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Key Points: 10 

• A Bayesian hierarchical model is developed to assess the changes in future flood mag-11 

nitude and quantify uncertainty in a single step 12 

• Future flood magnitude at selected sites over the eastern United States decreases in the 13 

south of the domain with varying uncertainty  14 

• A constrained ensemble based on how well model runs replicate timing of observed 15 

peak flows yields similar results to the full ensemble  16 
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Abstract 17 

 Future changes in the occurrence of flood events can be estimated using multi-model 18 

ensembles to inform adaption and mitigation strategies. In the near future, these estimates could 19 

be used to guide the updating of exceedance probabilities for flood control design and water 20 

resources management. However, the estimate of return levels from ensemble experiments 21 

represents a challenge: model runs are affected by biases and uncertainties and by 22 

inconsistencies in simulated peak flows when compared with observed data. Moreover, extreme 23 

value distributions are generally fit to ensemble members individually and then averaged to 24 

obtain the ensemble fit with loss of information. To overcome these limitations, we propose a 25 

Bayesian hierarchical model for assessing changes in future peak flows, and the uncertainty 26 

coming from global climate (GCMs), global impact (GIMs) models and their interaction. The 27 

model we propose allows use of all members of the ensemble at once for estimating changes in 28 

the parameters of an extreme value distribution from historical to future peak flows. The 29 

approach is applied to a set of grid-cells in the eastern United States to the full and to a 30 

constrained version of the ensemble. We find that, while the dominant source of uncertainty in 31 

the changes varies across the domain, there is a consensus on a decrease in flood magnitudes 32 

towards the south. We conclude that projecting future flood magnitude under climate change 33 

remains elusive due to large uncertainty mostly coming from global models and from the 34 

intrinsic uncertain nature of extreme values.  35 
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1. Introduction 36 

A warming climate is expected to intensify the global water cycle with changes in the 37 

occurrence and severity of extreme events like intense precipitations and floodings [Lavell et 38 

al., 2012; Abbott et al., 2019]. In turn, the main components of flood risk [Crichton, 1999] are 39 

expected to increase: flood hazard (as a result of increased energy in the system and of an 40 

intensified water cycle), flood exposure of people and assets (owing to global population growth 41 

and cities becoming more urbanized) and flood vulnerability (especially in overpopulated 42 

regions with low preparedness and poor infrastructure) [Oppenheimer et al., 2014]. In this 43 

context, assessing changes in future floods is crucial to inform adaptation and mitigation 44 

strategies aimed at protecting human life, vulnerable ecosystems, human wellbeing, agricultural 45 

land, homes and other socio-economic assets. 46 

Projected increases in temperature and heavy precipitation imply regional-scale changes in 47 

flood frequency and intensity [Seneviratne et al., 2012]. The projected impacts of floods depend 48 

on the change in climatic characteristics and on the change in the magnitude and seasonal 49 

distribution of precipitation, temperature, and evaporation [Jiménez Cisneros et al., 2015]. 50 

Changes in land-use, water management and abstraction resulting from human activities are 51 

also factors that influence the terrestrial phase of the water cycle and, in turn, flood 52 

characteristics [Prosdocimi et al., 2015]. Two practical examples are the likely increase in 53 

pluvial flooding, as a result of more frequent intense precipitation events under climate change 54 

[Pendergrass, 2018]; and the reduction and shift in time of the annual spring flood in snow 55 

dominated catchments, as a result of reduced snow pack [Musselman et al., 2018]. 56 

Model-based climate change projections for different greenhouse gas emission scenarios 57 

are a valuable source of information about future extreme events [Goodess, 2012]. Attempts to 58 

anticipate changes in future flood risk have come forth in recent years both at the catchment 59 

scale by statistically post-processing (e.g. downscaling) climate variables like rainfall and 60 
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simulating runoff using a hydrological model [Bosshard et al., 2013; Camici et al., 2014] and 61 

at continental to global scales, employing global model ensembles chains, usually using bias-62 

corrected GCM runs feeding GIMs that simulate runoff at the land surface [e.g., Hirabayashi 63 

et al., 2013; Dankers et al., 2014; Alfieri et al., 2015] (see François et al. [2019] for details on 64 

the two approaches). Regardless of scale, a consensus has grown in the hydrological community 65 

on the need to make the simulation of hydrologic processes less uncertain and consequently 66 

more useful for informing and guiding decisions [Merz et al., 2014; Clark et al., 2015]. 67 

Concerning the focus of this study – global models – as the climate system is inherently chaotic, 68 

even using perfect models tuned with perfect observations we would still be dealing with 69 

uncertainty from natural variability [Deser et al., 2012]. On top of natural variability, errors in 70 

model structure and parameterization undermine the estimate of future extreme events, 71 

notwithstanding the uncertainty coming from emission scenarios [Hawkins and Sutton, 2009; 72 

Lehner et al., 2020], although Giuntoli et al. [2018] report that this source accounts for very 73 

little uncertainty in runoff projections compared to that of global climate – GCMs and global 74 

impact – GIMs models. The aim of improving the simulation of climate and land-surface 75 

systems through the increase of spatial and temporal resolution and the inclusion of physical 76 

processes that were until recently overlooked comes at a cost of increased complexity, likely to 77 

yield a wider spread of plausible outcomes, thus increased uncertainty. In this context, extremes 78 

should raise even more concern because of the catastrophic consequences of their occurrence 79 

and the difficulty in sampling and characterising them even when using observed data. For 80 

flood hazard planning extreme value theory is generally employed [Goodess, 2012; Katz et al., 81 

