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Word count: 6505 

Abstract 

A combined acidic fermentation and anaerobic digestion (AD) treatment has been developed on 

pilot scale for urban bio-waste conversion into volatile fatty acid (VFA) and biogas. The specific 

waste mixture was composed by the pre-treated organic fraction of municipal solid waste 

(OFMSW) and waste activated sludge (WAS), both produced inside the Treviso (northeast Italy) 

municipality. The effect of temperature (37°C and 55°C) was investigated in both steps. Only the 

mesophilic fermentation process provided a VFA-rich stream (19.5 g CODVFA/L) with stable 

physical-chemical features, with no need of chemicals addition for pH control. The sludge buffering 

capacity made this step technically feasible. The AD step was performed on the solid-rich fraction 

of fermented bio-waste, after dilution with excess WAS. No relevant differences were observed 

under the two investigated temperature: in the steady state (organic loading rate of 2.5 kg VS/m3 d), 

the specific biogas production was 0.40 and 0.45 m3/kg VS at 37°C and 55°C respectively, with 

similar CH4 content (63-64% v/v). The scaled-up version of the system (in an average urban 

municipality of 170,000 Person Equivalent) revealed that the whole process is thermally sustainable 

if both reactors are operated at mesophilic temperature: 36% of surplus thermal energy and 13,03 

MWh/d of produced electricity, which corresponds to a revenue of 609,605 €/year. In addition, 

2,262 kg CODVFA/d are available for parallel purposes, such as the synthesis of bio-products with 

higher added value than bio-methane (e.g. biopolymers). 
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Abbreviations 

OFMSW, organic fraction of municipal solid waste; WAS, waste activated sludge; AD, anaerobic 

digestion; WWTP, waste water treatment plant; CSTR, continuous stirred tank reactor; CHP, 

Combined Heat & Power unit; PE, Person Equivalent; OLR, organic loading rate; HRT, hydraulic 

retention time; COD, chemical oxygen demand; VFA, volatile fatty acids; CODSOL, soluble COD; 

TS, Total Solids; VS, Volatile Solid; TKN, Total Kjeldahl Nitrogen; PHA, polyhydroxyalkanoates; 

MMC, mixed microbial cultures. 
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1. Introduction 

Anaerobic digestion (AD) is currently considered the most feasible technology for biogas 

production from the treatment of high solid content streams, such as manure, organic fraction of 

municipal solid waste (OFMSW), energy crops, agro-industrial wastewater etc.. (Tyagi et al., 

2018). The oldest and more commonly adopted application of AD is the treatment of biological 

sludge (Mata-Alvarez et al., 2014), even if minimized with membrane bioreactor (MBR) 

technology (Sepehri and Sarrafzadeh, 2018). In the two last decades, a particular attention has been 

devoted to the co-digestion processes, which have been designed for a simultaneous treatment of 

biological sludge and OFMSW (Mata-Alvarez et al., 2014). With regard to the specific case of bio-

waste produced in urban scenario, the increasing of global population has led to new concerns for 

public authorities dealing with the treatment and disposal of biological sludge produced in 

municipal wastewater treatment plants (WWTPs) and food waste (Ma et al., 2017).  

Through the conventional AD processes, the degradation of organic matter contained in food and 

sludge waste streams is not even complete, being in the wide range of 35-60% in most cases (Yin et 

al., 2016a). This performance is strongly affected by the low efficiency of hydrolysis, which is the 

rate-limiting step for the urban bio-waste anaerobic degradation process (Ma et al., 2018). Many 

pre-treatment methods have been explored for enhancing bio-solid hydrolysis and improving 

chemical oxygen demand (COD) solubilisation in order to increase bio-methane yield; among 

others, thermal hydrolysis (Li et al., 2017) and aerobic micro-aeration (Montalvo et al., 2018) pre-

treatment.  

Archea have been recognised as main responsible for methane production from volatile fatty acids 

(VFAs), as well as for ethanol and lactate (Stoyanova et al., 2017) in a typical AD process. 

However, since different microorganisms with specific biochemical pathways are involved, many 

other valuable products can be obtained via acidogenic fermentation. These products can have a 

wide spectrum of possible valorisation. As an example, the VFAs and lactic acid were described as 

the direct precursors for a particular family of short and medium chain length biopolymers, namely 
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polyhydroxyalkanoates (PHAs) (Kourmentza et al., 2017). Alcohols have been also sometimes 

reported as possible substrate for PHA synthesis (Beccari et al., 2009). This route allows converting 

platform chemicals in bio-products at higher added value than methane (Pagliano et al., 2017). In 

fact, PHAs are one of the most promising classes of biopolymers, which can replace part of the 

synthetic marketed materials, due to their biodegradability and thermoplastic properties. In the 

frame of mixed microbial culture (MMC) technology (Valentino et al., 2017), the use of complex 

and low cost substrates is a strategy to accomplish both bio-products production and bio-waste 

treatment following their acidic fermentation. For this reason, acidogenic fermentation can be 

considered an option to exploit the organic matter contained in sludge and food waste as renewable 

feedstock, decreasing the amount of bio-waste to be disposed off (Koller, 2017). The VFAs 

composition and fermentation yield can vary according to the process parameters and settings. A 

desirable feature for PHA production is the ratio between odd and even carbons in the VFAs, which 

determine the composition of PHA co-polymers to a large extent (Bengtsson et al., 2010). Several 

parameters affected the fermentation process outputs such as inoculum (Yin et al., 2016b), pH (Wu 

et al., 2017), temperature (Dahiya et al., 2015), hydrogen partial pressure (Agler et al., 2011). A 

previous study showed that a pH between 5.0 and 6.0 was preferable to reach the highest 

fermentation process yield (Gottardo et al., 2017). However, the accumulation of VFAs produced in 

the fermentative metabolism generally causes a pH decreasing below the optimal values. Apart 

form chemicals additions for pH control, some authors recently proposed the recirculation of the 

anaerobic digestion effluent, as buffering agent, to control the pH in the fermentative stage. This 

strategy was applied in the combined two-stage fermentation and anaerobic digestion process 

