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Abstract
We study the existence of group strategy-proof stable rules in many-to-manymatching
markets under responsiveness of agents’ preferences. We show that when firms have
acyclical preferences over workers the set of stable matchings is a singleton, and the
worker-optimal stablemechanism is a stable andgroup strategy-proof rule for firms and
workers. Furthermore, acyclicity is the minimal condition guaranteeing the existence
of stable and strategy-proof mechanisms in many-to-many matching markets.
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1 Introduction

Many real-world markets are many-to-many. The canonical example of a many-to-
many market is the specialty training followed by junior doctors in the UK (Roth
1991). Other examples of many-to-many markets are markets for part-time workers
and the non-exclusive dealings between down-stream firms and up-stream providers.
Many-to-many markets are also useful to model multi-unit assignment problems such

We thank the associate editor and the two reviewers for their careful reading of our manuscript and their
many insightful comments and suggestions. Both authors acknowledge financial support from Ministerio
Economía y Competitividad (Spain) under project ECO2017-87769-P and from Fondecyt under project
No. 1151230. Romero-Medina acknowledges the financial support from Ministerio Economía y
Competitividad (Spain) MDM 2014-0431, and Comunidad de Madrid H2019/HUM-5891. Triossi
acknowledges the financial support from the Institute for Research in Market Imperfections and Public
Policy, ICM IS130002, Ministerio de Economía, Fomento y Turismo (Chile), and from Ca’ Foscari
University of Venice under project MAN.INS_TRIOSSI.

B Matteo Triossi
matteo.triossi@unive.it

1 Department of Economics, Universidad Carlos III de Madrid, Madrid, Spain

2 Department of Management, Ca’ Foscari University of Venice, Venice, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-020-00741-1&domain=pdf
http://orcid.org/0000-0002-4076-350X
http://orcid.org/0000-0002-6356-7560


106 A. Romero-Medina and M. Triossi

as course allocations (see Budish 2011; Sönmez and Ünver 2010; Kojima 2013) or the
assignment of landing slots (see Schummer and Vohra 2013; Schummer and Abizada
2017).We consider a many-to-manymatching market and assume that preferences are
responsive (Roth 1985). Under this assumption, no mechanism is stable and strategy-
proof for even one side of the market (see Roth and Sotomayor 1990). Furthermore,
even in one-to-one markets, there is no mechanism that is stable and strategy-proof
for the agents on both sides of the market. Due to these negative results, the literature
has concentrated on mechanisms guaranteeing strategy-proofness on one side of the
market, thus overlooking preference manipulation from agents on the other side of
the market (but see Romero-Medina and Triossi 2013a for capacity manipulation).
However,manipulation by agents on both sides of themarket is a concern, for example,
in different school choice mechanisms (see Abdulkadiroğlu et al. 2005). In this paper,
we explore the possibility of designing revelationmechanisms that are stable, strategy-
proof, and group strategy-proof for the agents on both sides of themarket, by restricting
the preference domain. Indeed, stability and strategy-proofness are central concerns
in market design. Theoretical and empirical findings suggest that centralized markets
that achieve stable outcomes are more successful than centralized markets that do not
achieve stable outcomes. In particular, those that do not produce stable outcomes are
more likely to break down and be abandoned (see Roth and Sotomayor 1990; Roth
2008; Abdulkadiroğlu and Sönmez 2013).1 Additionally, strategy-proofness prevents
agents from needing to strategize. This is relevant in markets where agents differ in
their sophistication. Finally, group strategy-proofness implies strategy-proofness and
preventswelfare losses resulting from collusion among agents.We show that, when the
preferences of all agents are responsive and the firms have acyclical preferences, the
worker-optimal stable mechanism is group strategy-proof. A cycle in the preferences
of the firms occurs when there is an alternating list of firms and workers “on a circle”
such that every firm prefers the worker on its clockwise side to the worker on its
counterclockwise side and finds both acceptable. We say that preferences are acyclical
if there are no cycles.

First, we show that, under responsive preferences, when the preferences of the
firms are acyclical, the set of stable matchings is a singleton, and the unique sta-
ble matching can be implemented through a procedure that we call Adjusted Serial
Dictatorship. In this procedure, each worker, at her turn, selects her favorite firms
among those she is acceptable to and that still have vacant positions. We employ
this result to show that, under acyclicity, any stable mechanism is group strategy-
proof both for firms and workers. We conclude by showing that acyclicity is also
the minimal condition guaranteeing the existence of a mechanism that is stable and
strategy-proof for the agents on both sides of a many-to-many matching market under
responsive preferences. More precisely, we show that if the preferences of the firms
have a cycle, there exists a responsive profile of preferences for the workers such
that no stable mechanism is strategy-proof. Our results imply that strategy-proofness
and group strategy-proofness are equivalent requirements when imposed on a sta-
ble mechanism under responsive preferences. In general, group strategy-proofness is

1 Moreover, in the school choice problem and the course allocation problem, stability embodies a notion of
fairness because it eliminates justified envy (see Balinski and Sönmez 1999; Abdulkadiroğlu and Sönmez
2003).
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more demanding than strategy-proofness. In particular, in the school choice problem,
the student-optimal stable mechanism always provides a stable and strategy-proof
mechanism. However, efficiency and group strategy-proofness require priorities to
satisfy an acyclicity condition (see Ergin 2002). Our characterization contributes in
explaining the restrictiveness of imposing strategy-proofness on stable mechanisms
in many-to-many matching markets.

