not suffer from
the masking effect. However, the large number of detected outliers raises
concerns about the size of the test. Grané and Veiga (2014) compare some
of the robust estimators and tests for the GARCH outliers described above,
finding a prevalence of the method proposed by Grané and Veiga (2010).

This paper has two purposes. The first is to introduce a new outlier test
for GARCH(1,1) models, assessing its size and power. The second is to de-
fine a robust estimator for the same class of models. Both are achieved by
extending the Forward Search (FS) technique (Atkinson and Riani, 2000) to
GARCH(1,1) models. The FS is an efficient and robust method originally de-
veloped for linear models to unmask multiple outliers and to measure their
effect on model estimates. As previously said, some methods have been
developed to identify observations which strongly influence GARCH model
estimates. These methods, like all backward methods, are affected by the
masking effect which prevents the detection of multiple outliers. The FS
overcomes the drawback of single deletion methods because it monitors out-
lier diagnostics starting from an initial subset free from outliers (the Clean
Data Set: CDS hereafter).

One of the distinctive characters of the F'S is that it ranks the observations
according to their degree of accordance with the model. Since time series data
possess by definition a temporal ordering, there is a conflict between these
two ranking criteria.

Another distinctive feature of the F'S is that many models should be iter-
atively estimated based on different subsets of observations. When data are
independent, the method does not raise any issues as it is possible to select
subsets of observations without constraints. In time series this is not possi-
ble. We cannot select any possible subset of the original time series, but only
patches of consecutive observations to respect the time order of units. A nat-
ural way to deal with the problem is to consider observations not belonging
to the subset as missing data and estimate the parameters with estimators
suitable for treating missing observations (Riani, 2004). An alternative solu-
tion, suggested by Grossi (2004), is to replace observations outside the subset
with data simulated using robust parameters. The two solutions, although

3
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empirically effective, are not optimal because they rely on methods which
cannot be always applied, as in the case of GARCH models (see next section
for details). To fill these gaps, we suggest a new robust procedure where ob-
servations outside the estimation subsets are down-weighted instead of being
treated as missing or replaced by simulated data. The weighting function is
defined within the iterative F'S, so that no arbitrary elements and choices are
introduced. In this way, all observations are used for estimating parameters
and maintained in the original time position. The theoretical background is
mimicked from the classic F'S, but could be considered a generalization of the
parent method. As will be discussed throughout the paper, the classic FS
can be considered a special case of the new procedure which will be called
Weighted Forward Search (WF'S hereafter).

The paper is structured as follows. In section 2 the general GARCH(1,1)
model is presented and the main issues related to the extension of the FS
are discussed. The new WFE'S procedure is introduced in section 3. The new
method is organized into two main steps which are discussed in two different
subsections: the choice of the initial subset free from outliers (section 3.1)
and the weighting scheme applied to each unit (3.2). A typical output of
the WFS is shown in section 3.3. The WFS test and the WFS estimator are
introduced in section 4. As the WES test is crucial for the definition of WES
estimator an extensive Monte Carlo simulation is reported in section 4.1 and
a comparison of the size and power of alternative outlier tests is presented
in section 4.2. An application of the WFS test and estimator to financial
time series is carried out in section 5. Section 6 reports final remarks and
conclusions.

2. GARCH models and the forward search

In this section we provide some mathematics related to the basic GARCH(1,1)

model. As the procedure applied in this paper is a novelty in regard to the
GARCH family models, we start from the simplest specification; but the
procedure we suggest could be easily extended to more complex models.
Let ry, with t = 1,...,7T denote an observed time series of returns: r; =
log (pt/pi—1) where p; is the price of a security at time t.
The GARCH(1,1) model can be simply described as:

re=ptenalFi~N(0,07) and o) =g +anef + By (1)
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with ag > 0,01 > O,ﬁ > 0,0, —f—ﬂ < 1.

When we try to extend the FS to time series, we face the problem of time
ordering. As well known, observations outside the CDS in the classic FS ap-
plied to independent data are simply considered as missing values (Atkinson
and Riani, 2000, pp. 22-24). Handling missing values when dealing with de-
pendent data, such as time series, is a much more difficult task (Penzer and
Shea, 1999; Johansen and Nielsen, 2016). A family of robust estimators for
autoregressive processes with missing values has been introduced by Kharin
and Voloshko (2011). In the framework of ARMA models, the Kalman filter
could be conveniently applied to estimate the coeflicients with missing val-
ues (Gomez et al., 1999; Proietti, 2008). This approach is adopted by Riani
(2004). In a first step he uses a state space representation of an ARMA
model. In the second step, when missing values occur, the Kalman filter
equations are not updated and the innovations are set equal to zero. This is
a very natural way to deal with missing values in time series. Unfortunately,
this procedure cannot be easily extended to other models. For instance,
the state space representation of GARCH models is not easy to obtain, as
indicated in Penzer (2007) and in Ossandén and Bahamonde (2011). It is
certainly easier to obtain a state space representation for a simple ARCH
model. However, once the state space formulation is obtained, the Kalman
filter approach in Jones (1980) cannot be applied to compute the likelihood
of an ARCH process with missing values. Bondon and Bahamonde (2012)
suggested a least square estimation with missing values for ARCH models,
but the method cannot be extended to GARCH models.

Bearing these open issues in mind, Grossi (2004) proposes extending the
FS to GARCH models by avoiding the parameter estimation with missing
values. In his procedure, Grossi suggests replacing the observations not be-
longing to the CDS with values simulated from a stochastic process whose
parameters have been estimated at the previous step of the search. Although
this method proves quite effective, it is not completely consistent, particularly
at the first steps of the F'S, when observations are simulated using parameters
estimated on a very small number of observations. Moreover, the method is
very computationally demanding and could be infeasible for large datasets.