(Gottardo et al., 2017). The method was particularly efficient when applied to a high solid content 

waste such as the pre-treated OFMSW. The high content of putrescible solids facilitate their 

fermentation even at relatively low hydraulic retention time (HRT < 4.0 days); as a consequence, 

the high level of VFAs (easily achieved) brings the pH below 5.0, inhibiting a further fermentation 

activity and making the pH-control strategy strictly necessary.  
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In the particular case illustrated in this paper, both VFAs and biogas production has been assessed 

from the anaerobic treatment of the specific cocktail of urban bio-wastes produced in the Treviso 

(north-east Italy) municipality. The pre-treated OFMSW was mixed with thickened waste activated 

sludge (WAS) from Treviso WWTP. The produced VFAs from acidogenic fermentation process 

were separated from the slurry for other potential uses (such as the PHAs synthesis). The solid-rich 

waste overflow was originated from a solid/liquid separation unit. This fraction was opportunely 

diluted with the same thickened WAS (collected in Treviso WWTP), and it has been used as 

secondary waste feedstock for biogas production through AD process. This approach differs from 

the traditional WAS-OFMSW co-digestion, developed at the Treviso full scale WWTP (Bolzonella 

et al., 2006), which allows recovering biogas only. In a frame of urban bio-refinery concept, the 

renewable carbon source may be driven in different routes that include also VFA production 

followed by biopolymer synthesis in a high load aerobic process (Valentino et al., 2015). The 

present pilot scale investigation has the scope to verify the process technical feasibility aimed at 

maximizing the production of VFA and at recovering biogas from the overflows.  

 

2. Materials and Methods 

2.1. Rationale of the approach 

The designed flowchart consisted of: a) hydrolysis and fermentation step for VFA production from 

the most putrescible matter of the feedstock; b) solid/liquid separation unit for the solids removal 

from the liquid stream at high VFA content (suitable for further valorisation); c) anaerobic digestion 

step for biogas production from the solid-rich stream overflow (“solid cake”). Both steps were 

performed under mesophilic and thermophilic conditions. The whole process was evaluated in 

terms of yields, namely maximum VFA content for the fermentation process and biogas production 

for the anaerobic co-digestion processes. A mass and energy balance was made in order to assess 

the technical feasibility and to understand whether the process is energy efficient and sustainable. 
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2.2 Thickened Waste Activated Sludge (WAS) and source-sorted Organic Fraction of Municipal 

Solid Waste (OFMSW)  

The feedstock was weekly collected inside the Treviso municipal WWTP facility. Its composition 

was representative of influent stream usually treated in AD Treviso full-scale plant: thickened WAS 

and OFMSW were at volumetric fraction of 65-70% and 30-35% respectively. The WAS came 

from the static thickener of the WWTP sludge line. Source sorted OFMSW was collected in 50 

districts of the Treviso Province, and transferred to the full-scale WWTP after its pre-treatment 

(squeezing and homogenization) with a screw-press. The WAS and OFMSW volumetric fractions 

adopted in this study were in the range reported in a recent review (Tyagi et al., 2018), where a 

comprehensive list of examples of waste sludge-OFMSW mixture co-digestion is provided; in 

general, the volumetric OFMSW fraction is always lower (10-40% v/v) than WAS fraction (60-

90% v/v) (Tyagi et al., 2018). 

 

2.3. Anaerobic pilot units 

The acidogenic fermentation unit consisted of a continuous stirred tank reactor (CSTR) of 0.38 m3 

of operative volume, mechanically stirred and under temperature control by using a thermostatic 

jacket. The hydrolysis and fermentation of the organic content of WAS-OFMSW mixture into 

VFAs were carried out under both mesophilic (37°C) and thermophilic (55°C) conditions, in two 

separate trials. All the other operating conditions are listed as follows: hydraulic retention time 

(HRT) of 6 days; organic loading rate (OLR) 6.5-7.0 kg VS/m3 d approximately; uncontrolled pH in 

the range 5.0-5.5. The CSTR fermenter was connected to a solid/liquid separation unit consisting of 

a coaxial centrifuge, equipped with 5.0 μm porosity nylon filter bag for solid (TS) removal. The 

solid-rich stream overflow was separated and then diluted with the excess WAS (collected from the 

full-scale plant) as feeding for anaerobic digester. 

Stainless steel CSTR (AISI-304) of 0.23 m3 operating volume was used as anaerobic digester. 

Mechanical anchor stirrer ensured mixing and homogenization. Two separated trials were carried-
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out at 37°C and 55°C, according to the temperature of the previous fermentation stage. The 

temperature was maintained by hot water recirculation through external jacket. Anaerobic digested 

sludge inoculum was collected in the same WWTP, from the 2300 m3 CSTR anaerobic digester, 

treating thickened WAS and squeezed OFMSW mixture under mesophilic condition at an OLR of 

1.8 – 2.0 kg VS/m3 d. For both AD trials, the digested sludge was acclimatized for 35-40 days 

(more than 2 HRTs). Operational parameters in both mesophilic and thermophilic trials were 

similar: HRT of 15 d and OLR between 2.2 – 2.5 kg VS/m3 d. The WAS/cake ratio in the feedstock 

was calculated on the basis of the WAS and OFMSW specific production: 0.3 kg OFMSW/PE day 

(based on wet weight) and 0.06 kg TS/PE day for WAS (Metcalf & Eddy, 2003).  