2013] to derive estimates of design events – i.e. the flow magnitude that is expected to be 82 

exceeded on average with a certain fixed probability in any given year (under the assumption 83 

of independence between flows recorded in different years). 84 
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At the global scale, changes in mean flows from global models indicate an increase at high 85 

latitudes and in the wet tropics, and a decrease in most dry tropical regions, although some 86 

regions have high uncertainty in the magnitude and direction of change [e.g., Hagemann et al., 87 

2013; Schewe et al., 2014]. Conversely, changes in flood magnitude are less consistent, with 88 

contrasting results among studies depending on the region and the ensemble setup [Hirabayashi 89 

et al., 2013; Dankers et al., 2014; Giuntoli et al., 2015b]. The lack of consistency in these 90 

changes is emphasized by Jiménez Cisneros et al., [2015] reporting that studies of flood 91 

projections under different emission scenarios are still few, and highly uncertain, given the 92 

complexity of the mechanisms driving floods at the regional scale. In fact, studies using runoff 93 

projections have started trying, in addition to assessing future floods characteristics, to untangle 94 

the uncertainty originating from the different components of the modelling chain e.g. [Koirala 95 

et al., 2014; Giuntoli et al., 2015b]. 96 

The present work builds on Giuntoli et al. [2015b], who demonstrated the important role of 97 

GIMs in driving uncertainty in changes of future high flows globally (sometimes outweighing 98 

that of GCMs) and on Giuntoli et al. [2018], who highlighted the small role of scenario 99 

uncertainty compared to that of global models along with how the choice of GIMs affects 100 

overall uncertainty in peak flows projections. We combine findings from these works to go one 101 

step further overcoming the use of the ensemble mean (associated to e.g. the signal-to-noise to 102 

appraise model agreement) to characterize the signal of change of future floods and quantifying 103 

uncertainty of the signal coming from GIMs and GCMs, provided that the RCP contribution is 104 

negligible compared to the first two sources. 105 

In light of these research gaps, the overarching aim of this study is to apply a novel Bayesian 106 

model to the eastern USA to estimate space-time changes in future flood magnitude from multi-107 

model ensembles and so improve the overall signal/ pattern of change and identify sources of 108 

uncertainty in projections. In particular we: 109 
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1. propose a statistical method for estimating changes in future flood magnitude that 110 

minimizes loss of information and allows for an interpretable partition of the sources 111 

of variability (uncertainty). 112 

2. test the method over the eastern USA on a full multi-model ensemble identifying spa-113 

tial patterns of flood magnitude changes and uncertainty. 114 

3. compare simulated flood peaks to observed data for selecting more credible model 115 

runs for testing the method on a constrained ensemble and compare results. 116 

For the first step we propose an improved way to assess changes in flood magnitude using 117 

multi-model ensembles that goes beyond expressing changes through the ensemble mean (or 118 

median), which cancels out information on model consensus (or lack thereof) and reduces the 119 

signal across multiple members to a single value. In fact, taking the mean of the ensemble, 120 

which is an approach commonly used to summarize the oftentimes overwhelming amount of 121 

information from climate projections, serves only to conceal the uncertainty and negatively 122 

impact characterization of extremes, rather than actively incorporate that uncertainty into design 123 

[François et al., 2019]. To this end, using a Bayesian hierarchical model, we consider all 124 

members at once within the same statistical model that provides not only the signal of the 125 

direction of change, but the entire distribution of the overall change, and therefore a 126 

comprehensive description of the uncertainty in the model outputs. 127 

For the second step, using the ISIMIP multi-model ensemble – already employed in future 128 

high flows studies [Dankers et al., 2014; Giuntoli et al., 2015b; Dottori et al., 2018] – we focus 129 

on the eastern half of the United States where observed data (relatively free from anthropogenic 130 

disturbance) are available in catchments large enough to be compared to corresponding model 131 

grid-cells. On selected grid-cells over the domain of study, described in Section 2, we carry out 132 

an analysis of the annual maximum flow (extracted from daily data) using a Bayesian 133 

hierarchical model estimating changes in the future (2065-2099) flood peaks compared to the 134 

recent historical period (1971-2005) using the Gumbel distribution and expressing the 135 

uncertainty coming from the choice of GCMs or GIMs as the variation of the statistical model’s 136 
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random effects. It should be noted that the terminology “GIMs” used herein could also be 137 

referred to as “GHMs” i.e. global hydrological models. 138 

Lastly, for the third step, in addition to assessing changes in flood magnitude on all 139 

available runs of a multi-model ensemble experiment, we exploit model biases in present-day 140 

runoff peaks (against observed data) to constrain projected changes in flood design events (as 141 

in e.g., Yang et al., [2017]). There is indeed a growing interest in the scientific community 142 

dealing with climate impact studies on the opportunity of going beyond the ‘one-model one-143 

vote approach’ (or “model democracy” [Knutti, 2010]) and favouring model runs with a better 144 

historical performance in reproducing observations with the aim to reduce uncertainty [Padrón 145 

et al., 2019]. The overall effort of model selection is to extract efficiently the information 146 

relevant to a given projection or impact question, beyond the naïve use of multi-model 147 

ensembles (e.g. CMIP5) in their entirety [Abramowitz et al., 2019]. This approach is in line 148 

with the fact that, owing to different model performances against observations and the lack of 149 

independence among models, there is evidence now that giving equal weight to each available 150 

model projection is suboptimal [Eyring et al., 2019]. Indeed, modelled data can show large 151 

discrepancies from observed data, especially in the tails of the distribution [Do et al., 2020]. 152 