Finally, we apply our results to the course allocation problem. In this case, only
one side of the market is strategic, and acyclicity is a sufficient condition for the
existence of a strategy-proof mechanism. We show that acyclicity is also necessary if
the designer cannot condition the mechanism on the capacities of the courses.

1.1 Related literature

Acyclical preferences have been extensively studied inmatchingmarkets. The concept
of acyclicity that we use coincides with that introduced in Romero-Medina and Triossi
(2013b) for one-to-one matching markets. In many-to-one matching markets, Ergin
(2002) introduces a weaker notion of acyclicity and shows that the worker-optimal
stable mechanism is efficient and group strategy-proof for workers if and only if the
preferences of the firms are acyclical. Kesten (2012) and Romero-Medina and Triossi
(2013a) find that two different forms of acyclicity are necessary and sufficient con-
ditions for worker-optimal stable matching to be immune to capacity manipulation.
Pycia (2012) shows that the core is nonempty in every state if and only if agents’ pref-
erences are pairwise-aligned (a condition equivalent to acyclicity). Furthermore, under
pairwise-alignment, the core is a singleton and a large family of games implements
the unique core allocation in strong Nash equilibrium.

Coremanipulability and its relation to singleton cores have been previously studied.
Sönmez (1999) extends previous results byDemange (1987) and shows that there exists
an allocation rule that is Pareto efficient, individually rational and strategy-proof if and
only if the core is essentially single-valued. Also, in one-to-one matching markets,
Demange et al. (1987) study the manipulability of stable matchings by coalitions
including agents on both sides of the market. In this case, uniqueness guarantees that
a matching is not manipulable. This result does not hold in many-to-many matching
markets (see Example 1).

Our results complement those in Kojima (2013) and Jiao and Tian (2017). In a
multi-unit assignment problem, Kojima (2013) proves that the worker-optimal stable
matching is strategy-proof for workers if and only if any cycle involves only the
top-ranked workers, a condition that he calls essential homogeneity, which is weaker
than the concept of acyclicity that we employ in this paper.2 Jiao and Tian (2017)
prove that the worker-optimal stable mechanism is group strategy-proof for workers if
preferences satisfy the extended max-min criterion and a quota saturability condition.
The preference domain in Jiao and Tian (2017) reflects a high degree of ambiguity
aversion. Instead, we assume the preferences to be responsive.3 The concept of group

2 Romero-Medina and Triossi (2020) show that the equivalence between strategy-proofness and group
strategy-proofness also holds in the multi-unit assignment problem.
3 The two domains are unrelated.
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strategy-proofness that we employ is stronger than the one in Jiao and Tian (2017).
For an allocation to be strategy-proof, they require that no coalition of agents can
misrepresent their preferences in away thatmakes eachmember of the coalition strictly
better off. This concept is often referred to as group incentive compatibility or weak
group strategy-proofness (see Roth and Sotomayor 1990; Hatfield and Kojima 2009;
Barberá et al. 2016). Instead, we use the usual concept of group strategy-proofness
requiring each member of the coalition to be weakly better off and at least one to be
strictly better off. In contrast to Jiao and Tian (2017) and Kojima (2013), we focus on
preventing manipulation and collusion by the agents on both sides of the markets.

The structure of this paper is as follows. Section 2 introduces the model. Section 3
presents the results. Section 4 concludes. The proofs are in the “Appendix”.

2 Themodel

In our model, there are two disjoint and finite sets of agents, the set of firms F and the
set of workersW . A generic firm is denoted by f , a generic worker byw and a generic
agent by v ∈ V = F ∪ W . Each worker can work for more than one firm, and firms
can hire more than one worker. Let PF = (

Pf
)
f ∈F be a list of firms’ preferences over

subsets of workers, where for every f ∈ F , Pf is a strict order defined on 2W . For all
w,w′ ∈ W , wPf w

′, wPf ∅ and ∅Pf w denote {w} Pf
{
w′}, {w} Pf ∅ and ∅Pf {w},

respectively. Let PW = (Pw)w∈W be a list of workers’ preferences over subsets of
firms, where for every w ∈ W , Pw is a strict order defined on 2F . For each v ∈ V , we
denote by Rv the corresponding weak preferences. A profile P = (Pv)v∈V is a list of
preference orderings. Given a profile P = (Pv)v∈V and V ′ ⊆ V ,we denote by PV ′ the
vector (Pv)v∈V ′ . The triple (F,W , P) is called amatchingmarket. The favorite group
of workers for firm f among those belonging to W ′ is called the choice set from W ′.
We denote the choice set fromW ′ byCh f (W ′, Pf ) or byCh f (W ′)when no ambiguity
is possible. Formally, Ch f (W ′, Pf ) = maxPf

{
W ′′ : W ′′ ⊆ W ′}. If ∅Pf W ′ firm f

prefers not to employ any worker rather than jointly employing the workers in W ′,
then W ′ is called unacceptable to f . Otherwise W ′ is acceptable to f . We denote
the set of workers who are individually acceptable to f by A

(
f , Pf

)
or A ( f ) when

no ambiguity is possible. The maximum number of workers that firm f is willing to
hire is f ’s capacity, which we denote by q f ; formally, q f = max

{∣∣W ′∣∣ : W ′Pf ∅
}
.4

For every w ∈ W and for every F ′ ⊆ F , we define Chw(F ′, Pw), Chw(F ′), A (w),
and qw similarly.
We represent firms’ preferences over acceptable sets of workers through ordered lists.
Let K > 0 and let Wi ⊆ W , Wi �= ∅ for every i , 1 ≤ i ≤ K . The notation
Pf : W1,W2, . . . ,WK means Wi Pf W j for every i, j 1 ≤ i < j ≤ K and WK Pf ∅;
for all W ′ ⊆ W , W ′ /∈ {W1,W2, . . . ,WK ,∅}, ∅Pf W ′. Workers’ preferences are
represented similarly.