 

2.4. Sampling and analytical methods 

Feedstock characteristics were determined once per week on fresh sample, immediately after its 

collection. The reactor effluents were monitored three times per week for total solids (TS), volatile 

solids (VS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and phosphorous (P). 

For the TS determination, a drying temperature of 105°C was adopted (Peces et al., 2014). The 

process stability parameters, i.e., the pH, volatile fatty acid content and distribution, total and partial 

alkalinity, ammonia, were measured two/three times per week. All analyses were performed 

according to the standard methods (APHA/ AWWA/WEF, 1998). The analyses of VFA were 

conducted using an Agilent 6890N gas chromatograph equipped with a flame ionization detector (T 

100°C), a fused silica capillary DB-FFAP (15 m length, 0.53 mm x 0.5 mm film thickness) column, 

with hydrogen as carrier. The analysis was conducted by increasing the temperature from 80°C to 

200°C (10°C/min). Samples were centrifuged at 4000 rpm for five minutes; the supernatant was 

filtered by using a 0.20 µm cellulose acetate filter before the analysis. The biogas production was 

monitored using a flow metre (Ritter CompanyTM); methane, carbon dioxide and oxygen in the 

biogas were continuously determined using a portable infrared gas analyser GA2000TM 

(Geotechnical InstrumentsTM), and once a day using a gas chromatograph 6890N (Agilent 
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TechnologyTM). The analyses were conducted with an HP-PLOT MOLESIEVE column (30 m 

length, 0.53 mm ID x 25 mm film thickness), using a thermal conductivity detector and argon as 

carrier (79 ml/min). H2, CH4, O2 and N2 were analysed using a thermal conductivity detector (TCD) 

at a temperature of 250°C. The inlet temperature was 120°C, with a constant pressure in the 

injection port (70 kPa). Samples were taken using a gas-type syringe (200 mL biogas). Once the 

entire sample was vaporized, separation of the peaks occurred within the column at a constant 

temperature of 40°C (8 min).  

 

2.5. Calculation 

All the parameters characterising reactor performances were calculated after steady states were 

achieved. Descriptive statistics and exploratory data analysis were performed using the open source 

program, R (The R Foundation for Statistical Computing, version 3.5.0).   

For the fermentation stage, the process was considered sufficiently stable and under steady state 

after consistent VFA production was detected. Solubilisation and fermentation yield (YVFA) were 

determined with respect to the characteristics of initial unfermented feedstock, in particular total 

COD (CODTOT(0)) TS(0) and VS(0). For the anaerobic digestion step, steady state was considered 

achieved when the biogas production rate (GPR) was constant (below 10% of deviation from 

average values). 

The mass and energy balance, as well as the energy yield, were performed by considering both 

stages in two combination of temperature: a) fermentation and digester reactors under mesophilic 

condition; b) fermentation reactor under mesophilic condition and digester reactor under 

thermophilic condition. The aim of this comparison was to evaluate which configuration is more 

profitable in terms of surplus thermal energy and electricity production. 

All the parameters were adapted to a scaled-up version of both reactors, in an urban municipality 

context of average size of 170,000 Person Equivalent (PE); reference parameters and boundary 
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conditions are given in Table 1. In the energy balance analyses, the price of electrical energy has 

been assumed to be 130 €/MWh (no incentive; Valentino et al., 2018). 

 
Table 1. 
 
Parameter Unit Value 

Biogas 
Low Heat Value Biogas MJ/N m3 23.012 

Combined Heat and Power (CHP) 
Termical Energy yield - 0.5 
Electrical Energy yield - 0.4 

Boundary Conditions 
Operative Temperature 
Anaerobic Processes 

°C 37-55 

Water Temperature °C 15 
Air Temperature °C 20 
Ground Temperature °C 25 

Heat Transfer Coefficient 
Outer Concrete Reactor Wall W/(m2 °C) 0.7 
Inner Concrete Reactor Wall W/(m2 °C) 1.2 
Floor W/(m2 °C) 2.85 
 

3. Results and Discussion 

3.1. Bio-waste composition and characteristics 

The chemical features of the feedstock used for fermentation reactor were relatively constant during 

the whole operation period (almost 4 months). The average dry matter was 47 ± 2 g TS/kg, with 

83% of VS. The nutrient level was more similar to that of biological sludge (WAS) instead of the 

typical OFMSW content (usually N- or P-limiting with respect to COD content), since the feedstock 

largely composed by thickened WAS (65-70% v/v). With regard to the soluble COD, nutrient level 

was 100/5.7/1.6 as COD/N/P. The monitored features of the feedstock mixture are listed in Table 2 

(a more detailed version is given in Supplementary Material, Table S1). The thickened WAS had 

the following characteristics: 30 ± 2 g TS/kg, 21.5 ± 0.7 g VS/kg (72% of dry matter), 40 ± 1 g 

N/kg TS, 15.0 ± 0.2 g P/kg TS, 0.15 ± 0.08 g CODSOL/L, 48 ± 6 g COD/kg TS. 
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Table 2. 