Thus, we apply this framework to the entire ensemble (oE) and to a constrained version (cE) in 153 

order to understand whether constraining model runs with observations can be considered 154 

beneficial to future peak flow changes analyses.  155 

We present the data in Section 2 with an appraisal of how peak flow modelled data 156 

compares to observed data. In Section 3 we describe the statistical framework for estimating 157 

future changes in flood magnitude and then how the ensemble is constrained. Results are 158 

presented in Section 4 before discussing them in the final Section 5. 159 



8 

2. Data 160 

Annual maximum flows (henceforth referred to as AMax) were extracted from 18 grid-161 

cells daily runoff (simulated) and corresponding gauges’ daily streamflow (observed) located 162 

in the eastern half of the United States (Figure 1). 163 

 164 

Figure1 165 

 166 

Observed data were selected to match the size of model data grid-cells (0.5°0.5°, i.e. 167 

~50 km50 km at the equator), so those with catchment areas in the range of 2000 to 2500 168 

(2500 to 3000) km2 north (south) of 36N latitude and with daily discharge data covering the 169 

models’ control period (1971-2005). This choice follows the approach of Giuntoli et al., 170 

[2015a] of carefully selecting pairs catchment/grid-cells of comparable size to deal with the 171 

misalignment between model and observational data. Because no land use changes or water 172 

management interventions are accounted for in the modelled data, the streamflow gauges were 173 

selected from the Hydro-Climatic Data Network (HCDN), the reference set of streamflow 174 

gauges with historical data responsive to climatic variations, so relatively free of anthropogenic 175 

influences [Whitfield et al., 2012]. The main characteristics of the streamflow gauges are 176 

presented in Table S1 in the Supporting Information (henceforth, SI).  177 

For global models AMax, we use daily runoff outputs from the ISI-MIP Fast Track 178 

[Warszawski et al., 2014] comprising an ensemble of nine GIMs forced with five CMIP5 179 

GCMs’ bias-corrected climate [Hempel et al., 2013] in their control (1971-2005) and future 180 

(2065-2099) periods under the RCP8.5 scenario (i.e. 45 runs per grid-cell). The GCMs have 181 

been evaluated by McSweeney and Jones [2016]. All GIMs were run at a spatial resolution of 182 

0.5 decimal degrees, i.e., ~50 km at the equator (with the exception of JULES whose resolution 183 



9 

is 1.25°1.875°). Models vary in structure (physical processes), parameterization, and time 184 

step; we provide a brief overview of the set of models and main characteristics in Table S2 of 185 

the SI. Giuntoli et al. [2018] provide detailed information on model characteristics and 186 

evaluation.  187 

2.1. Appraisal of simulated vs observed peak flows 188 

We compare observed and modelled peak magnitude (AMax) and timing (AMaxDate) at 189 

the 18 locations highlighting discrepancies between observed and modelled data. Observed-190 

modelled differences are to be expected and point to the nontrivial task of reconciling the two 191 

worlds, especially when dealing with extremes [Seneviratne et al., 2012].  192 

2.1.1. Peak flow distributions 193 

We compared raw peak flow time series from observed and modelled data using non-194 

parametric tests (no assumption is made on the type of distribution) assessing: i) same 195 

distribution (Kolmogorov-Smirnoff, noted KS, [Massey, 1952]), ii) equal median (Wilcoxon 196 

rank-sum, noted W, [Wilcoxon, 1945]), and iii) equal variance (Ansari-Bradley, noted AB, 197 

[Ansari and Bradley, 1960]). There is little overlap between observed and modelled peaks in 198 

terms of distribution (KS, 9.3% of runs) and medians (W, 11.9% of runs), while for the variance 199 

there is good agreement (AB, 84.4% of runs). Interestingly, testing modelled data from 200 

historical to future period (RCP 8.5) yields greater agreement across the three tests (KS 66%, 201 

W 69%, AB 90%) than seen with the observed peak flows, as reported in Table S3 of the SI. 202 

2.1.2. Peak flow magnitude 203 

In addition to testing raw peak flows we compared observed and modelled peak flows 204 

Gumbel fits – with location and scale parameters estimated via joint maximum likelihood and 205 

confidence intervals via profile likelihood [Coles, 2001]. Figure 2a depicts, for one of the sites 206 
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(Bourbeuse River at Union, MO), a plot of return levels for the one in 30 years event and 207 

corresponding 95% confidence intervals: the horizontal grey band shows the observed data, i.e. 208 

the reference to which the historical period of the models (black lines) should tend to align, 209 

while the red coloured lines correspond to the future period under scenario RCP8.5 (plots for 210 

all sites are in SI, Figure S1 and Figure S2). While few models overlap the observed data 211 

confidence intervals, others lie well outside them (i.e. H08, MacPDM, and VIC combinations). 212 

Interestingly, the return levels resulting from the models tend to cluster per GIM, indicating 213 

that the GCMs tend to follow the peak magnitude described by the GIMs. 214 

2.1.3. Peak flow timing 215 

Peak flow timing in all sites tends to be overestimated in the winter and underestimated 216 

in the spring and to a smaller degree in the summer. This is noticeable when sorting peak counts 217 

into four seasons as shown in Figure 2b. Generally, in northern sites the autumn is 218 

overestimated too, while in southern sites SON peak counts are in line with observed data 219 

(Figure S3 in SI). Overall, MacPDM, PCRGlob-WB and VIC are the GIMs that capture timing 220 

of peak flows best, while, H08, LPJmL (north, especially), and MPI (south, especially) struggle 221 

to replicate the right timing of peak occurrences. Furthermore, models generally anticipate peak 222 

occurrence (in Figure S4 of the SI coloured vectors, showing the median of the peak’s date per 223 