Matchings assign workers to firms. A matching on (F,W , P) is a function μ :
V → 2V such that, for every ( f , w) ∈ F × W : (i) μ( f ) ∈ 2W , (ii) μ(w) ∈ 2F and
(iii) f ∈ μ(w) ⇔ w ∈ μ( f ). We denote by M the set of matchings on (F,W , P).

4 For every set S, the symbol |S| denotes the cardinality of S.
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A matching μ is individually rational in (F,W , P) , if Chv(μ(v)) = μ(v) for all
v ∈ V . Individual rationality captures the idea that hiring and joining a firm are
voluntary. A matching μ is blocked by the pair ( f , w) ∈ F × W , f /∈ μ (w), if (i)
f ∈ Chw (μ(w) ∪ { f }) and (ii) w ∈ Ch f (μ( f ) ∪ {w}). A firm-worker pair ( f , w)

blocks a matching μ if worker w is not employed at f , but she would like to join f
and f would like to hire w. A matching μ is stable in (F,W , P) if it is individually
rational and if no pair blocks it. Otherwise, μ is unstable. Γ (F,W , P) denotes the
set of matchings that are stable in (F,W , P).

The set of stable matchings may be empty. For this reason, we focus on responsive
preferences that guarantee that the set of stable matchings is nonempty (see Alkan
1999).We say that the preferences of a firm, Pf , are responsive if, for allW ′ ⊆ W such
that

∣∣W ′∣∣ ≤ q f − 1 and for all w,w′ ∈ W\W ′: (i)W ′ ∪ {w} Pf W ′ ∪ {
w′} ⇔ wPf w

′
and (ii) W ′ ∪ {w} Pf W ′ ⇐⇒ w ∈ A ( f ).

In words, f has responsive preferences if for any two assignments that differ in one
worker only, it prefers the assignment containing the most preferred worker. Respon-
sive preferences forworkers are defined similarly. The set of responsive preferences for
agent v ∈ V is denoted byPv . For all V ′ ⊆ V letPV ′ = ∏

v∈V ′ Pv . If firms and work-
ers have responsive preferences, the set of stable matchings forms a nonempty lattice
(see Alkan 1999). Furthermore, there exists a stable matching that is Pareto superior
for workers to all other stable matchings, the worker-optimal stable matching. We
denote by μW (P), the worker-optimal stable matching of market (F,W , P).5

A cycle (of length T + 1) in PF is given by distinct workers w0, w1, . . . , wT ∈ W
and distinct firms f0, f1, . . . , fT ∈ F such that

1. wT PfT wT−1PfT−1 , . . . , Pf2w1Pf1w0Pf0wT ;
2. for every t , 0 ≤ t ≤ T , wt ∈ A ( ft+1) ∩ A ( ft , ), where fT+1 = f0.

A preference profile on individual workers PF is acyclical if it has no cycles.
Let us assume that a cycle exists. If every worker in a cycle wt−1 is initially assigned
to firm ft , every firm is willing to exchange its assigned worker with its successor wt .
A mechanism ϕ is a function that associates a matching to every preference profile:
ϕ : PV → M. A mechanism ϕ is stable if ϕ (P) is stable for all P ∈ PV . An
example of stable mechanism is the worker-optimal stable mechanism, μW which
assigns to every profile of preferences P ∈ PV , the worker-optimal stable matching
of market (F,W , P), μW (P). Let D ⊆ PV . A mechanism ϕ is Pareto optimal
on D if for every P ∈ D, there exists no individually rational matching μ, such
that μ (v) Rvϕ (P) (v) for every v ∈ V and μ (v) Pvϕ (P) (v) for at least one v.
A mechanism is Pareto optimal if it implements matchings for which there is no
alternative individually rational matching that is weakly preferred by all agents and
strongly preferred by at least one agent. A mechanism ϕ is strategy-proof onD if for
every v ∈ V , ϕ(P) (v) Rvϕ(P ′

v, P−v) (v) for every P ∈ D, P ′
v ∈ Pv . A mechanism is

strategy-proof if reporting her true preference relation is a (weakly) dominant strategy
for every agent. A mechanism is group strategy-proof on D if there do not exist

5 Sotomayor (1999) studies the relationship between different stability concepts inmany-to-manymatching
markets. In particular, she points out that the core and the set of stable matchings may have an empty
intersection so that the set of setwise-stable matchings may be empty under separable preferences (which
is a stronger requirement than responsive preferences). See also Sotomayor (2004).
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P ∈ D, a nonempty set of agents, V ′ ⊆ V , P , P ′
V ′ = (

P ′
v

)
v∈V ′ ∈ PV ′ such that

ϕ(P ′
V ′ , PV \V ′) (v) Rvϕ(P) (v) for every v ∈ V ′ and ϕ(P ′

V ′ , PV \V ′)
(
v′) Pv′ϕ(P)

(
v′)

for some v′ ∈ V ′. The mechanism ϕ is group strategy-proof if no subset of agents can
benefit by jointly misrepresenting their preferences. Since capacity, in our model, is
endogenous to the preference profile, a strategy-proof mechanism prevents capacity
manipulation (see Sönmez 1997).

3 Group strategy-proofness and uniqueness

In many-to-many matching markets, if the preferences of both workers and firms are
responsive, no stable mechanism is strategy-proof or Pareto optimal for workers (see
Roth and Sotomayor 1990). In this section, we prove that the assumption of acyclical
preferences is a necessary and sufficient condition to overcome the incompatibility of
strategy-proofness, stability and Pareto optimality.