Parameter 
Unfermented 

feedstock 
Fermented feedstock 

Mesophilic Thermophilic 
Total Solid (TS, g/kg) 47 ± 2 44 ± 1 41.2 ± 0.8 
Volatile Solid (VS, g/kg) 39 ± 1 34.5 ± 0.9 33 ± 2 
CODSOL (g O2/L) 24.4 ± 0.8 26.8 ± 0.4 39 ± 4 
VFA (g COD/L) 2.8 ± 0.2 19.5 ± 0.3 23 ± 2 
pH range 4.8 - 5.2 4.8 - 5.7 3.4 - 5.7 
CODVFA/CODSOL 0.09 ± 0.03  0.72 ± 0.01 0.59 ± 0.05 
Total Kjeldahl Nitrogen (TKN; g N/kg TS) 23.1 ± 0.9 30 ± 1 34 ± 3 
Phosphorus (P; g P/kg TS) 2.7 ± 0.2 4.7 ± 0.2 5.5 ± 0.6 

 
 

3.2. Acidogenic Fermentation 

The WAS-OFMSW fermentation was performed without pH control using the sludge buffering 

capacity (Cabbai et al., 2016), and thereby avoiding process costs associated with the addition of 

chemicals. The process conducted at 37°C produced a fermented stream with stable chemical 

characteristics starting from the 20th days (about 3.5 HRT) of operation (Figure 1A). After this 

initial period, VFA level was constantly maintained close to 20 g CODVFA/L; correspondingly, pH 

trend did not show relevant fluctuations, being minimum values close to 5.0 and maximum values 

around 5.7 (Figure 1B). Indeed, the WAS-OFMSW mesophilic fermentation did not require any 

strategy for pH control since the feedstock buffering capacity (402 ± 24 mg CaCO3/L, pH 5.7) 

counterbalanced the unavoidable pH decrease due to the stable VFA production. This was a 

relevant aspect, which demonstrated the robustness and simplicity of process operation at the same 

time. The combination of two parameters such as the relative WAS percentage in the mixture and 

the mesophilic temperature made the fermentation process technically feasible. 
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Figure 1. 

 

 
 
Thermophilic fermentation was characterized by a shorted acclimation period (2.5 HRT) compared 

to mesophilic process. The VFA level in this fermented stream was generally higher than those 

measured in mesophilic condition, but frequent fluctuations in VFA concentration trend were 

observed. In addition, the VFA concentrations widely changed over the course of process operation, 

in a range from 16.5 to 31.6 g CODVFA/L. This profile reflected the equally frequent pH decrease, 

due to a fast hydrolyzation and fermentation activity (supported by the higher T), not enough 
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buffered by the alkalinity of the feedstock itself. In practice, WAS-OFMSW mixture fermentation 

at 55 °C appeared more difficult in terms of process control and VFA production stability. 

Fermentation performances as well as physical-chemical characteristics were affected by this 

process instability as indicated by the standard deviations of average values (sometimes one order 

of magnitude higher than those under mesophilic temperature) reported in Table 2.  

Higher temperatures solubilised more solids and increased the CODSOL and nutrient release in the 

mixed liquor. The VFA concentration also increased above 20 g CODVFA/L; however, a not 

negligible fraction of CODSOL remained unconverted into VFA, being the average 

CODVFA/CODSOL ratio equal to 0.59. Feedstock fermentability at 37°C was found to be less 

performing for solids and COD solubilisation (0.41 ± 0.02 and 0.26 ± 0.01 on initial VS and 

CODTOT respectively) even though VFA yields were comparable to those measured at 55 °C.  

The acidic WAS-OFMSW fermentation was found to be more performing to that WAS only, 

independently from the chosen process temperature. The VFA yields obtained in this work (0.41-

0.44 g CODVFA/g VS(0), 0.26-0.28 g CODVFA/g CODTOT(0); Table 1, Supplementary Material) are 

higher than yields reported for WAS at 37°C (0.01-0.06 g CODVFA/g VS(0), Ucisik and Henze, 

2008; 0.06–0.14 g CODVFA/g CODTOT(0), Yuan et al., 2009), and at 42°C (0.27 g CODVFA/g VS(0), 

Morgan-Sagastume et al., 2014). The presence of the OFMSW in the feedstock may have provided 

a more fermentable bio-waste and explained differences to the literature values. As a consequence, 

the level of VFA obtained here was higher (roughly double) if compared to those reported in the 

literature for WAS (6.0-9.4 g CODVFA/L; Morgan-Sagastume et al., 2015) or primary sludge-WAS 

mixture (7.5-13.5 g CODVFA/L; Pittmann and Steinmetz, 2017), and similar to those obtained with 

thermally pre-treated sludge (18.5-19.9 g CODVFA/L; Morgan-Sagastume et al., 2010).  

The process stability is also an important aspect affecting the technical process feasibility:  

mesophilic fermentation appeared more technically attractive since the VFA-rich stream features 

were more stable over time and the CODVFA/CODSOL ratio was higher (t – test, alpha value = 0.01) 

than value obtained in thermophilic fermentation (Figure 2).  
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Figure 2. 

 
 

A VFA-rich stream with consistent composition is also a desirable feature for PHA production 

since the balance of odd and even carbons in the VFA determines the polymer composition 

(Bengtsson et al., 2010). Fermentation products in mesophilic and thermophilic conditions were 

similar and dominated by butyric (41-42%, COD basis), acetic (22-23%, COD basis), propionic 

(11-10%), valeric (12-11%), caproic (9-8%), eptanoic (4-6%), isovaleric (2-3%) and isobutyric (1-

0.8%) acids. The predominance of butyric was probably related to the presence of OFMSW in the 

feedstock, as reported elsewhere (Girotto et al., 2017), since acetic acid was usually the most 

abundant in fermentation process performed with sludge only (Morgan-Sagastume et al., 2010, 

2011). The molar fraction of VFA with odd number of C-atoms if compared to the total 

[C3/(C3+C2)]VFA was also similar (Table S1; Supplementary Material), most likely dependent on 

feedstock characteristics and not affected by fermentation temperature. 