GIM, are constantly indicating earlier dates than the observed peaks i.e. the black vector). In 224 

particular, in the north peaks occur from March to May, whereas models show a systematic 225 

shift of approximately one month earlier, with peaks occurring from February to April. In the 226 

south peaks occur from February to March (April), whereas models systematically anticipate 227 

occurrences to February with a few exceptions. In addition to clear time shifts of one or two 228 

months, at some sites modelled peaks occur in absence of corresponding observed peaks. 229 

 230 
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Figure 2 231 

 232 

This modelled-observed comparison provides insight for creating a constrained ensemble 233 

version (cE) – detailed in Section 3.2 – obtained by excluding models that capture poorly the 234 

timing of observed peak flows, which proved to be a suitable discriminant factor. 235 

3. Methods 236 

3.1. Statistical analysis framework 237 

This section describes the statistical framework used to assess changes in future floods and 238 

their uncertainty. Firstly (Section 3.1.1), we present the Bayesian hierarchical model used to 239 

analyse the flood peaks, and secondly (Section 3.1.2), we provide further detail on Bayesian 240 

inference and hierarchical models. 241 

3.1.1. Modelling of extreme values 242 

The relationship between the frequency and magnitude of high flows (Flood Frequency 243 

Analysis, FFA) is assessed often by estimating a statistical distribution for annual maxima. 244 

Although extreme value theory indicates that the Generalized Extreme Value (GEV) 245 

distribution should be the limiting distribution of annual maxima (see Coles [2001]), the 246 

suitability of specific distributions for a given peak flow record is a topic of active research, 247 

and different distributions are recommended as standard in different countries: e.g., LP-III for 248 

the United States [England Jr. et al., 2018], GLO for the UK [Institute of Hydrology, 1999], 249 

and more recently the Burr has been suggested for Canada [Zaghloul et al., 2020]. 250 

For the purpose of this investigation, runoff outputs of grid cells located at corresponding 251 

gauging stations are used as the variable of interest, thus mimicking an at-site analysis. For each 252 

grid-cell a Gumbel distribution with a specific time-dependent model presented below is 253 
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employed. The Gumbel distribution, which corresponds to a GEV distribution when the shape 254 

parameter tends to 0, has a long history of application for the FFA and it is used routinely 255 

[Castellarin et al., 2012; Bertola et al., 2019]. With the aim of identifying changes in the 256 

distribution of annual maxima, a simpler two-parameter distribution was preferred to avoid the 257 

hurdle of correctly estimating shape parameters, which are highly variable [Papalexiou and 258 

Koutsoyiannis, 2013] and arguably of little interest in the context of our analysis, especially 259 

considering that we do not wish to estimate actual design events of rare frequency. The Gumbel 260 

distribution was found to fit the data well (as in e.g., [Hirabayashi et al., 2008; Lim et al., 2018]) 261 

and was therefore adopted as the parent distribution for the grid runoff outputs. Its probability 262 

density function (pdf) is defined as: 263 

1

𝜃
𝑒𝑥𝑝{−

𝑥−𝜉

𝜃
− 𝑒𝑥𝑝{−

𝑥−𝜉

𝜃
}}    [1] 264 

where ξ∈𝑅 denotes the location parameter and θ∈𝑅+ denotes the scale parameter. 265 

Rather than fitting separate Gumbel distributions to each model run (as in e.g. Dankers 266 

et al. [2014]; Alfieri et al. [2018]), a hierarchical approach in which data from all runs are 267 

modelled together is employed. This allows for a clear partition of the variance of data into 268 

different components, thus highlighting the contribution from the GCM and the GIM 269 

components and their interaction to total variability: this gives an indication of the major source 270 

of uncertainty in the understanding of future high flows. Moreover, by modelling all data 271 

together, it is possible to obtain an estimate of the overall difference between the future runs 272 

and the historic runs across all model runs. Figure 3 outlines the key components and steps of 273 

the statistical framework used in this study: for the 45 time series of historical and future flow 274 

(resulting from the combination 9 GIMs and 5 GCMs) a unique model is estimated and 275 

measures of future changes and of the contribution of the GCM and GIM components to the 276 

overall variability are derived. The model assumes that the data (both present and future) follow 277 
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a Gumbel distribution in which the scale parameter is the same in both time windows while the 278 

location parameter is allowed to take two different values: one for the historical and one for the 279 

future periods – while it is assumed to be constant within each time period. This is in line with 280 

the non-stationary extreme value analysis literature where models in which the location, rather 281 

than other parameters, is allowed to change are common – see Salas et al., (2018) and references 282 

therein. Indeed models that attempt to explain changes in the distribution of extremes by 283 

allowing higher order parameters to vary are rarer than models in which the location is allowed 284 

to change: higher order parameters tend to be more variable and therefore harder to estimate 285 

accurately, especially when the samples under study are not very large. The accurate estimation 286 

of models, which allow for more structure in the scale parameters, would require very large 287 

samples and very sizeable changes in the scale parameters. The model structure was determined 288 

by a model selection procedure outlined in Section S3.1 following Vehtari et al. [2017]: while 289 

models of increasing complexity were used for both the location and the scale parameter, the 290 

final model presented below adopts a more complex model for the location parameter and a 291 

relatively simple form for the scale parameter. 292 

 293 

Figure 3 294 

 295 

More formally, let yi,j,k,h be the hth annual maximum flow value obtained from the ith 296 

GCM combined with the jth GIM, which results in the kth GCM-GIM combination. Since all 297 