3. A weighted forward search for GARCH models

In this paper we suggest filling the gap in the literature by introducing
a modified version of the FS to avoid the issues related to the estimation of
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GARCH parameters with missing observations.

The FS makes it possible to inspect the role played by each observation
in the parameter estimation procedure. It is based on robust and efficient
estimators and consists of three steps: the first concerns the choice of an
initial subset free from outliers called Clean Data Set (CDS); the second
refers to the way in which we progress in the FS; and the third relates to
monitoring some relevant statistics during the search’s progress. As said in
the previous section, the difficulty of applying the FS to time series is due
to the conflict between the ordering of the data introduced by the search
and the natural temporal ordering of the data. The solution suggested in
this paper is to move from the classic F'S where observations could have just
two weights (0 for potential outliers and 1 for remaining observations), to a
weighted version of the F'S where each observation receives a weight between
0 and 1. The weighting system depends on the degree of agreement with
the model at the previous step of the F'S. On the other hand, observations
that would have been included in the search are given weight 1. In the next
subsections, we describe the method in detail following the three steps of the
classic FS.

3.1. Choice of the initial subset

The FS is always initialized on a subset of observations free from outliers
which must be selected among a set of possible combinations of equal size.
When units are assumed to be independent, the initial CDS of generic size
m is chosen among all possible m-sized combinations of units which can be
obtained starting from a set of n observations. For time series, the usual
procedure proposed for independent data cannot be applied for several rea-
sons which depend on the temporal dependence of the data. In particular,
when GARCH models are used for forecasting purposes, future volatility is
predicted iteratively and the estimation is based on past observations. More-
over, the log-likelihood function of GARCH models is estimated iteratively
and the initialization is based on the first observations of the time series.

A method to deal with this issue is to transfer the idea of block sampling
(Heagerty and Lumley, 2000) into the FS framework. According to this
assumption, which seems particularly sensible in the case of stationary time
series like financial returns, we can identify subgroups of contiguous units
which maintain the same dependence structure of the original time series.

A procedure for the selection of the initial CDS based on the idea of
block sampling was originally proposed by Riani (2004) for the estimation of

6
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ARIMA parameters when time series present missing values and by Grossi
(2004) to extend the classic F'S procedure to GARCH(1,1) models.

The approach applied in the present paper, based on the idea of block-
sampling, follows the article by Grossi (2004). The main features and symbols
are recalled in the next paragraphs, while details can be found in the original
paper.

Let T be the size of a time series of financial returns r;, and b a number of
initial observations. The main feature of the block sampling is the splitting
of the remaining T — b observations into a number f of subsets of contiguous
units. To simplify the notation, we assume, without loss of generality, that
the size of each subset is g = (7' —b) / f, where g is assumed to be integer.

The generic h-th subset, with h = 1,2,..., f subset S,(ngrb) is then made
up of the units 71,79, ..., 7%, Por14(h=1)g> - - - » Tohg-

The criterion used to select the best initial subset is the same as applied
in the case of independent data: that is, the minimization of the median of
squared residuals (Least Median of Squares estimator, Rousseeuw and Leroy,
1987).

For GARCH(1,1) models, to introduce the selection procedure, we need
to define the standardized residuals as

ens,(lg*b) — et,sfl-‘?*b) /5t75’(19+b) (2)

where e; and s;, are the estimates of ¢; and oy, respectively (see equation (1)).
The estimated residuals are based on the MLE of the GARCH coefficients
obtained using only the observations included in S,(Iﬁb) (see Grossi, 2004, for
details on the log-likelihood function).

Thus, the best initial subset is given by the observations which minimize
the median of squared standardized residuals, that is

m}%n |:’é[2med]75,(ig+b)i| <3)

where 5[2 4,5 is the j-th ordered residual estimated on observations in
meaj, h

S among t =b+1,....T and med = [(T — b)/2].

The choice of the initial subset is influenced by two factors. First, the
possible presence of outliers among the b initial observations of the original
time series. Second, the choice of the number of subsets of size g + b. The
first issue can be resolved with backward forecasts of the b initial observations
based on the remaining 7'—b units. A solution to the second problem is given

7
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by a heuristic rule which finds the optimal value as g = VT. For a detailed
discussion of these issues, see Grossi (2004).

3.2. Weighting observations during the forward search

At each step of the classic FS, the size of the initial subset is increased
by adding new observations to the CDS and, sometimes, removing others.
Therefore, the observations augmenting the size of the CDS at a given step
contribute to the estimates, while the others are excluded from the estimation
process until the subsequent step when a new ranking on all units is defined.
One of the main contributions of this paper, which characterizes the Weighted
FS (WEFS) for time series, is the introduction of a new approach. At each
step of the search, estimation is carried out on all observations but not all
of them contribute with their observed value: observations are weighted to
account for their degree of outlyingnes?.

In particular, moving from step k& to step k + 1 of the search

e all units, but the first b, are sorted according to their degree of agree-
ment with the parameters estimated at the previous step of the search.
The degree of agreement is measured by squared standardized residuals
defined in equation (2), obtained from estimates of step k. Thus, at
each step of the algorithm, the data are ordered by the WFS, as in the
case of the classic F'S;

e the first g+k observations in the ranking defined at the previous step are
given weight 1; the remaining observations are given a weight which is
proportional to the corresponding value of the complementary cumula-
tive distribution function of the squared standardized residuals defined
on the whole sample.