Regarding the solid cake (SC), the Table 3 summarizes the main characteristics of both SC 

overflows, obtained from mesophilic and thermophilic fermentation process. In spite of the 

observed differences for the features of mesophilic and thermophilic VFA-rich streams, the working 
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temperature did not show any relevant effect on the main characteristics of the two SC (t – test, 

alpha value = 0.01).  

Table 3. 

Parameter 
Solid-rich cake overflow* 

Mesophilic Thermophilic 
Total Solid (TS, g/kg) 235 ± 21 220 ± 21 
Volatile Solid (VS, g/kg) 189 ± 10 177 ± 8 
VS/TS (%) 80 ± 2 81 ± 1 
COD (g O2/kg TS) 740 ± 61 755 ± 43 
Total Kjeldahl Nitrogen (TKN; g N/kg TS) 29 ± 1 33 ± 1 
Phosphorus (P; g P/kg TS) 5.0 ± 0.6 6.0 ± 0.7 

* Solid-rich cake produced after fermentation process 
 
 
3.3. Anaerobic Digestion 

Mesophilic and termophilic processes were started at relatively low OLR (0.7-0.8 kg VS/m3 d) by 

using a feed solution mainly composed by thickened WAS. The SC content was gradually increased 

in order to achieve an OLR of 2.3 - 2.5 kg VS/m3 d approximately. The SC content strongly 

affected the operative OLR since it was characterized by TS of one order of magnitude higher than 

the thickened WAS.  

In mesophilic condition, steady state was achieved in 40 days (roughly 2 HRTs). In the start up 

period, no relevant pH drop was observed even at the highest VFA concentration detected (close to 

1.0 g COD/L at day 10th after inoculum). Most of the readily fermentable COD was already 

converted into VFA in the previous hydrolysis/fermentation step; as a consequence, the process was 

easily controlled even in the transient conditions when the risk of methanogenic bacteria inhibition 

is usually high. Average pH value of steady state period was 7.6 ± 0.2, advantageous for the growth 

of methanogens (Gottardo et al., 2017). The pH remained constant because of the high buffering 

capacity of the system as indicated by the partial alkalinity (1,738 ± 138 mg CaCO3/L) and by the 

VFA/Partial Alkalinity (P.Alk) ratio (0.13 ± 0.04 mg acetic acid/mg CaCO3) (Figure 3A). In 

particular VFA/P.Alk ratio showed a maximum peak (1.14) in the first week after inoculum and 

then it decreased over the course of operation. In the steady state period, VFA/P.Alk ratio was 

constantly below 0.20 indicating high process stability and the negligible VFA accumulation. In 
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fact, it is widely recognized that VFA/P.AlK value greater than 0.30 may indicate a possible 

process upset or instability usually caused by organic matter overload and a consequently VFA 

concentration increase (Bolzonella et al., 2003). Ammonia release from proteins degradation led to 

an increase of total ammonium in the liquid phase from 0.46 ± 0.07 to 0.79 ± 0.06 g N-NH4
+/L. 

However, this value was abundantly below 3.0-3.5 g N-NH4
+/L, which is the typical critical value 

for the inhibition of metanogenic bacteria (Chen et al., 2008). 

The AD step under thermophilic conditions reached the steady state in 30 days after inoculum, 

approximately 0.5 HRT less than mesophilic process. Also in this case, the process was easily 

controlled since no relevant VFA accumulation was detected (maximum value 1.01 g COD/L, day 

13) and pH was easily maintained above 7.5. Starting from day 22, VFA/P.Alk ratio was 

permanently below 0.20 mg acetic acid/mg CaCO3. Figure 3B shows the trends of total-partial 

alkalinity and VFA/P.Alk ratio along the experimentation: when the steady state was achieved, 

partial and total alkalinity had average concentrations of 2,524 ± 279 and 3,788 ± 314 mg CaCO3/L;  

VFA/P.Alk ratio was equal to 0.12 ± 0.03. 

Figure 3C shows the biogas production rate (GPR) and methane percentage in the produced biogas 

during AD mesophilic trial. Despite the fast increase of methane content (above 60% v/v after two 

weeks of operation or 1.0 HRT approximately), the GPR trend showed a slower increase in the 

course of process stabilization and in parallel to the progressive increase of the applied OLR 

(roughly up to 1.5 kg VS/m3 d) during the start up phase. At the steady state, GPR was 1.38 ± 0.08 

m3 biogas/m3 r d; the percentage of methane detected in the biogas was 63 ± 3%; most of remaining 

part was CO2 (32 ± 3%). The specific gas production (SGP) was found to be equal to 0.40 ± 0.02 

m3 biogas/kg VS.  

Similarly to mesophilic condition, in the AD thermophilic trial the OLR was increased from 0.8 to 

1.5-1.8 kg VS/m3 d during the start up, and then it was maintained close to 2.5 kg VS/m3 d over the 

course of the run. The progressive increase of the OLR reflected the trend of GPR, which was 1.80 
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± 0.09 m3 biogas/m3 r d in the steady state, while methane biogas content exceeded 60% in 0.5 HRT 

approximately (Figure 3D).  

Figure 3. 
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As for the GPR, also the SGP at 55 °C was higher (Figure 4; t – test, alpha value = 0.01) than SGP 

quantified at 37 °C, and equal to 0.45 ± 0.06 m3 biogas/kg VS. This was due to the higher solid 

abatement, which accounted for 71 ± 5% and 74 ± 4% for TS and VS at 55 °C, and 43 ± 4% and 45 

± 4% for TS and VS at 37 °C. 
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Figure 4. 
 