GCMs feed every GIM there are 5 × 9 = 45 combinations of GCM-GIM output. 298 

It is assumed that yi,j,k,h follow a Gumbel distribution: yi,j,k,h ~ Gumbel(ξi,j,k,h,θi,j) where 299 

the following model structures have been assumed for, respectively, the location and scale 300 

parameter: 301 

ξi,j,k,h = α + αgcm,i + αgim,j + αcomb,k +  302 
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+ β ∗ I[36,70] (h) + βgcm,i ∗ I[36,70] (h)+ βgim,j ∗ I[36,70] (h)+ βcomb,k ∗ I[36,70] (h)  [2.a] 303 

θi,j = exp{γ + γgcm,i + γgim,j}         [2.b] 304 

with i=1,…,5, j=1,…,9, k=1,…,45 , and h=1,…,70. I[36,70] (h) is an indicator variable that takes 305 

value 0 when the data point is in the historical period (i.e. 1≤h≤35) and 1 in the future period 306 

(i.e. 35<h≤70). The α. parameters indicate the intercept for the location, the β. parameters 307 

indicate the time-effect for the location and the γ. parameters indicate the intercept for the scale.  308 

The parameter α in equation [2.a] represents the overall population-level value for the 309 

intercept parameter of the location across all model combinations. To accommodate the 310 

variability across the different models three group-specific terms have been included: αgcm,i to 311 

allow for the variability across the GCMs; αgim,i to allow for the variability across the GIMs; 312 

and αcomb,k to allow for the variability across each GCM and GIM combination. By comparing 313 

the different values of σ2
α,gcm, σ2

α,gim, and σ2
α,comb, it is possible to assess which grouping variable 314 

explains the largest proportion of variability (i.e. uncertainty) in the runoff values. Notice that 315 

the factor describing the combination of GCM and GIM is only included for the location 316 

parameter model. The inclusion of this factor has been found to improve the fit of the model 317 

prediction to the data, and was deemed useful to describe the interaction between different 318 

GIMs (applied to different areas of the continent and which might require different input 319 

variables) and the GCMs, which reproduce the different climate components in a very different 320 

fashion. The interaction between the two factors can be already guessed in Figure 2a, in which 321 

clusters of estimated design events are not fully explained by the GIM or the GCM under which 322 

the data was generated, but exhibit some further variability. 323 

The parameter β represents the overall population-level change in location parameter 324 

when moving from the historic period time window to the future time window. The parameter 325 

quantifies the overall average difference between the location parameter in the two time periods 326 

across all model combinations. The βgcm,i, βgim,j, and βcomb,k are group-specific effects that allow 327 
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for each GCM and GIM and combination to have a different slope (i.e. a different location value 328 

in the two time windows) from the overall population-wide time-window effect β. The relative 329 

contribution of each component on the time effect for the location of the distribution is assessed 330 

by comparing the variance of the group-level slopes. The model structure for the scale 331 

parameter in equation [2.b] is simpler than the one for the location parameter as it considers 332 

only the intercept (while the location also considers the slope) and two group-level parameters 333 

γgcm,i and γgim,j that allow for the group-wise variation around the overall population-level γ. 334 

Note that an exponential link function is employed in the scale parameter model to ensure that 335 

the function only takes positive values. The population-level parameters (in this model α, β and 336 

γ) can be referred to as fixed effects, while the group-level parameters (in this model αgcm,i, αgim,j, 337 

αcomb,k, βgim,i, βgcm,j, βcomb,k, γgcm,i,γgim,j) can be referred to as random effects, assumed as normally 338 

distributed and with common variance. We use a Bayesian approach to the estimation of the 339 

model parameters (see Section 3.1), in which all model parameters are viewed as random 340 

variables therefore the terminology of population-level and group-level parameter is preferred 341 

[Gelman et al., 2013]. 342 

3.1.2. Bayesian Hierarchical model 343 

The model structure presented in equations [2] is that of a multilevel model in which the 344 

annual maxima within a level (group) of a grouping variable (e.g. peak flows generated with 345 

the same underlying GIM) shares a common feature and have greater within-group similarity 346 

with respect to peak flows from the other groups. Thus, the variation in the data are decomposed 347 

into the individual observation variation and the variation of the levels of each grouping 348 

variable. These types of models are called hierarchical models, multilevel models or random-349 

effect models and have enjoyed a great success in several fields of application (see Gelman and 350 

Hill [2006]). For instance, Northrop and Chandler [2014] proposed the use of multilevel model 351 
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to quantify the sources of uncertainty in climate projections, highlighting the connection 352 

between the multilevel approach and the ANOVA approach used in e.g., Yip et al., [2011]. 353 

A Bayesian approach allows for a straightforward estimation of multilevel models in 354 

which all uncertainties can be properly taken into account (see Gelman et al. [2013]). A 355 

schematic form of the hierarchical structure of the statistical model employed is outlined in 356 

Figure 4. 357 

Taking y=(y1,1,1,1,…,y5,9,45,70) to represent the vector of all annual maxima and 358 

η=(α,β,γ,αgcm,αgim,αcomb,βgim,βgcm,βcomb,γgcm,γgim) to represent the vector of all model parameters, 359 

by virtue of Bayes’ rule we have:  360 

p(η|y) ∝ p(y|η)*p(η)       [ 3 ] 361 

where p(y|η) is the model for the distribution of the data conditional on the parameter η (i.e. 362 

 363 

Figure 4 364 

 365 

the Gumbel distribution with a model structure specified in equations [2.a] and [2.b]) and p(η) 366 

is the prior distribution of η which needs to be specified and which encodes the beliefs about 367 

the distribution of the model parameters before any data is taken into account. Finally, p(η|y) is 368 

the posterior distribution of η conditional on the annual maxima y: this represents the 369 

understanding of the distribution of the model parameters after the available data has been taken 370 

into account and is typically the quantity of interest in Bayesian inference. 371 