In this way, each observation that would not have joined the CDS ac-
cording to the classic F'S, is down-weighted by the probability that the corre-
sponding or a larger residual may be observed. Weights range from 0 to 1, so
that the closer the weight to 0 the higher is the likelihood of the observation

2Other robust estimators are based on weighting schemes (Hill and Prokhorov, 2016).
However, in this paper weights are computed considering all observations, including very
extreme ones. In our approach, weights are adapted to the contamination pattern of the
time series and, thanks to the test which will be introduced in the next section, they are
not influenced by the presence of very large observations.
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being an outlier, while the closer the weight to 1 the stronger is the degree of
agreement of the observation with the estimated model. Observations with
weight 1 form the CDS.

With this approach it is possible to achieve two goals, which cannot be
pursued with the classical F'S:

1. the temporal structure of the time series is respected, filling the time
gaps created by the forward ordering;

2. all observations can be ordered according to their degree of agreement
with the model estimated at the previous step.

Thus, the autocorrelation structure of the data is maintained, since volatil-
ity clustering will be accounted for by heavier weights, while the influence of
outliers will be watered out by smaller weights.

The details of the procedure can be summarized as follows. In order to
obtain stable estimates of GARCH parameters, the first b observations are
always considered with their original value. Let m = b+ ¢ be the size of
the subsample chosen at the first step. Going from step 1 to step 2 of the
search, all T' — b observations are then ordered according to their squared
standardized residuals éfﬂm fort = b+ 1,...,T, so that each observation
obtains a forward ordering given by squared residuals.

At each step j = (b+g),...,T, the WFS assigns to each observation r;
a weight, say w; ;, which is defined as:

o wy;=1,t=1,...,m—b+1, for the observation 1, ..., 7,31 belong-
ing to the CDS

o Wy =1—Fry (@gn, 1), t=m—0+2,...,T.

where F.., (+) is the squared standardized residuals distribution function?.
In practice, at each step, standardized residuals are tested to be y? dis-
tributed. If the p-value of the Kolmogorov-Smirnov test exceeds the critical
value 0.05, we use tabulated values of the x? (1) distribution; otherwise a
kernel density estimation is used.

The weighted observations are then re-ordered according to time, so that
the temporal structure of the time series is recovered. The weighted ordered

31t is important to note that weights are obtained by exploiting the F'S ordering.
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series is used to estimate the GARCH parameters. Finally, we move from
step 2 to step 3 in the same way, until all observations enter the CDS with
their original value, that is, with unit weight. As the WE'S proceeds, the net
around outliers becomes tighter and their value is down-weighted until the
end of the search.

Note that the outlier decontamination process begins with the initializa-
tion of conditional variance o2, given the importance of choosing a suitable
number of initial observations to estimate the initial instances of the condi-
tional variance process in GARCH estimation (Pelagatti et al., 2009). In our
context, the conditional variance initialization is even more important since
outliers entering the variance process at the earlier steps could have a ripple
effect on the whole GARCH estimation. We adopt here a forward variance
initialization approach, since it turned out to produce the steadier estimates
throughout the search if compared with other approaches. More precisely, we
use only the observations belonging to the CDS in order to assign an initial
value to the conditional variance not influenced by outliers.

It is very important to stress that the classic FS is a particular case of
the WFES, where the weights could only assume two values: zero when the
observation does not belong to the CDS; or one when the observation is in
the CDS. Thus, the weighted forward approach could be considered a more
general procedure which, of course, maintains the diagnostic properties of
the classic FS. When the WES is applied, it is possible, as in the classic
FS, to measure the influence on estimates and on trajectories of residuals
of each observation at the time it enters the CDS and receives weight 1.
Note that weighted data at step k& + 1 are conditional to weighted data at
step k, and that coefficients are estimated using the data set composed of
all observations, whatever the weight is. On the contrary, residuals used
to order observations are based on the coefficients estimated on the original
T — b units*.

Furthermore, by including all observations at each step, we obtain a more
stable pattern in the output of the search. If the estimates were based only on
observations with weight 1 and on the units filling the time gaps, on moving
from step k to step k + 1 we would not know the number of observations

4At step k the CDS is made up of b+ g + k — 1 observations maintaining their original
value while the remaining units are down-weighted. Overall, a WFS over T observations
counts 7'+ 1 — (b + g) steps.

10
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involved in the estimation process, which would depend on the time distance
between units with weight 1.

3.3. Weighted forward output

The second stage of the WFS illustrated in the previous section is repeated
until all units are included with their original value; therefore, until the CDS
coincides with the original time series. The output of the search is mainly
graphical as in the classic F'S: separate plots with coefficient estimates, t-
statistics and residuals can be reported for the last steps of the search.

A simple example of the output is reported in Figure 1 where residuals
(top right panel), coefficient estimates (second row panels) and t-statistics
(third row panels) are reported. All statistics have been obtained apply-
ing the WFS to a simulated GARCH(1,1) series of length 500 with oy =
0.01,a; = 0.07,8 = 0.9 (top left panel), during the last 10% steps of the
search. The series were contaminated by 3 Additive Outliers (AO) of dif-
ferent magnitude following the framework of Carnero et al. (2007). Hence,
observations contaminated by AO are as follows:

rr=rw (4)

with w = 50,, w = 100, and w = 150,, where o, indicates the standard
deviation of the time series before contamination.

Figure 1 about here

Most of the time, the graphical output of the F'S provides the researcher
with quite clear indications on which observations should be considered as
outliers and, therefore, should be removed or corrected (Cerioli et al., 2014).
In the FS plots sudden jumps of the trajectories indicate that one or more
influential observations entered the CDS (Riani et al., 2015).

However, this approach inherently leaves a certain degree of subjectivity
to the researcher. Consider for instance the example in Figure 1, which is
applied to a trajectory generated by a GARCH(1,1) process®: it is evident

50f course, this running example is only one of the possible infinite trajectories gen-
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that the introduction of the second last observation causes a shift downward
in the estimated value of 8 (second row, right panel), which further drops
after the last observation joins the CDS. A similar pattern can be observed
for ap and, though not easy to detect, for ;.