We first show that when the firms have acyclical preferences over individual work-
ers, there exists an underlying order w1,w2,…,w|W | on the set of workers that is able
to sustain a stable matching through an Adjusted Serial Dictatorship.

Let us assume that Pv is responsive for all v ∈ V and that PF is acyclical and define
an order onW as follows. Let w1 ∈ W be a worker who is always ranked first, among
individual workers, by any firm to which she is acceptable. Formally, let w1 be such
that, for all f ∈ F such that w1Pf ∅, there exists no w ∈ W with wPf w1. 6 Such a
w1 exists because PF is acyclical. For 0 ≤ t ≤ |W | − 1, let wt+1 be a worker who
is never ranked below workers other than w1, w2, . . . , wt by any firm to which she is
acceptable. Formally, let wt+1 ∈ W be such that, for all f ∈ F such that wt+1Pf ∅,
there exists now ∈ W\ {w1, w2, . . . , wt } such thatwPf wt+1.Notice that, in general,
the selection of wt is not unique, for every t , 1 ≤ t ≤ |W | − 1 and thus, the procedure
defines a family of orders onW . The position of worker w in the sequence is uniquely
determined when, for example, w is acceptable to all firms.

Given w1,w2,…,w|W | selected as above, we define an Adjusted Serial Dictator-
ship by letting each worker choose among the firms that she is acceptable to and that
still have vacant positions according to w1,w2,…,w|W |.

Let A1 (P) = { f : w1 ∈ A ( f )}, be the set of firms to which worker w1 is
acceptable. Define μAS (P) (w1) = Chw1 (A1 (P)). For all t , 1 ≤ t ≤ |W | − 1, let
At+1 (P) = { f : wt+1 ∈ A ( f ) , | ⋃s≤t, f ∈μAS(P)(ws )

{ws}| < q f }, be the set of firms

workerwt+1 is acceptable to and that have vacant positions. DefineμAS (P) (wt+1) =
Chwt+1 (At+1 (P)). For every f ∈ F , let μAS ( f ) = ⋃

f ∈μAS(w) {w}. First, we prove
that matching μAS (P), the outcome of an Adjusted Serial Dictatorship, is the unique
stable matching of market (F,W , P).

Proposition 1 Let Pv be responsive for all v ∈ V and let PF be acyclical. Matching
μAS (P) is the unique stable matching of market (F,W , P).

6 Notice that, formally, we are comparing singletons: for example, as previously defined, wPf w1 means
{w} Pf {w1}.
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In particular, Proposition 1 implies that all orders that define an Adjusted Serial
Dictatorship generate the same stable matching.

Next, we prove our main result: no coalition of agents can benefit from preference
manipulation if the worker-optimal stable mechanism μW (P) is used, when PF is
acyclical. Let DA be the domain of preference profiles P such that PF is acyclical.
Formally, DA = {(PF , PW ) ∈ PV : PF is acyclical}.
Theorem 1 The worker-optimal stable mechanismμW is group strategy-proof onDA.

Even if the profile of firms’ preferences is acyclical, we do not restrict their message
space to acyclical profiles.7 Instead, firms can submit arbitrary responsive preference
profiles (see the definitions of strategy-proofness and of group strategy-proofness in
Sect. 2).

The proof of Theorem 1 is based on the characterization of the worker-optimal
stable matching provided in Proposition 1 and the observation that the outcome of
any deviation can be reached through a deviation that preserves the acyclicity of the
preferences of the firms.

Ergin’s acyclicity (see Ergin 2002) prevents the coalitional deviation of workers in
many-to-one matching markets. Essential homogeneity (see Kojima 2013) prevents
individual manipulation of the workers. Acyclicity simultaneously prevents individual
and coalitional deviations of both firms and workers.

From Theorem 1, follows that the worker-optimal stable mechanism is Pareto opti-
mal if firms’ preferences are acyclical.

Corollary 1 The worker-optimal stable mechanism μW is Pareto optimal, Pareto opti-
mal for workers and Pareto optimal for firms on DA.

Next, we study whether it is possible to weaken the acyclicity requirement and find
a mechanism that is stable and strategy-proof for all agents. First we show that without
acyclicity, the worker-optimal stable mechanism is not strategy-proof for firms.

Lemma 1 Let D ⊆ PV and assume D � DA. Then, the worker-optimal stable mech-
anism is not strategy-proof for firms on D.

The intuition behind Lemma 1 is that, if the preferences of the firms are not acyclic,
there exists a profile of preferences for workers such that the resulting market has
two stable matchings. In this case, any firm f which strictly prefers the firm-optimal
stable matching to the worker-optimal stable matching can successfully manipulate
the worker-optimal stable mechanism.

Thus, a singleton core is necessary for the existence of a stable and strategy-proof
mechanism. However, having a unique stable matching is not sufficient for the exis-
tence of a stable and strategy-proof mechanism. In the next example, we provide a
market with a singleton core where an agent can successfully manipulate the unique
stable matching because there is a cycle in the preferences of the firms.