Given the hierarchical multilevel structure of the model, a further layer of hyper-372 

parameters (ϕ) that characterizes the prior distribution p(η) needs to be specified so that p(η) ∝ 373 

p(η|ϕ)*p(ϕ). Here ϕ is the vector of the variances of the random effects: ϕ = (σα , σβ , σγ). By 374 

applying again Bayes’ rule we have that: 375 
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p(η,ϕ|y)∝p(y|η,ϕ)*p(η|ϕ)*p(ϕ)     [ 4 ] 376 

where p(η,ϕ|y) denotes the posterior joint distribution of the model parameter and the hyper-377 

parameters, which is the quantity of interest in Bayesian multilevel models. The posterior 378 

distribution p(η,ϕ|y) cannot be obtained in a closed form and therefore needs to be estimated, 379 

typically using Montecarlo approaches in which the distribution is derived using a computer-380 

simulation. In particular Stan [Stan Development Team, 2017], a state of the art probabilistic 381 

programming language for statistical modelling, was used to derive the posterior distribution 382 

for the parameters of the model presented in equation [2.a] and [2.b] and the hyperparameters 383 

defining their distributions. A sample Stan code employed in the estimation procedure is 384 

provided in Section S3.3 of the SI – the code was derived from the brms R package [Bürkner, 385 

2017]. 386 

Following the recommendations in Gabry et al. [2019] informative priors were used for 387 

the hyper-parameters in the model and their suitability was verified via prior-predictive checks: 388 

using very wide, i.e. uninformative, priors can results in excessively variable data. In particular, 389 

prior distributions were determined using information on the time series of each grid cell (i.e., 390 

sample mean and standard deviation). The sensitivity of the model estimates to the prior was 391 

investigated by attempting to estimate the models under study using several prior specifications. 392 

The model estimation was found to be mostly insensitive to different prior choices, provided 393 

that informative priors, which limit the potential variability of the data generating process, are 394 

used. The specification on the prior distributions can be found in Section S3.2. 395 

Although the use of multilevel models to partition the variability of modelled climate 396 

variables [Northrop and Chandler, 2014] has already been proposed, the uptake of these 397 

methods in the literature has been minor. In this work we advocate that their use can deliver 398 

key information using a unified model: the overall direction of change and the information of 399 

which component of the modelling chain contributes the most to the signal variability. The 400 
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computational burden connected to the implementation of these models has been greatly 401 

reduced by the availability of general purpose efficient probabilistic programming languages 402 

such as Stan, allowing for a fast and stable implementation of more informative models. 403 

3.2. Constraining the ensemble 404 

As stated in Section 1, we create a constrained ensemble (cE) at each site by excluding models 405 

that simulate observed peak flow characteristics poorly. Forming this ensemble requires a level 406 

of informed subjectivity and is hindered by the striking discrepancies between observed and 407 

modelled values. Indeed, in Figure 2a, it would be expected that model data in the historical 408 

period (in black) overlaps the confidence interval (grey band) of the observed data, whereas in 409 

the majority of cases this hardly occurs (see Figure S1 and Figure S2 in the SI). A model 410 

selection based on return levels rejects the vast majority of models and constitutes, perhaps, an 411 

overly stringent criterion. It should be noted that this ground-truthing effort is carried out on 412 

total (surface plus subsurface) unrouted runoff, so models cannot be expected to replicate 413 

accurately the actual quantities observed at the streamflow gauges [Gudmundsson et al., 2012; 414 

Giuntoli et al., 2015a]. Furthermore, it has been emphasized how the model’s capacity to 415 

simulate flood timing is an important metric to represent flood generation processes [Collins, 416 

2019; Do et al., 2020]. Therefore, we constrain the ensemble on the basis of how well peak 417 

flow timings are simulated in the control period. To do this, we use two metrics to compare 418 

observed and modelled peak counts: i) the distance between the proportion of seasonal counts 419 

of observed and modelled peaks ii) RMSE (root mean squared error) of counts. The steps for 420 

identifying and excluding GIM-GCM combinations (45) at each site are detailed below. 421 

1. Observed peak timings are sorted into four seasons (DJF, MAM, JJA, SON), and 422 

constitute the reference. For example, the site in Figure 5 over the 35 years the peaks 423 

amount to: 10 in DJF, 19 in MAM, 5 in JJA, 1 in SON. 424 
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2. Same as step 1 for simulated peak timings. For example, the site in Figure 5, for the 425 

JUL GIM fed by the HAD GCM peak counts are: 7 in DJF, 7 in MAM, 12 in JJA, 9 in 426 

SON. Note that the comparison is done on the GIM-GCM combination output. 427 

3. Counts in step 1 (observed) and step 2 (modelled) are expressed in percentage. A 428 

negative score is assigned to those GIM-GCM combinations whose proportion is more 429 

than 20% apart from the observed proportion. For example, counts of step 1 are: DJF = 430 

28.6%, MAM = 54.3%, JJA = 14.3%, SON = 2.9%; while counts of step 2: DJF = 20%, 431 

MAM = 20%, JJA= 34.3%, SON = 25.7%. In this case there are three negative scores 432 

with distances above the 20% threshold: MAM-dist = |54.3-20| = 34.3, JJA-dist = |14.3-433 

34.3| = 20, SON-dist = |2.9-25.7| = 22.8. 434 

4. Negative scores described in step 3 are counted for all combinations i) in row for 435 

excluding GIMs when the negative score is assigned to at least 10 out of 20 season count 436 

records (i.e., half of the cases); ii) in column for excluding GCMs when the negative 437 

score is assigned to at least 18 out of 36 season count records (i.e., half the cases). 438 