The presence of at least two outliers is confirmed by the analysis of the
WEFS standardized residuals of the same series (last 50 steps of the search,
see the top right panel). The residual trajectories of two observations, ¢t = 54
and t = 425, markedly depart with respect to the others, and a third one
(t = 192) also departs from the main group, suggesting a third outlier could
be present. Note that the third last observation causes a mini-break in the
plot of estimates (second row, in particular for a; and /) when it enters the
estimation process with its exact value. The last two t-statistics (third row in
Figure 1) go down for all three parameters, while the third last drops for ay,
stays in the range of preceding values for oy and goes up for 3. Accordingly,
it seems somewhat troublesome to decide whether observation ¢t = 95 is
influential.

In order to limit the subjective choices linked to the graphical visualiza-
tion, we add to the classical F'S output a new WFS test which can be used
to mark an observation as an outlier with a probability level.

4. A weighted forward test for outliers
The introduction of a WES test is crucial for two reasons:

1. the chances of arbitrary selecting one observation as outlier is reduced
because, given a significant level of probability, it is always possible to
say whether a unit can be considered an outlier;

2. once the number of outliers has been defined, the forward plots of coef-
ficient estimates can be cut automatically: at this point, WFS robust
estimates of the coefficients are obtained because they are not influ-
enced by the detected extreme values (see section 4.3).

The null hypothesis of the new WFS test is as follows: given a single
observation generated by a GARCH(1,1) model, this observation is not an
outlier.

erated by the GARCH(1,1) process with that set of parameters. However, this example
precisely mimics the situation that we encounter when we analyze one, and only one, real
time series.

12
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The WE'S test for the presence of outliers is defined using simulated en-
velopes generated according to Atkinson and Riani (2000) through the fol-
lowing steps:

1. perform the WFES on a number, say “n.sim”, of series of size T simu-
lated by a set of GARCH(1,1) processes. The set of processes is defined
by different combinations of parameters commonly observed when fi-
nancial returns are modeled ag = 0.01 and a; + 5 = 0.97 (see Table
1). The total number of simulated trajectories is n.sim = 10, 000.

Table 1 about here

2. detect the observation in the CDS that gives the largest standardized
residual in absolute value

rﬁaz’j = argmazx ( ézt|)

r€CDS)

where
7 =1,2,...,10000 is the series index and
i=n—(pxT—1),n—(pxT),...,n—1,nis the sequence of the steps
over the last p x T steps, p is a given percentage of T" and n is the total
number of steps in the WF'S;

3. the bounds of the outlier detection interval are given by the ath and
(1 — «)th percentiles, for each of the last p x T steps, over

5(T$am7j), where i=n—(pxT—-1),n—(pxT),...,n—1,n.

Observation r; is declared to be an outlier if the corresponding stan-
dardized residual trajectory crosses the outlier detection interval for a fixed
number of times (number of exceedances, n.ex) at least.

The final simulated envelopes, which are used as outlier detection inter-
vals, have been obtained as the average of the intervals based on different
sample sizes: that is, T' = 250, 500, 1000, which are typical sample sizes ob-
served when financial returns are analyzed®. Note that, by construction, the
WEFS test is independent of the parameters of the process.

5The ideal situation happens when the test is based on simulated time series of the same

13
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4.1. Power and size of the test: a simulation study

The outlier test that we propose can be calibrated according to the level of
significance a and the number of exceedances, n.ex. In this tuning procedure,
we must consider the usual trade-off which exists between the maximization
of the power of the test and the need to keep a reasonably low size.

The Monte Carlo study that we perform in this section is based on N =
1000 trajectories of size T' = 250,500,1000 simulated by a GARCH(1,1)
process. The coefficients of the process are set to ap = 0.01,p = 0.07, 5 =
0.9, and the series are contaminated according to three different patterns:

e one single outlier of magnitude w = 50,.,w = 100,,w = 150,;
e three outliers, one for each of the above magnitudes;

e ten outliers: two of magnitude w = 50,, four of magnitude w = 100,
and four of magnitude w = 150,.

All outliers are placed randomly along the series.

The power of the WES test, which is run over each simulated series, is
calculated as the mean of the percentage of correctly detected outliers over
all replications, while the size is calculated as the mean of the percentage of
erroneously detected outliers over all uncontaminated replications.

The power and size curves of the WFES test related to the number of
exceedances expressed as a percentage of the final steps of the search are
shown in Figure 2, Figure 3 and Figure 4.

Figure 2 about here

Figure 3 about here

size as the series under test. However, replication of many WFSs is quite time consuming.
In addition, we have run several tests based on different sizes over the same time series
and obtained negligible differences in the results.

14
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Figure 4 about here

Three curves are represented in each panel: solid curves correspond to
the oo = 1% intervals, dashed curves to a = 5% intervals, and dotted curves
to the a = 10% intervals. Obviously, we expect that the larger the number
of exceedances required to define outliers, the smaller the power and the size
of the test. Nonetheless, a quite constant pattern emerges from most figures
for either power or size depending on the magnitude and number of outliers
and on the sample size.

Three general points must be stressed. First, regardless of the sample
size, the power curves for the single largest outliers are basically equal to
100% whatever the number of exceedances and the level of significance (see
second and third panel in the first row of Figure 2 - 4). Second, the a = 1%
significance level interval (solid curves) is the worst performer in terms of
power (and the best one in terms of size), while differences in power (and
size) among the 5% and 10% intervals are small. For this reason we shall focus
the following comments on the 5% (dashed) curves. Third, power curves for
the largest sample size (7" = 1000) show a constant pattern up to 95% of
the exceedances in the smallest outlier case, as well as in the multiple outlier
cases.