7 This would be inconsistent, since the set of acyclical preference profiles is not a Cartesian product. We
thank an associated editor for the observation.
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Example 1 Let us assume F = { f1, f2, f3} and W = {w1, w2, w3}. Consider respon-
sive preferences for all agents. Let A ( f1) = {w1, w3}, A ( f2) = {w1, w2}, and
A ( f3) = {w2, w3}. Let q f = 1 for all f ∈ F . Let Pf1 : {w1} , {w3}, Pf2 : {w2} , {w1},
and Pf3 : {w3} , {w2}. Notice w1Pf1w3Pf3w2Pf2w1. Let A (w1) = { f1, f2},
A (w2) = { f2, f3}, and A (w3) = { f1, f3}. Let qw1 = 2 and qw2 = qw3 = 1.
Let Pw1 : { f1, f2} , { f2} , { f1}, Pw2 : { f3} , { f2} and Pw3 : { f1} , { f3}. There exists a
unique stable matching μ where μ ( fi ) = {wi } for i = 1, 2, 3. If any stable mecha-
nism is employed and workerw1 reports preferences P ′

w1
: { f2}, she obtains a position

at f2, which she strictly prefers to f1.

The intuition provided by Example 1 and Lemma 1 leads us to prove that acyclicity
is the minimal condition guaranteeing the existence of a stable group strategy-proof
mechanism.

Proposition 2 Let D ⊆ PV and assume D � DA. Then, no stable mechanism is
strategy-proof on D.

In conclusion, we can integrate the main findings of the section in the following
theorem.

Theorem 2 Let D ⊆ PV . The following statements are equivalent:

1. There exists a stable and strategy-proof mechanism on D.
2. There exists a stable and group strategy-proof mechanism on D.
3. D ⊆ DA.

Thus DA is the maximal domain of preferences which guarantees the existence of a
stable, strategy-proof and group strategy-proof stable mechanism.

3.1 Course allocation

Next, we apply our results to the case where firms are objects to be consumed. Thus,
their preferences are to be intended as priorities. This problem is usually called the
course allocation problem. It is a one-sided multi-unit assignment problem under
priorities, in which only workers are strategic. Formally, a course allocation problem
can be identified with a matching market (F,W , PF , PW ), where F is identified with
the set of courses to be distributed among the workers W , who now play the role of
students. For every f ∈ F , let � f be the restriction of Pf to individual students.
Formally, for every w,w′ ∈ W ∪ {∅}, let w � f w′ if and only if wPf w

′. The set of
stable matchings depends only on the preferences of the workers, on the preferences
of the firms over individual workers, and on the capacities of the firms. We denote
a course allocation problem as by (F,W ,�F , PW , q), where �F= (� f

)
f ∈F and

q = (
q f

)
f ∈F . We call (�F , q) a priority structure.

The priority structure (�F , q) satisfies essential homogeneity8 if there are no
f0, f1, . . . , fT ∈ F, w0, w1, . . . , wT ∈ W and W0,W1 . . . ,WT ⊆ W\ {w0, w1,

. . . , wT } such that:
8 This definition adapts that proposed in Kojima (2013), accounting for situations where courses have
different eligibility requirements.
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Two-sided strategy-proofness in many-to-many matching markets 113

1. wT � fT wT−1 � fT−1 . . . � f2 w1 � f1 w0 � f0 wT ;
2. for every t , 0 ≤ t ≤ T , wt ∈ A ( ft+1) ∩ A ( ft , ), where fT+1 = f0.
3. for every t , 0 ≤ t ≤ T , |Wt+1| = qt+1 − 1 and w � ft+1 wt for each w ∈ Wt+1

where fT+1 = f0.

From the proof of Theorem 1 in Kojima (2013), it follows that essential homogeneity
is equivalent to the existence of a stablemechanism that is strategy-proof for students.9

Essential homogeneity is weaker than acyclicity but it does not guarantee that the set
of stable matchings is a singleton (see Romero-Medina and Triossi 2013b), nor the
existence of a mechanism that is stable and strategy-proof for the agents on the two
sides of the market.

Acyclicity is a sufficient but not necessary condition for the existence of a stable
mechanism that is strategy-proof for workers when capacities are given. However,
in several practical course allocation problems, capacities are decided year by year
depending on infrastructure and expected demand. In such situations, only �F can
be assumed as given, and the objective of the designer is to devise a strategy-proof
mechanism that works for any capacity vector q = (

q f
)
f ∈F . We next prove that this

is possible only if �F is acyclical.

Lemma 2 Assume that�F has a cycle. Then, there exists a vector of capacities q such
that no stable mechanism is strategy-proof for workers, when the priority structure is
(�F , q).

Thus acyclicity is a minimal condition on priorities that guarantees strategy-
proofness for any vector of capacity q. The result suggests that, if a revelation
mechanism is to be used, the use of acyclical priorities is the only choice that guarantees
stability and truthful behavior by students.

Proposition 3 The following statements are equivalent in the domain of responsive
preferences for workers:

1. There exists a stable mechanism that is strategy-proof for workers for every q =(
q f

)
f ∈F .

2. There exists a stable mechanism that is group strategy-proof for workers for every
q = (

q f
)
f ∈F .

3. �F is acyclical.

The proof easily follows from Theorem 1 and Lemma 2.

4 Conclusions

In this paper, we prove that the worker-optimal stable mechanism is group strategy-
proof and Pareto optimal in many-to-many matching markets if the preferences of the
firms are acyclical. In this case, the unique stable matching can be obtained through
an Adjusted Serial Dictatorship.

9 Romero-Medina and Triossi (2020) prove that essential homogeneity is also equivalent to the existence
of a stable mechanism that is group strategy-proof for students.
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The restriction to acyclical priorities is particularly appropriate in situations where
preferences reflect an underlying merit-based ranking. In these cases, a serial dic-
tatorship is an appealing implementation mechanism (see also Ehlers and Klaus
2003).