 
 

Overall, both mesophilic and termophilic digestions of SC overflow diluted with thickened WAS 

were demonstrated to be technically feasible and robust with reference to the process parameters 

(pH, partial alkalinity, VFA concentration, biogas production and composition). Table 4 

summarizes the main monitored parameters and quantified performances in the steady state of the 

two AD trials.  

Table 4. 

Parameter 
AD reactors  

Mesophilic AD Thermophilic AD 
Total Solid (TS, g/kg) 30 ± 1 18 ± 2 
Volatile Solid (VS, g/kg) 25 ± 1 12 ± 1 
COD (g O2/kg TS) 607 ± 23 547 ± 48 
VFA (mg/L) 244 ± 46 313 ± 57 
pH  7.6 ± 0.2 7.9 ± 0.2 
Partial Alkalinity (mg CaCO3/L) 1,738 ± 138 2,524 ± 279 
Total Alkalinity (mg CaCO3/L) 2,731 ± 94 3,788 ± 314 
VFA/P.Alk (mg acetic acid/mg CaCO3) 0.13 ± 0.04 0.12 ± 0.03 
Total Kjeldahl Nitrogen (TKN; g N/kg TS) 34 ± 2 37.7 ± 0.9 
Phosphorus (P; g P/kg TS) 15.9 ± 0.9 18 ± 2 
Ammonia (N-NH4

+; g/L) 0.79 ± 0.06 0.85 ± 0.04 
Performances Mesophilic AD Thermophilic AD 
CH4 % (v/v) 63 ± 3 64 ± 3 
GPR (N m3 biogas/m3 d) 
SGP (N m3 biogas/kg VS) 

1.38 ± 0.08 1.79 ± 0.09 
0.40 ± 0.02 0.45 ± 0.06 

SMP (N m3 CH4/kg VS) 0.25 ± 0.01 0.29 ± 0.03 
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Compared to literature values, the performances obtained herein were similar to those reported for 

mixed sludge digestion rather than sludge-OFMSW mixture co-digestion. For the mesophilic 

treatment of mixed sludge, Mattioli and co-workers (2017) quantified 0.45 Nm3 biogas/kg VS 

(SGP), similar to the average value of thermophilic AD in this study. The authors reported a higher 

SGP, 0.50 Nm3 biogas/kg VS, for sludge-OFMSW co-digestion. Similarly, Koch et al. (2016) 

reported 0.31 and 0.39 Nm3 CH4/kg VS, as specific methane production (SMP) for raw sludge and 

sludge-OFMSW mesophilic digestion respectively. Liu et al. (2012) obtained a much higher SGP 

value, 0.72 Nm3 biogas/kg VS, in the co-digestion of a feedstock with more than 50% v/v OFMSW 

and a lower fraction of sludge. In the AD trials of this study, part of the most putrescible material 

(supplied by the OFMSW), was converted into VFA and not conveyed to the AD step. As a 

consequence, the AD performances were strongly affected by the solids of excess WAS rather than 

the slowly biodegradable COD which was residual in the SC itself. 

 

3.4. Mass and energy balance 

The mass balance discussed in this paragraph is illustrated in detail in Figure S1 (Supplementary 

Material). The data analysis of each separate pilot reactor was transferred to an industrial plant of 

average size, identified as 170,000 PE. Based on the specific production reported in the paragraph 

2.3, the inlet amount of WAS corresponds to 10,200 kg TS/d. A smaller amount is driven to the 

fermentation reactor (around 24%) and the rest to the AD step (76%) in order to dilute the SC 

overflow. The inlet amount of the pre-treated OFMSW is 6,120 kg TS/d, based on a dry matter of 

15% and a recovery of 80% of TS from the OFMSW screw-press pre-treatment (Majone et al., 

2017).  

For the fermentation process, only the mesophilic condition was considered technically feasible and 

the relative yield of 0.41 g CODVFA/g VS(0) was taken into account. The bio-waste mixture is 

conveyed to the mesophilic fermenter with a TS and VS level of 6.3% and 5.2% w/w. As a  
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consequence, the applied OLR was approximately 10 kg VS/m3 d. The gaseous effluent flow rate 

out of the acidogenic fermenter is 712 Nm3/d, corresponding to 1,153 kg VS/d, roughly equal to the 

16% of the VS influent amount. The solid/liquid separation unit allows obtaining two streams: the 

liquid fraction and the SC overflow. The liquid stream has a volumetric flow rate of 105,946 kg/d 

(almost 80% of the total), corresponding to 2,262 kg CODVFA/d, to be used for the synthesis of bio-

products with higher added value than methane (Tamis and Joosse, 2015). In fact, a production of 

0.54 tons of marketable biopolymer (PHA) per year is potentially feasible, based on average yield 

of 0.40 CODPHA/CODVFA, typically quantified in the aerobic MMC-PHA production technology 

(Valentino et al., 2017). 

The SC overflow has a flow rate of 30,054 kg/d, which is mixed with 297,108 kg/d of excess 

thickened WAS. This dilution is necessary to decrease the solid content of the SC overflow, 

approximately from 23% w/w to 4.5% w/w (TS basin), before being fed into the final AD step.  