Considering the remaining cases we observe that:

e w = 50, (top left panel of Figure 2 - 4): the power of the test does not
show substantial changes when the sample size decreases and remains
over 95%;

e three outliers (bottom left panel of Figure 2 - 4): as T decreases the
power curves become slightly steeper, so that the loss of power is negli-
gible using a smaller number of exceedances in proportion to the inter-
val length. When T" = 500 the loss of power with respect to T" = 1000
is negligible, while for T = 250 the power can still be pushed above
95% using up to 70% of the exceedances;

e ten outliers (bottom central panel of Figure 2 - 4): the power still re-
mains quite high, although it decreases more rapidly as the exceedances
increase. For T' = 500 a power of 95% is achieved with a number of
exceedances up to 80% of the interval length. For T" = 250 this limit
falls to 40% of the interval length;
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e size: (bottom right panel of Figure 2 - 4) empirical sizes are very low
compared to the significance levels throughout the whole range of ex-
ceedances for any sample size.

In summary, the WFS test shows high levels of power combined with
low sizes in all situations, the small and multiple outlier cases included.
Importantly, decreasing sample size implies quite moderate losses in power
and size of the test. From a practical point of view, the 5% test offers a good
balance between power and size. At that level, the number of exceedances,
if lower than a given threshold in proportion to the interval length, has
no relevant impact on power. In particular, when the presence of multiple
outliers is suspected in short series, the number of exceedances should reach
at most one third of the considered final steps. However, the flexibility of
the test allows power and size to be adjusted according to the specific series
at hand.

4.2. Comparison with other methodologies

In this section, we compare the performance of the WFS procedure with
other outlier detection methods for GARCH models. Recently, Grané and
Veiga (2010) measured the performance of four different outlier tests, includ-
ing the one proposed in their paper, calculating:

1. the percentage of outliers correctly detected over the total number of
outliers in the simulated series (power of the test);

2. the average number of false outliers detected on the contaminated se-
ries.

Results are then compared over different sample sizes and different types
of contaminations (see Table 2). The benchmark for power levels is the test
suggested by Franses and Ghijsels (1999), which performs best in all cases,
while the benchmark for the average number of false outliers is the test
by Grané and Veiga (2010), which achieves an extraordinarily low average
number of false outliers.

We calculate the same measures by running the WFS test for different
levels of significance (o = 1%,5%,10%) and sample sizes (T" = 500 and
T = 1000), using the outlier detection interval based on 10% of the sample
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size and fixing the number of exceedances to 60% of the interval length?.
We further add the results of the WE'S test in the case of 10 outliers and
a sample size (T' = 250) smaller than those considered by Grané and Veiga
(2010).

Table 2 about here

Three levels of significance of the WES test are displayed to show its
flexibility. Observe that in the case of a single outlier of magnitude 50, the
rate of outlier detection of the WFS test is very close to the rate achieved by
Franses and Ghijsels (1999) at 10% level, although a larger number of false
outliers (8.88) is obtained. This number can be reduced to 0.40 maintaining a
good power (88.0%) at the 1% level. For one outlier of size 100 or 150, all the
WFEF'S tests have the maximum power (99.9 to 100%) with less than 0.5 false
outliers per series (1% test). With three outliers, our test outperforms the
others in terms of power, for all levels of significance (94.2% for the 1% test
versus the 92.4% of F&G). The average number of false outliers per series
(0.33) is the second lowest at the 1% level. The ten-outlier case confirms
that the power of the WE'S test is not significantly weakened by the increase
in the number of outlying observations (it remains over 93%). At the same
time, the average number of false outliers decreases as well as its variability.
In fact, we have a smaller average number of false outliers with respect to
F&G and a smaller variability. Their method produces 6 false outliers on
average with a standard deviation of 10; while the WFES test detects at most
5.55 false outliers with a standard deviation of 1.62.

Indeed, this result points to a scant impact of both the masking effect
and the swamping effect on the performance of the WFES test.

Results for T" = 250 and T" = 500 highlight this main strength that the
WEFS inherits directly from the classical F'S method. In reducing the sample
size, the WF'S improves both power and the average number of false outliers,
while Grané and Veiga’s method loses in power, and that of Franses and
Ghijsels increases the average number of false outliers in 4 out of 5 cases.

"Note that these parameters have been selected taking into account the results of the
Monte Carlo study reported in section 4.1
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Concluding, the WFS test’s performance is generally in line with the
other tests and is sometimes even better, with particular reference to the
multiple outlier and short series cases. A plus of our test is that it is possible
to tailor the level of significance to the user’s preferences, according to the
size and power which are needed. For example, if a preliminary observation
of the time series does not suggest clear evidence of outliers, it is possible
to use a higher level of significance (maximizing the power), risking a little
more on the false outlier side. On the contrary, if one is willing to minimize
the probability of erroneously declaring an observation as an outlier to less
than one, the optimal level of significance drops to 1%.

While the WFS is in all occurrences on top of the table as far as the
power is concerned, in order to reduce the average number of false outliers
substantially one should push the number of exceedances up to 100%. For
example, by placing a small, single outlier in a series of length 7" = 1000
we can reach 0.02 average outliers per series with a power of about 73.7%
(complete results for the whole range of exceedances are available on request).

It is very important to stress that this test does not depend on the set of
true parameters characterizing the time series generating process, since the
outlier detection interval is based on a wide range of parameters; nor does it
depend on the size of the time series under test because it was obtained by
averaging detection intervals of different lengths.