Acyclicity is the minimal condition guaranteeing the existence of a strategy-proof
stable mechanism in many-to-many markets. This result can be interpreted as negative
because acyclicity is a strong restriction. This interpretation suggests that whenever the
restriction of acyclical preferences or priorities is not deemed reasonable or appropri-
ate, the designer should explore alternative options. A first alternative is weakening the
equilibrium requirements. A second possibility is to weaken the stability requirement
on the mechanism.
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Appendix

Proof of Proposition 1 First, we show that any matching μAS obtained from an
Adjusted Serial Dictatorship is stable. The definition of μAS = μAS(P) implies that
it is individually rational. Next, we prove by contradiction that there is no pair block-
ing μAS . Assume that there exists a pair ( f , ws) ∈ F × W blocking μAS . We have
μAS (ws) = Chws (As (P)). First, assume that

∣∣μAS ( f )
∣∣ < q f . Then, f ∈ As (P),

yielding a contradiction. Second, consider the case in which
∣
∣μAS ( f )

∣
∣ = q f . Because

( f , ws) blocksμ,ws Pf w
′ for somew′ ∈ μAS ( f ). From the definition of the sequence

w1, w2, . . . , w|W |, it follows thatw′ = wt for some t > s. Thus, f ∈ As (P), yielding
a contradiction.
We prove by contradiction that there is exactly one stable matching. Assume that
ν �= μAS is a stable matching. Let s be the minimum of the indexes t such that
ν (wt ) �= μAS (wt ). Such an s exists becauseW is finite. Since ν is individually rational
andμAS (wt ) = ν (wt ) for all t < s, ν (ws) ⊆{ f : ws ∈ A( f ), | ⋃t<s, f ∈ν(wt )

{wt }| <

q f } =
{ f : ws ∈ A ( f ) , | ⋃t<s, f ∈μAS(wt )

{wt }| < q f } = As (P). Since ν (ws) ⊆ As (P),

μAS (ws) = Chws (As (P)) andμAS (ws) �= ν (ws), thenμAS (ws) Pwsν (ws). There
are two possibilities.

(a) μAS (ws) \ν (ws) �= ∅. From the acyclicity of PF , the definition of an
Adjusted Serial Dictatorship and the minimality of s follows that for all f ∈
μAS (ws) \ν (ws) and eachw ∈ ν ( f ) \μAS ( f ),ws Pf w. Assume that |ν (ws)| <
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qws and let f ∈ μAS (ws) \ν (ws). If |ν ( f )| < q f , then ( f , ws) blocks ν,
which yields a contradiction. If |ν ( f )| = q f , there exists w ∈ ν ( f ) \μAS ( f ).
As observed, ws Pf w, then ( f , ws) blocks ν, which yields a contradiction.
Assume that |ν (ws)| = qws . Then, there exists f ∈ μAS (ws) \ν (ws) and
f ′ ∈ ν (ws) \μAS (ws), such that f Pws f

′. If |ν ( f )| < q f , then ( f , ws) blocks
ν, which yields a contradiction. If |ν ( f )| = q f , there exists w ∈ ν ( f ) \μAS ( f ).
As observed above, ws Pf w, then ( f , ws) blocks ν, which yields a contradiction.

(b) μAS (ws) � ν (ws). We have
∣∣μAS (ws)

∣∣ < |ν (ws)| ≤ qws , because ν is indi-
vidually rational. Let f ∈ ν (ws) \μAS (ws). If |ν ( f )| < q f , then ( f , ws)

blocks ν, which yields a contradiction. Let |ν ( f )| = q f . Then, there exists
w ∈ ν ( f ) \μAS ( f ). From the acyclicity of PF , the definition of an Adjusted
Serial Dictatorship, and the minimality of s follows that ws Pf w, then ( f , ws)

blocks ν, which yields a contradiction. ��
Proof of Theorem 1 We prove the claim by contradiction. Let PF be acyclical
and assume that there exists a nonempty set of agents V ′ ⊆ V , a respon-
sive profile of preferences P = (Pv)v∈V , and a responsive profile P ′

V ′ =(
P ′

v

)
v∈V ′ such that μW (P ′

V ′ , PV \V ′) (v) Rvμ
W (P) (v) for every v ∈ V ′ and

μW (P ′
V ′ , PV \V ′)

(
v′) Pv′μW (P)

(
v′) for some v′ ∈ V ′. Then, μW (P ′

V ′ , PV \V ′) is
individually rational for all agents.10

The strategy of the proof is as follows. In (a) we show that there exists a profile of
acyclical preferences that guarantees the sameoutcome as

(
P ′
V ′ , PV \V ′

)
to allmembers

of coalition V ′. In (b) we show that any deviating coalition includes at least one firm.
In (c) we prove that at least one firm in V ′ strictly benefits from the deviation. In (d)

we prove that there is no loss of generality in assuming that a coalition of firms is
deviating. Finally, in (e) we prove that the argument leads to a contradiction.

(a) Let f ∈ F ∩ V ′. Consider the following strict order, P̂ f on W ∪ {∅}. For all
w,w′ ∈ W , w P̂ f ∅ ⇐⇒ w ∈ μW (P ′

V ′ , PV \V ′). If w ∈ μW (P ′
V ′ , PV \V ′)

and w′ /∈ μW (P ′
V ′ , PV \V ′), then w P̂ f w

′. If w,w′ ∈ μW
(
P ′
V ′ , PV \V ′

)
( f ), then

w P̂ f w
′ ⇐⇒ wPf w

′. If w,w′ /∈ μW
(
P ′
V ′ , PV \V ′

)
( f ), then w P̂ f w

′ ⇐⇒
wPf w

′. Let P ′′
f be responsive preferences with capacity

∣
∣μW (P ′

V ′ , PV \V ′ ( f )
∣
∣

on 2W such that, for all w,w′ ∈ W , wP ′′
f w

′ ⇐⇒ w P̂ f w
′ and wP ′′

f ∅ ⇐⇒
w P̂ f ∅.11 For every w ∈ W ∩ V ′, define P̂w and P ′′

w in the same way.