The first scenario provides for the AD step in mesophilic condition (experimental SGP of 0.40 

Nm3/kg VS); the mesophilic AD step produces 4,379 Nm3/d of biogas. The heat requirements and 

energy balance analyses were assessed for a working volume of 712 m3 and 5,213 m3 for 

fermentation and methanogenic reactors respectively. Considering the thermal yield of the 

Combined Heat & Power unit (CHP) of 0.5  (Valentino et al., 2018), the thermal energy produced is 

58,577 MJ/d, if AD is performed at 37°C. Indeed, the thermal balance is closed positively because 

the estimated produced thermal energy overcomes the consumed thermal energy (for heating and 

heat dispersion balance) of about 36% (Figure 6). In thermophilic conditions (SGP of 0.45 Nm3/kg 

VS), the biogas production was higher and equal to 4,927 Nm3/d; however, the thermal energy 

consumed for process operation (65,108 MJ/d) is similar to the produced thermal energy (64,875 

MJ/d) (Figure 5). In practise, the similarity does not guarantee the process self-sustainability, 

making this configuration not scalable at full scale. 

Besides the complete energetic sustainability of the two steps performed at 37°C, the revenues from 

sale of generated electricity (13.03 MWh/d, from electrical CHP yield of 0.4; Valentino et al., 2018) 
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has been quantified to 609,605 €/year. This potential economic income makes this approach more 

attractive than the traditional or the two-phase AD process treating excess sludge only (Leite et al., 

2016).  

 
Figure 5. 
 

 
 

 

4. Conclusion 

This work demonstrated that biogas production is not the only option for anaerobic treatment of 

WAS-OFMSW mixture produced in an urban scenario. If separated from AD process, the 

fermentation step allows recovering a consistent amount of solubilized COD, in form of VFA, that 

can be used as platform chemicals for the synthesis of other bio-products with higher market value 

than biogas. The mass and energy balances of the anaerobic fermentation-digestion reactors 

revealed that the overall process was thermally self-sustaining if both stages were performed at 

mesophilic temperature (37°C). Under this adopted condition, the scaled-up system (170,000 PE) 

had the 36% surplus of thermal energy (21,360 MJ/d), and a potential economic income from the 
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produced electricity (13.03 MWh/d) of 609,605 €/year. The production of 2,262 kg CODVFA/d 

makes this approach even more attractive since the VFA-rich valuable stream can be used in other 

exploitable routes. In fact, this approach represents the application of circular economy concept, 

focused on the secondary carbon streams treatment process, designed for bioenergy recovery and 

bio-products creation. Indeed, future works need to be addressed to the development of a new 

multi-utility bio-refinery, possibly integrated in the existing facilities of an urban context, where 

each process unit is separately optimized for a specific target, leading to relevant economic and 

environmental advantages.  
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Figure Captions 

Figure 1. VFA (A) and pH (B) trends during mesophilic and thermophilic acidogenic fermentation 

stage. 

Figure 2: Boxplot of VFA/CODSOL for mesophilic and thermophilic fermentation trials. 

Figure 3. Alkalinity and VFA/P.Alk ratio during mesophilic (A) and thermophilic (B) anaerobic 

digestion stage; GPR and CH4 percentage in the biogas during mesophilic (C) and thermophilic (D) 

anaerobic digestion stage. 

Figure 4. Boxplot of SGP for mesophilic and thermophilic Anaerobic Digestion trials.   

Figure 5. Consumed thermal energy and produced thermal energy for the two investigated process 

configurations. 

  

Table Captions 

Table 1. Reference parameters and boundary conditions for energy balance. 

Table 2. Physical-chemical features of unfermented and fermented feedstock (OFMSW-WAS 

mixture). 

Table 3. Physical-chemical features of the solid-rich cake overflows 

Table 4. Physical-chemical features of AD effluents and process performances 
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Materials and Methods 

Mass and energy balance assessment 

The calculation for the assessment of mass and energy balance were made by considering the size 

of the plant (170,000 Person Equivalent), and the WAS and OFMSW specific production: 0.3 kg 

OFMSW/PE day (based on wet weight) and 0.06 kg TS/PE day for WAS (Metcalf & Eddy, 2003). 

From these inputs, it has been calculated the initial TS flow rates of WAS and OFMSW:  

- (170,000 PE y 0.3 kgTS/PE y 0.15 kgTS/kg y 0.8 kgTS/kg) = 6,120 kgTS/d (for the OFMSW) 

where [0.15 kgTS/kg] is the OFMSW solid fraction and [0.8 kgTS/kg] is the recovery yield after 

the pre-treatment; 

- (170,000 PE y 0.06 kgTS/PE) = 10,200 kgTS/d (for WAS)  

After the TS flow rate, it has been defined the mass flow rate and the TS flow rate: 

- (6,120 kgTS/d) / (0.15 kgTS/kg) = 40,800 kg/d OFMSW 

- (6,120 kgTS/d) y (0.88 kgVS/kgTS) = 5,386 kgVS/d OFMSW 

- (10,200 kgTS/d) / (0.026 kgTS/kg) = 392,308 kg/d WAS  

- (10,200 kgTS/d) y (0.70 kgVS/kgTS) = 7,140 kgVS/d WAS  

The distribution of these two streams in the fermentation and AD step was defined as 

experimentally made, as well as for the relative volumetric portions (the VFA-rich liquid fraction 

and the solid cake fraction) after the solid/liquid separation unit. The OFMSW stream was assumed 

to be totally conveyed to the acidogenic fermentation step, together with the 24% of the WAS 

stream. Indeed, the volumetric percentage (as shown in Figure S1) were: 30% v/v OFMSW and 

70% v/v WAS as feedstock for the fermentation step. The rest of WAS (76%) was used for the 

dilution of the solid cake, recovered from the solid/liquid separation unit. The solid cake (30,054 

kg/d) roughly corresponds to the 22% of the total influent acidogenic fermentation flow rate 

(136,000 kg/d). Indeed, the influent of AD step (327,161 kg/d) was the sum of the solid cake and 

excess WAS flow rates. 
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The VFA production as well as biogas production was quantified based on the experimental data 

obtained: specifically the fermentation yield (gCODVFA/gVS(0)) and the specific gas production 

(SGP, m3 biogas/kgVS). 