4.8. The WFS estimator

It is well known that Maximum Likelihood (ML) and Generalized Least
Squares (GLS) are not robust estimators of the parameters for a GARCH(1,1)
model except for very large samples. Although the Quasi-maximum Likeli-
hood (QML) estimator based on the Student likelihood is more robust than
the classic estimators, it is still affected by outliers, particularly in the case
of the coefficient § (Sakata and White, 1998; Mendes, 2000; Carnero et al.,
2007). In this section we introduce a new robust estiamtor of GARCH(1,1)
models called the Weighted Forward Search Estimator (WFSE) and assess
its robustness to the presence of outliers.

Furthermore, we control for the impact of false outlier detection on the
same estimator, in order to obtain some indications on the balancing of size
and power when testing for outliers in GARCH(1,1) models.

Let 6 = (a, aq, ) be the vector of parameters of a GARCH(1,1) model as
in Section 2 and 91 be the MLE of 8 at the i-th step of the search, 1 = 1,...,n,
withn=T+1— (b+ g). We define the WFSE of 0 as:
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WFSFE (‘9> = én—n.out (5)

where n.out is the number of outliers detected by means of the WES
outlier test. From this definition it follows that the WFS estimates derive
automatically from the outlier identification process and that there is no need
for further corrections of outliers.

As an example, consider the WFSE applied to the same trajectory simu-
lated by a GARCH(1,1) process that we have already analyzed in Figure 1.
The WFS test at the 5% level of significance detects exactly the three out-
liers with which the series was contaminated (top right panel of Figure 5).
Accordingly, the WES estimates of the three coefficients are identified by the
vertical lines cutting the sequence of ML estimates before the three outliers
enter with their original value (second row of Figure 5). As can be seen, the
WFSE automatically corrects for outliers: once they are identified they are
downweighted as seen in section 3.2 in order to achieve a robust estimate.
Estimates of the three GARCH(1,1) parameters are close to the true values
indicated by the horizontal dashed lines.

We now move to study the performance of the WES test and estimator
over 1000 trajectories simulated by the same GARCH(1,1) process with the
same set of parameters (ap = 0.01,c; = 0.07,5 = 0.9). In order to verify
the robustness of the WFSE we compare the distribution of the ML esti-
mates obtained over uncontaminated series with the distribution of the WFS
estimates on the same series after contamination with three outliers of size
w = 50,,100,,150,. The WFES estimates are plotted at 7,6,5...,1,0 steps
before the end of the search (see Figure 6, Figure 7 and Figure 8) under the
hypothesis that the WFS test has previously identified 7,6,5. .., 1,0 outliers
in all replications.

Figure 5 about here

Starting from coefficient o (Figure 6), we can see that when the WES
test detects all the three outliers (bottom left panel, n — 3 step of the search)
there is a substantial overlap between the two distributions. Going back to
8 steps to the end of the search (top left panel) we still observe quite sim-
ilar distributions, while moving forward we observe that if the test misses
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one outlier (the smaller, n — 2 step) the WFSE distribution (grey) slightly
separates from the MLE distribution on uncontaminated data, and it is com-
pletely biased if the test misses the whole set of outliers (bottom right panel,
end of the WFS). Note that at the end of the search the WFS estimates
coincide with the ML estimates over contaminated data.

Figure 6 about here

We can extend the above conclusions to coefficients a; and § (Figure 7
and Figure 8), although the overlap between the two distributions in the best
hypothesis is not as clear as in the aq case, particularly for a;.

Figure 7 about here

Figure 8 about here

Thus far the sequence of estimates has been artificially cut at the right
point (n —3). In Figure 9 we see instead the comparison between MLE over
uncontaminated data and the WFS estimates automatically determined by
the algorithm. Again, the overlap between the distributions is quite good,
and, although coefficients a; and 5 show a larger variability with respect to
«y, the correction applied by the WFS estimator to the contaminated series
appears to have made a pretty good clean up.

Figure 9 about here

20



OCoO~NOUOR~rWNE

OO0 UUIUIUUUIUCIUTUURADNRNMDAMRNARNARNDNWWWWWWWWWWNRNNNNNNNNNRRRRRRRRERR
ORWONROOONOTROMNRPOOONODUNWNROOONVNONROMNRPOOO~NOURWNROOO~N®UNWNER O

6

R
N

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

5. Application to financial time series

The WEFS test and estimator were applied to analyze a set of securi-
ties quoted on the New York Stock Exchange (NYSE) and the main stock
exchange index. The securities were selected to create a quite diversified
portfolio covering some of the main industries of the NYSE (see Table 3).
Daily prices were downloaded from the Bloomberg platform for a sampling
period extending from the beginning of 2006 to the end of 2015. We moved
to weekly series of 522 observations selecting the intermediate day of each
week, so that weekly log-returns measure the relative change of prices with
respect to the previous Wednesday?®.

Table 3 about here

The plots of the weekly log-returns for four securities (Abbott Laborato-
ries, Kimberly-Clark, S&P500 and Wal-Mart Stores)? are reported in Figure
10.

Figure 10 about here

Extreme returns detected by the WFS test are denoted by red circles,
while the corresponding dates are shown in Table 4, third column.

Table 4 about here

8Weekly frequency makes it possible to analyze long time periods with not too long
time series. On the other hand the presence of extreme returns is more probable than in
the case of daily returns.