5. We consider the RMSE (root mean squared error) comparing the vector of seasonal 439 

peak counts (step 2) for each GIM in row (of length 5) and each GCM (of length 9) to 440 

a vector formed by the observed data counts (step 1) replicated to match the vector 441 

length to be compared to. 442 

6. The threshold value of acceptance for the RMSE is set to the 90th percentile of all 443 

comparisons (11.1); model combinations above it in any of the seasons are thus 444 

excluded from the constrained ensemble. 445 

Meeting any of the two conditions, i.e. distance between the proportion of seasonal counts 446 

and RMSE, yields exclusion of the model from the ensemble.  447 

In Figure 5 peak timing distances and exclusions are shown for station 70165: negative 448 

(positive) overshoots, denoted as “U/O” (under/over) are depicted in red (blue). Upon 449 
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threshold crossing, model exclusions are denoted with “X” on the lower left the GIMs, on 450 

the lower right the GCMs. For instance, the Jules GIM is excluded because its series have 451 

seasonal proportion of peaks that are distant from that of observations more than 10 times 452 

(one time in DJF, five in MAM, one in JJA, and five in SON); it also crosses the RMSE 453 

threshold in MAM and SON. At the same time, the MIROC GCM, is not excluded for 454 

distance counts but because it has a RMSE above threshold in MAM. Plots for all sites are 455 

shown in SI Figures S5 (northern sites) S6 (southern sites) S7 (two sites excluded), with the 456 

cE composition summarised in Table S4. 457 

 458 

Figure 5 459 

 460 

4. Results 461 

The at-site change in magnitude of future annual maxima (as outlined on the right-hand side of 462 

Figure 3) are illustrated in Figure 6 as changes in the estimate location parameter of the Gumbel 463 

distribution, i.e. the difference between the future (2065-2099) and the historical (1971-2005) 464 

periods. Secondly, Figure 7 illustrates the corresponding uncertainty contribution coming from 465 

GIMs (green), GCMs (yellow), and their interaction (grey), shown as boxplots of the random 466 

effects’ standard deviation posterior sample. Table 1 summarizes overall direction of changes 467 

in magnitude and the corresponding dominant source of uncertainty (based on details in Figure 468 

6 and Figure 7). Finally, we discuss results using a constrained ensemble (cE) obtained by 469 

reducing the full ensemble (oE) having compared modelled and observed metrics – as detailed 470 

in the previous Section 3.2. 471 
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4.1. Full ensemble 472 

Our finding demonstrates clear spatial variability that characterizes changes in the annual 473 

maxima (Figure 6). As it is the case for other extremes like precipitations, changes in AMax 474 

are unlikely to be uniform across even small geographic areas [Schoof and Robeson, 2016]. 475 

Nevertheless, the changes in flood magnitude (Figure 6) over the 18 sites considered herein do 476 

show some consistent regional patterns. Starting from the South, with the exception of one 477 

location (21320) with no predominant sign of change, all nine southern locations (south of 478 

parallel 36N) show a negative change, with one that is significant (95% credibility intervals all 479 

lie below zero). This indicates a consensus of the models on a general decrease in future flood 480 

magnitude over the southeast United States, a result that is consistent with other regional studies 481 

using global model projections [Naz et al., 2016]. Conversely, for the other nine locations in 482 

the northern half of the domain, there is no clear pattern of change, although a consensus exists 483 

among models at some locations like sites 68115 in the west and 31595 in the east, which 484 

exhibit spiked pdfs with higher π(β) values. 485 

 486 

Figure 6 487 

 488 

Wider pdf in the southern and northernmost locations, may be the result of increased model 489 

spread that can be explained by the difficulties in simulating evaporation and recharge processes 490 

in semi-arid zones and wetlands of the south [Trigg et al., 2016]; and by the high uncertainty 491 

in simulating ice and snowmelt processes, the GIMs especially, in the North (e.g., the sites in 492 

the northern Midwest) [Giuntoli et al., 2015a]. 493 

The uncertainty in the changes coming from the GIMs, the GCMs or the interaction 494 

between both are shown in Figure 7, while in Table 1, as a summary, the major source of  495 
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 496 

Figure 7 497 

Table 1 498 

 499 

uncertainty is coloured depending on the distance from the other sources, that is bright (pale) 500 

coloured when there is low (high) overlap. A striking feature is that if there is a clearly dominant 501 

source (i.e. little overlap with a boxplot distinct from the other two), this source is always the 502 

GIMs and it happens there where the changes have the largest spreads (i.e. wide pdf). This may 503 

be explained both by the aforementioned difficulties of the GIMs in simulating runoff and by 504 

the GCMs’ uncertainty being at least partly attenuated by the bias correction they all underwent 505 

prior to feeding the GIMs [Hagemann et al., 2013]. Also, the presence of a GCM uncertainty 506 

dominated southwest-northeast band indicates that the locations situated more inland, are less 507 

driven by GIM uncertainty, perhaps for being less exposed to ice-cold winters as in the north 508 

or atmospheric circulation patterns originating in the Atlantic as in the southeast. Overall, the 509 

major effects are mostly explained by the GCM and GIM sources while the remaining effects 510 

are explained, at least partly, by the combination between the two sources (in grey), which is 511 

smaller in the majority of cases. This is to be expected and points to the validity of the statistical 512 

model employed. In fact, with an inadequate model the combination source might explain most 513 

of the random effects, leaving little uncertainty to the main sources (GIMs and GCMs). 514 