The energy balance was assessed taking into account the parameters reported below: 

a) the volume of both reactors, defined by the ratio between the VS flow rate (kgVS/d) and the 

fixed OLR (kgVS/m3.d). The OLRs were: 10 kg VS/m3.d and 2.1 kgVS/m3.d, respectively for the 

fermenter and the digester. The volumes were 712 m3  (acidic fermenter) and 5,213 m3 (digester); 

b) the reference parameters and boundary conditions defined in Table 1 (Metcalf & Eddy, 

2003); all the parameters in this table were necessary for the calculation of each energy item 

(heating water, thermal dispersion, thermal and electrical energy produced from CHP) summarized 

in Table S2 (Supplementary Material) 
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Figure S1. Flow rates and mass balance of the scaled up anaerobic process: mesophilic acidogenic 

fermentation followed by mesophilic or thermophilic anaerobic digestion.  
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Table S1. Physical-chemical features of unfermented and fermented feedstock (OFMSW-WAS 

mixture). 

 

Parameter 
Unfermented 

feedstock 
Fermented feedstock 

Mesophilic Thermophilic 
Total Solid (TS, g/kg) 47 ± 2 44 ± 1 41.2 ± 0.8 
Volatile Solid (VS, g/kg) 39 ± 1 34.5 ± 0.9 33 ± 2 
CODTOT (g/L) 63 ± 2 58 ± 2 72 ± 3 
CODSOL (g/L) 24.4 ± 0.8 26.8 ± 0.4 39 ± 4 
VFA (g COD/L) 2.8 ± 0.2 19.5 ± 0.3 23 ± 2 
Acetic acid (g COD/L) 1.0 ± 0.1 4.3 ± 0.1 5.1 ± 0.2 
Propionic acid (g COD/L) 0.31 ± 0.05 2.1 ± 0.1 2.2 ± 0.2 
Isobutyric acid (g COD/L) - 0.18 ± 0.05 0.17 ± 0.05 
Butyric acid (g COD/L) 1.3 ± 0.2 7.8 ± 0.3 9.7 ± 0.8 
Isovaleric acid (g COD/L) 1.3 ± 0.2 0.31 ± 0.08 0.6 ± 0.1 
Valeric acid (g COD/L) - 1.9 ± 0.2 2.0 ± 0.6 
Caproic acid (g COD/L) - 1.6 ± 0.2 1.8 ± 0.5 
Eptanoic acid (g COD/L) 0.55 ± 0.04 0.7 ± 0.1 1.4 ± 0.3 
pH range 4.8 - 5.2 4.8 - 5.7 3.4 - 5.7 
CODVFA/CODSOL 0.09 ± 0.03  0.72 ± 0.01 0.59 ± 0.05 
Total Kjeldahl Nitrogen (TKN; g N/kg TS) 23.1 ± 0.9 30 ± 1 34 ± 3 
Phosphorus (P; g P/kg TS) 2.7 ± 0.2 4.7 ± 0.2 5.5 ± 0.6 
Ammonia (N-NH4

+; g/L) 0.41 ± 0.02 0.60 ± 0.02 0.68 ± 0.07 
Phosphate (P-PO4

3-; mg/L) 0.30 ± 0.02 0.39 ± 0.02 0.48 ± 0.06 
CODSOL/N/P (g) 100/5.7/1.6 100/7.3/2.3 100/5.5/1.8 

Parameter 
 Fermentation performances 
 Mesophilic Thermophilic 

Solubilization  g CODSOL/g CODTOT(0) 0.04 ± 0.01 0.22 ± 0.04 
g CODSOL/g VS (0) 0.06 ± 0.01 0.34 ± 0.03 

Yield (YVFA) g CODVFA/g CODTOT(0) 0.26 ± 0.01 0.28 ± 0.05 
g CODVFA/g VS(0) 0.41 ± 0.02 0.44 ± 0.03 

[C3/(C3+C2)]VFA  mol/mol 0.20 ± 0.02 0.20 ± 0.01 
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Table S2. Assessment of the energy balance for the two anaerobic platform configurations 

investigated: mesophilic fermentation and mesophilic anaerobic digestion (A); mesophilic 

fermentation and thermophilic anaerobic digestion (B).  

 
Process 

Configuration 
Energy and Process Unit Temperature Item Value (MJ/d) 

A 

Consumed 

Thermal Energy 

Fermentation 

reactor 
37°C 

Heating Water  9,673 

Thermal Dispersion 895 

Anaerobic Digester 37°C 
Heating Water 23,270 

Thermal Dispersion 3,377 

Whole anaerobic 

platform 
37°C Total 37,215 

Produced Thermal Energy from CHP - 
Thermal Energy 58,577 

Electrical Energy 13,026* 

B 

Consumed 

Thermal Energy 

Fermentation 

Reactor 
37°C 

Heating Water  9,673 

Thermal Dispersion 895 

Anaerobic Digester 55°C 
Heating Water  47,909 

Thermal Dispersion 6,630 

Whole anaerobic 

platform 
37-55°C Total 65,107 

Produced Thermal Energy from CHP - 
Thermal Energy 64,875 

Electrical Energy 14,426* 

*KWh/d (unit of the electrical energy produced from CHP) 

 

 

 