9The same plots are available for the remaining companies analyzed and can be obtained
from the authors upon request.
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The number of detected observations ranges from a minimum of 6 (Sysco
corp.) to a maximum of 14 (HP). It is interesting to note that some dates are
detected as extremely influential in many time series. For instance, observa-
tions 144 (8th October 2008) is pointed out in 8 out of 10 series. Indeed, on
October 6, 2008 the Dow-Jones index closed below 10,000 for the first time
since 2004. This was the lowest minimum of the market after September
14, when the Lehman Brothers announced the largest bankruptcy filing in
U.S. history at that time. Another example is given by observation index
292, corresponding to August 10th 2011 (i.e. the return with respect to the
previous Wednesday August the 3rd 2011) which is detected as an influential
observation in 7 series. This has been one of the most critical times in the
world financial crisis. The United States credit rating was downgraded by
Standard & Poors from AAA to AA+ on 6 August 2011 for the first time
since 1941 due to the slow economic growth in the US. The European Central
Bank was expected to start buying Spanish and Italian government bonds in
order to save the Euro, and there was fear of contagion to other European
countries. As a consequence, many stock exchanges around the world, NYSE
included, experienced large losses which have been detected by the WES test.
A more recent event which affected financial returns was the stock market
sell-off, which began in the United States on August 18, 2015, when the Dow
Jones Industrial Average fell 33 points, triggered by concerns that China
was not doing enough to stabilise its economy. The downward effect on the
US financial market has been detected in 5 series as a big negative return
recorded on 26th August 2015 (index number 503).

The detection procedure can be visualized by looking at Figure 11, where
the WFS trajectories of standardized GARCH residuals are reported for the
usual selection of four companies.

Figure 11 about here

In each panel the dashed bold lines identify a 95% confidence region
obtained as simulated envelopes described in section 4, and the outlying tra-
jectories discovered according to WFES test are the colored bold lines. The
numbers which appears at the right side of each panel correspond to the red
circles drawn on the log-return plots (Figure 10). From the plots reported
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in Figure 11 is possible to see clear examples of the masking effect which
has a negative impact on the ability to detect influential observations when
backward detection methods are applied. As said earlier, the masking effect
occurs when one or more outliers are masked by the presence of other outliers
in the same dataset. In this case, the MLE residuals of influential observa-
tions are not particularly high, but, on the contrary, tend to be very close
to or even lower than the residuals of “normal” units. This is exactly what
happens, for instance, to observations 384 and 270 in the ABT panel, and
to observations 436 in the SP500 panel. MLE residuals of these observations
at the end of the search are mixed with residuals of other units inside the
confidence regions. This means that detection methods based on the observa-
tion of residuals calculated on the whole sample, but even detection methods
based on the deletion of few observations (backward methods), would not
be able to correctly identify influential observations which are instead easily
detected by observing the WFS trajectories.

Looking at Table 4 (last two columns) it is possible to compare the robust
and non-robust estimates of the GARCH coefficients (g, o and [3) for the
four securities shown in Figure 10. The comparison gives an idea of the
correction obtained when the robust estimator is used. For example, the
WEFS estimate for Abbott is around 0.9, while the MLE is approximately
0.77; for Walmart the estimate moves from 0.97 to 0.84.

As it is well known (Hwang and Pereira, 2006), GARCH estimates has
proven to be very unstable when the sample size is small. The WFSE has
shown to be robust even to the reduction of sample size. As an exercise,
we have reduced the sample size to 50% of the original time series length,
considering only the last five years, to compare the estimated GARCH co-
efficients obtained both by the MLE and the WFSE. The results are quite
interesting because they reveal that the instability of the MLE is due to very
few large returns which strongly affect the estimation of the GARCH coeffi-
cients with a particular emphasis to the coefficient 5. For example, the WFS
estimate for Abbott is around 0.65, while the MLE is approximately 0.1; for
Kimberly-Clark the estimate moves from 0.65 to 0.06.

Table 5 about here
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Finally, Table 5 reports for each series the t-stats of the GARCH coeffi-
cients obtained as ratios of the average values of estimates and standard er-
rors, before (tstatsB) and after (tstatsO) the step identified by the WE'S test.
The average value has been computed either as the arithmetic mean or as the
median. The extent of the difference between the two types of t-statistics
gives an idea of the influence of extreme observations on the significance
of coefficients. When the robust version is computed the t-statistics tend
to increase, particularly when the median is used. In some cases (Abbott,
Sysco, Walmert), considering the a significance level of 1%, the correspond-
ing estimates of a; become not significant when influential observations are
included.

6. Concluding remarks

This paper has proposed a new robust estimator of the GARCH(1,1)
model based on the generalization of the F'S procedure (Atkinson and Riani,
2000) to the case of time series. The extension of the F'S to time series has
been suggested in previous papers with reference to ARMA models (Riani,
2004) and to GARCH models (Grossi, 2004). The main issue discussed in
the literature is how to deal with missing values generated during the FS.
The solutions have so far consisted in estimators based on the Kalman filter,
which enables estimation of ARMA coefficients with missing observations,
or in replacing missing values with simulated data. Both approaches have
the advantage of maintaining the temporal order of the units even when a
subset of the initial sample is used for estimation purposes. However, they
can be considered sensible solutions to cope with the problem of missing data
in particular cases, which cannot be generalized to different classes of time
series models. Moreover, previous works have focused on monitoring the
effect of extreme observations on the estimation output, while the problem
of finding a robust estimator has been neglected.

We have tried to fill these gaps through a new approach based on a
weighting system of single units which leads to a generalized method called
Weighted Forward Search (WES). The classic FS can therefore be considered
as a special case of the WFS where observations can be weighted using just
two values: zero when the observation does not belong to the Clean Data Set;
one when the observation has not yet joined the subset. The main advantage
of the WE'S is that all observations are used to estimate parameters at each
step of the search, but their impact is given by a weight which is always inside
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the interval (0,1). Consequently, this method might easily be extended to
any type of time series model.

Our methodology was developed and applied through three main steps.

First, we have introduced a WEFS test based on simulated envelopes
(Atkinson, 1994). The test was calibrated by means of an extensive Monte
Carlo experiment, resulting in a set of simulated confidence regions ready to
be effectively applied to detect outliers in time series with a length which
is usually observed in daily or weekly financial prices. The size and power
of the WFS test was assessed through another Monte Carlo simulation and
then compared to other detection procedures proposed in the literature. The
results are promising since the performance of the WES test is on average on
the same level as that of the best methods, with reference to both size and
power. In particular, in the presence of multiple outliers the WES shows the
highest power with a competitive number of false outliers.