Notice that for all w,w′ ∈ A
(
f , P ′′

f

)
⊆ A

(
f , Pf

)
, wP ′′

f w
′ ⇐⇒ wPf w

′. It
follows that any cycle in P ′′

f would be a cycle in Pf . Thus, P ′′
f is acyclical. Let

w1, w2, . . . , w|W | be an order used to generateμAS (P) = μW (P) as anAdjusted
Serial Dictatorship. Then, w1, w2, . . . , w|W | can be used to generate an Adjusted
Serial Dictatorship leading to μAS

(
P ′′
V ′ , PV \V ′

)
=μW

(
P ′′
V ′ , PV \V ′

)
.

We show that the deviation P ′′
V ′ is profitable for the members of V ′, which is

μW
(
P ′′
V ′ , PV \V ′

)
(v) Rvμ

W (P) (v) for every v ∈ V ′ and

10 In particular, for all v ∈ V and all v′ ∈ μW (P ′
V ′ , PV \V ′ ) (v), v′Pv∅.

11 The proof of the existence of such P ′′
f is available upon request.
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μW
(
P ′′
V ′ , PV \V ′

) (
v′) Pv′μW (P)

(
v′) for some v′ ∈ V ′. More precisely, we

prove μW
(
P ′′
V ′ , PV \V ′

) = μW
(
P ′
V ′ , PV \V ′

)
, which implies the claim. Matching

μW
(
P ′
V ′ , PV \V ′

)
is stable in market

(
F,W ,

(
P ′′
V ′ , PV \V ′

))
. Since

(
P ′′
F ′ , PF\V ′

)

is acyclical, by Proposition 1, market
(
F,W ,

(
P ′′
V ′ , PV \V ′

))
has a unique stable

matching, thusμW
(
P ′
V ′ , PV \V ′

) = μW
(
P ′′
V ′ , PV \V ′

)
. It follows that the deviation

P ′′
V ′ is profitable for the members of V ′.

(b) From now on, let μ = μAS (P) = μW (P) and let ρ = μAS
(
P ′′
V ′ , PV \V ′

) =
μW

(
P ′′
V ′ , PV \V ′

)
. We prove by contradiction that any deviating coalition must

include at least a firm, which is V ′ ∩ F �= ∅. Assume that V ′ ⊆ W , and
let s be the minimum of the indexes t such that ρ (wt ) �= μ (wt ). Since all
workers with an index lower than s are matched to the same firms under μ

and under ρ and V ′ ⊆ W , we have As
(
P ′′
V ′ , PV \V ′

) = As (P). If ws ∈ V ′,
then μ (ws) Pwsρ (ws), which yields a contradiction. Otherwise, if ws ∈ W\V ′,
ρ (ws) = μAS

(
P ′′
V ′ , PV \V ′

)
(ws) = Ch

(
As

(
P ′′
V ′ , PV \V ′

)
, Pws

)
(ws). Since

As
(
P ′′
V ′ , PV \V ′

) = As (P), then ρ (ws) = Ch
(
As (P) , Pws

) = μ (ws), which
also yields a contradiction, because, by hypothesis ρ (ws) �= μ (ws).

(c) From (b), V ′ ∩ F �= ∅. We prove that at least one firm f ∈ V ′ ∩ F strictly
benefits from the deviation, which is we prove that there exists f ∈ F ′ ∩ V
such that ρ ( f ) Pf μ ( f ). By contradiction assume that ρ ( f ) = μ ( f ) for all
f ∈ V ′ ∩ F . Let s be the minimum of the indexes t such that ρ (wt ) �= μ (wt ).
Since all workers with an index lower than s are matched to the same firms under
μ and under ρ, we have As

(
P ′′
V ′ , PV \V ′

) ⊆ As (P). Thus, if f ∈ μ (ws) \V ′,
f ∈ As

(
P ′′
V ′ , PV \V ′

)
. Finally, since ρ ( f ) = μ ( f ) for all f ∈ V ′ ∩ F , if

f ∈ μ (ws)∩V ′, f ∈ As
(
P ′′
V ′ , PV \V ′

)
. It follows thatμ (ws) ⊆ As

(
P ′′
V ′ , PV \V ′

)

⊆ As (P). Let ws ∈ V ′ ∩ W . By definition ρ(ws) = μAS
(
P ′′
V ′ , PV \V ′

)
(ws)

= Chws

(
As

(
P ′′
V ′ , PV \V ′

)
, P ′′

ws

)
. Since As

(
P ′′
V ′ , PV \V ′

) ⊆ As (P), μ (ws) =
Chws

(
As (P) , Pws

)
RwsChws

(
As

(
P ′′
V ′ , PV \V ′

)
, Pws

)
. Also Chws

(
As

(
P ′′
V ′ ,

PV \V ′
)
, Pws

)
RwsChws

(
As

(
P ′′
V ′ , PV \V ′

)
, P ′′

ws

)=ρ (ws), thusμ (ws) Rsρ (ws).
Since ws ∈ V ′, ρ (ws) Rwsμ (ws), thus ρ (ws) = μ (ws) which yields
a contradiction, because, by hypothesis ρ (ws) �= μ (ws). Now, let ws ∈
W\V ′. Since As

(
P ′′
V ′ , PV \V ′

) ⊆ As (P) and μ (ws) = Chws

(
As (P) , Pws

)
,

μ (ws) RwsChws

(
As

(
P ′′
V ′ , PV \V ′

)
, Pws

) = ρ (ws). Since μ (ws) ⊆ As
(
P ′′
V ′ ,

PV \V ′
)
, also ρ (ws) = Chws

(
As

(
P ′′
V ′ , PV \V ′

)
, Pws

)
RwsChws (μ (ws)) =

μ (ws), because μ is, in particular, individually rational. It follows ρ (ws) =
μ (ws), which yields a contradiction, because, by hypothesis ρ (ws) �= μ (ws).

(d) From (b), V ′ ∩ F �= ∅. We prove that there is no loss of generality in assuming
that V ′ ⊆ F . More precisely, we prove that μW

(
P ′′
V ′∩F , PV \V ′∩F

)
(v) Rvμ (v),

for every v ∈ V ′ ∩ F and μW
(
P ′′
V ′∩F , PV \V ′∩F

) (
v′) Pv′μ

(
v′) for some

v′ ∈ V ′ ∩ F . Thus, if coalition V ′ can manipulate μW , coalition V ′ ∩ F �= ∅
can manipulate μW . Let σ = μW

(
P ′′
V ′∩F , PV \V ′∩F

)
. We prove σ = ρ, which,

from (a), implies the claim. We prove by contradiction that matching σ is sta-
ble in market M = (

F,W ,
(
P ′′
V ′ , PV \V ′

))
. Assume that σ is blocked by pair

( f , w) in market M . The definition of P ′′
V ′ implies that ( f , w) blocks in market

N = (
F,W ,

(
P ′′
V ′∩F , PV \V ′∩F

))
as well, which yields a contradiction because
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σ = μW
(
P ′′
V ′∩F , PV \V ′∩F

)
. Next, observe that the preference profiles of the firms

in markets M and N are
(
P ′′
V ′∩F , PF\V ′

)
, which is acyclical. By Proposition 1,

markets M and N have a unique stable matching. Since σ is stable in markets M
and N , σ = ρ. It follows that σ (v) Rvμ (v), for each v ∈ V ′ ∩ F . From (c), there
exists v′ ∈ V ′ ∩ F such that σ

(
v′) Pv′μ

(
v′).

(e) By (d), we can assume V ′ ⊆ F . Matching μ is stable in market M . Since ρ is the
worker-optimal stable matching in market M , μ ( f ) R f ρ ( f ) for all f ∈ F (see
Alkan 1999). Since P ′′

V ′ is a profitable coalitional deviation for the firms f ∈ V ′,
ρ ( f ) R f μ ( f ) for all f ∈ V ′. Since preferences are strict μ ( f ) = ρ ( f ) for all
f ∈ V ′, in contradiction with the fact that at least one firm in V ′ strictly benefits
from the deviation.

��
Proof of Lemma 1 Assume D � DA. Thus, there exists (PF , PW ) ∈ D such that
PF has a cycle. Let f0, f1, . . . , fT , w0, w1, . . . , wT be such that wi P fi wi−1Pfi ∅
for i = 0, 1, . . . , T , where w−1 = wT . Set qwi = 1 and A (wi ) = { fi , fi+1} for
i = 0, 1, . . . , T and fT+1 = f0. Set Pwi : { fi+1} , { fi } for i = 0, 1, . . . , T . For
all w /∈ {w0, w1, . . . , wT }, let Pw be such that A (w) = ∅. Let μW be the worker-
optimal stable mechanism. We have μW (P) (wi ) = { fi+1} for i = 0, 1, . . . , T − 1
andμW (wT ) = { f0}. Then, P ′

f1
= {w1} is a profitable deviation from the truth-telling

strategy for f1. ��
Proof of Proposition 2 AssumeD � DA. Thus there exists (PF , PW ) ∈ D such that PF
has a cycle. Let PW be the profile of preferences defined in the proof of Lemma 1. By
contradiction, assume that there exists a stable and strategy-proofmechanism,ϕ. There
are exactly two stable matchings, μW (P) and μF (P), where μW (P) (wi ) = { fi+1}
for i = 0, 1, . . . , T , where fT+1 = f0 and μF (P) (wi ) = { fi } for i = 0, 1, . . . ,T.
From the proof of Lemma 1, it follows that ϕ (P) = μF (P). In this case, P ′

w0
= { f1}

is a profitable deviation from the truth-telling strategy for w0. ��
Proof of Lemma 2 Let f0, f1, . . . , fT , w0, w1, . . . , wT such that wi � fi wi−1 i =
0, 1, . . . , T , wherew−1 = wT . Set q f = 1 for all f ∈ F . Set qw0 = 2, qwi = 1 for i =
1, 2, . . . , T , and A (wi ) = { fi , fi+1} for i = 0, 1, . . . , T and fT+1 = f0. Set Pw0 :
{ f1, f0} , { f1} , { f0}, Pw1 : { f2} , { f1}, and set Pwi : { fi+1} , { fi } for i = 1, 2, . . . , T .
For all w /∈ {w0, w1, . . . , wT }, let Pw such that A (w) ⊆ F\ { f0, f1, . . . , fT }. Let
ϕ be a stable mechanism. We have ϕ (P, q) ( fi ) = {wi } for i = 0, 1, . . . , T . Let
P ′

w0
= { f1}. Then, { f1} = ϕ

(
P ′

w0
, P−w0 , q

)
(w0) Pw0 { f0} = ϕ (P) (w0), which

implies the claim. ��
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