Second, a WFE'S estimator based on the number of exceedances of the WES
trajectories of residuals with respect to the simulated regions was defined.
The weighted estimates obtained by downweighting the outlying observations
were identified as the robust WFS estimates. Furthermore, the bias of the
robust estimator was studied, either with uncontaminated or contaminated
time series, revealing its good performance.

Finally, the application of the robust WES test and estimator to several
time series of returns computed on the NYSE confirmed that the suggested
approach relies on the main bulk of observations, while the ML estimator is
usually badly biased by a few extreme observations which strongly influence
the GARCH estimates and their significance.

Further research will be devoted to study the theoretical properties of the
WEFS estimator. It is well known that the robustification of the estimators
is obtained at the cost of a lower efficiency (Rousseeuw and Leroy, 1987).
The FS is a very flexible procedure which combines the properties of robust
methods with the high efficiency of MLE. However, the use of the WES test
could affect the efficiency of the robust WFS estimator. Moreover, additional
simulations should be carried out to observe the performance of the robust
estimator when larger sample sizes are considered. This is particularly in-
teresting when high-frequency data are analyzed. Finally, it would be very
interesting to study how the application of the WFES estimator could improve
the forecasting performance of conditional volatility models.
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Figure 1: GARCH(1,1) simulated series with three AO of size 5o, 100 and 150 (top
left panel), standardized residuals along the WFS (top right panel, last 10% steps
of the WFS) and coefficient estimates (second row, last 10% steps of the WFS).
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Figure 2: Power and size curves for the WFE'S test according to different significance
levels (solid line av = 1%, dashed line o = 5%, dotted line o = 10%) and number
of exceedances as a percentage of the final steps of the search (on the horizontal
axis). The test is executed on N=1000 GARCH(1,1) trajectories of size T=1000
contaminated by outliers of different magnitude.
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Figure 3: Power and size curves for the WE'S test according to different significance
levels (solid line aw = 1%, dashed line o = 5%, dotted line « = 10%) and number
of exceedances as a percentage of the final steps of the search (on the horizontal
axis). The test is executed on N=1000 GARCH(1,1) trajectories of size T=500
contaminated by outliers of different magnitude.
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Figure 4: Power and size curves for the WF'S test according to different significance
levels (solid line av = 1%, dashed line o = 5%, dotted line o = 10%) and number
of exceedances as a percentage of the final steps of the search (on the horizontal
axis). The test is executed on N=1000 GARCH(1,1) trajectories of size T=250
contaminated by outliers of different magnitude.
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Figure 5: The WF'S process of estimation on the series of Figure 1. Top right panel:
standardized residuals and outlier detection interval (dashed lines). Second row:
coefficient estimates; horizontal lines are the true coeflicient values and vertical
lines cut the plot into the WFS estimates. Third row: t-statistics.
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Figure 6: Density of oy ML estimates on uncontaminated series (black) vs WFS
estimates on the same series contaminated by three outliers (grey), last 8 steps of
the FS. The WFS estimates are obtained by cutting the sequence of estimates at
7,6,...,1,0 steps before the end of the search for all the series.
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Figure 7: Density of ar; ML estimates on uncontaminated series (black) and WFS
estimates (grey) on the same series contaminated by three outliers, last 8 steps of
the FS. The WFS estimates are obtained by cutting the sequence of estimates at

7,6,...,1,0 steps before the end of the search for all the series.
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Figure 8: Density of f ML estimates on uncontaminated series (black) vs WFS
estimates on the same series contaminated by three outliers (grey), last 8 steps of
the FS. The WFS estimates are obtained by cutting the sequence of estimates at
7,6,...,1,0 steps before the end of the search for all the series.

14

15

aensity
10

o o B
Figure 9: ML estimates on uncontaminated series (black) vs WFS estimates on the
same series contaminated by three outliers.
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oo
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

aq
0.02
0.07
0.12
0.17
0.27
0.37
0.47
0.57
0.67
0.77
0.87

Table 1: Combinations of parameters used to generate trajectories from

GARCH(1,1) models (a1 + 8 = 0.97).
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Ticker Company Obs. position Date MLE WFSE
ap, a1, B g, o1, B
ABT Abbott Laboratories 83 08/08/2007 1.1 0.06 0.77 0.3 0.04 0.9
105 09/01/2008
165 04/03/2009
195 30/09/2009
232 16/06/2010
292 10/08/2011
406 16/10/2013
503 26/08/2015
KMB Kimberly - Clark 132 16/07/2008 0.14 0.03 0.94 0.13 0.02 0.94
145 15/10/2008
153 10/12/2008
186 29/07/2009
251 27/10/2010
293 17/08/2011
407 23/10/2013
459 22/10/2014
473 28/01/2015
503 26/08/2015
WMT ‘Walmart 74 06/06/2007 0.44 0.09 0.84 0.05 0.02 0.97
84 15/08/2007
144 08/10/2008
151 26/11/2008
292 10/08/2011
329 25/04/2012
333 23/05/2012
463 19/11/2014
502 19/08/2015
510 14/10/2015
SP500 S&P500 index 60 28/02/2007 0.52 0.24 0.68 0.19 0.13 0.82
84 15/08/2007
141 17/09/2008
144 08/10/2008
228 19/05/2010
271 16/03/2011
292 10/08/2011
421 29/01/2014
458 15/10/2014
503 26/08/2015

Table 4: Influential observations detected in each series of prices of companies quoted
on the NYSE. Unit index, date, MLE and WFS estimates of GARCH coefficients are

reported.
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