Given the complexity of the mechanisms driving floods at the regional scale, unravelling 515 

the causes of the different magnitudes or the directions of change in different models remains 516 

elusive. If on the one hand GCMs are responsible for regional runoff biases due to uncertainties 517 

in the representation of precipitation and sub-grid soil infiltration and flow; on the other hand 518 

the GIMs’ total runoff include contributions from surface runoff – function of saturation and 519 

infiltration excess – and subsurface runoff – function of impermeable area and water table depth 520 
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[Kooperman et al., 2018]. For instance, throughout the domain of study portions of Texas, 521 

Louisiana, Kansas, Missouri, and Iowa are more likely dominated by infiltration excess runoff; 522 

on the other hand saturation excess runoff is more likely in the southeast (e.g., Florida, south 523 

Georgia) and coastal areas of the Great Lakes region [Buchanan et al., 2018]. The prevalence 524 

of infiltration (IE) or saturation (SE) excess runoff depends on the type of soil and its capacity 525 

to become saturated / infiltrate. A sandy soil in the southeast will yield a higher flux (i.e., will 526 

transmit water faster) than a clayey soil under a given hydraulic gradient, reducing the effects 527 

of high-intensity precipitation. While runoff generation plays a role in flood generating 528 

processes and therefore in models simulation spread, it should be noted that all nine GIMs 529 

consider SE only, except three (PCRGlobWB, MATSIRO, and JULES) that also consider IE in 530 

their runoff schemes (as noted in Table S2 of the SI). Over the eastern half of the United States, 531 

this may represent a limitation provided that a considerable share of the area is IE dominated, 532 

and therefore capturing the precipitation intensity dependence does matter in generating floods. 533 

4.2. Constrained ensemble 534 

As seen in Section 2.1, runoff annual maxima from global models differ systematically 535 

from observed data in terms of distribution and medians. With only few exceptions, the majority 536 

of the models struggle to reproduce return period point and confidence estimates of observed 537 

AMax even at time spans for which extrapolations are relatively small, i.e. return period of 30 538 

years. For this reason, the constrained ensemble (cE) was based on model adequacy in 539 

simulating timing of peak flows throughout the year. Thus, model selection is carried out at-540 

site excluding GIMs and GCMs with considerable departures from observed seasonal peak 541 

counts. This yields constrained sets that comprise on average 55% of the members of the full 542 

ensemble (see Table S4). It should be noted that while three sites have equal oE and cE 543 

configurations as they underwent no member exclusions, two sites have no cE version as they 544 

were left with too few members (zero or one, as shown in Figure S7). 545 
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In constraining the ensemble, the exclusion of GCMs is generally widespread across the 546 

domain of study, with the MIROC-ESM-CHEM and NorESM1-M models being excluded more 547 

often. GIMs are excluded more in the northern stations than in the southern ones (approximately 548 

2 vs 3 exclusions average, respectively out of 9), this can be explained by the increased 549 

difficulty in simulating cold climates processes like snowmelt and ice formation. More 550 

specifically, the H08 and JULES GIMs are the more often excluded across the whole domain, 551 

and LPJmL in the northern stations. Interestingly, H08 and JULES are GIMs that try to close 552 

the energy balance and have shown, under a different setup, larger temporal lags in timing of 553 

peak flows compared to GIMs that do not close the energy balance [Giuntoli et al., 2015a]. 554 

Also, JULES and LPJmL simulate CO2 dynamics while the other models do not [Davie et al., 555 

2013] and their runs show a wet bias along with an over (under) -estimation of flood peaks in 556 

the winter (spring) period in the north of the United States. Indeed, simulating plant 557 

physiological responses to rising CO2 can yield considerably different results as higher CO2 558 

can reduce stomatal conductance and transpiration, which may lead to increased soil moisture 559 

and runoff in some regions, favouring flooding even without changes in precipitation 560 

[Kooperman et al., 2018].  561 

Are results affected by the different composition in the GIM/GCM matrix of the cE with 562 

respect to the oE? Changes in flood magnitude obtained with the cE (Figure 6, in fluorescent 563 

green) are similar to those of oE with a consensus on negative change in the south of the domain, 564 

while the few positive changes actually increase (e.g. the stations in the northwest of the 565 

domain). Constraining the ensemble at-site yields essentially the same results as using the whole 566 

ensemble, although using almost half the runs. A slight change is noticeable in the shape of the 567 

pdfs, which tends to be less concentrated (smoother peaks), as if more members of the oE 568 

increase confidence in the estimate. 569 
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If the changes in magnitude remain similar in oE and cE, as the cE is composed by fewer 570 

members, this is reflected in the different contributions to uncertainty, with boxplots that tend 571 

to become wider, especially the GCM ones (Figure 7). In the oE, the northern and southern sites 572 

are GIM dominated (Figure 7 and Table 1); while for cE, this predominance tends to lose 573 

strength in favour of the GCM, especially in the very north of the domain, consistent with 574 

Giuntoli et al. [2018]. Interestingly, never do GCM dominated sites become GIM dominated 575 

indicating that constraining the ensemble tends to reduce more the GIM than the GCM 576 

contribution to uncertainty, although the boxplots are often quite wide, resulting perhaps from 577 

fewer runs employed on average. 578 

5. Discussion and wider implications 579 

The inherent tendency to disagree on the absolute value or on the sign of projected changes 580 

of climate variables like precipitation and runoff in global model runs adds to the fact that 581 

generally these runs do not match observations well [Do et al., 2020]. Therefore, estimates of 582 

future precipitation and runoff changes suffer from large uncertainty and from a signal that may 583 

be cancelled out as different model simulations are averaged to generate a final value that is 584 

often taken as the ensemble mean (e.g. [Dankers et al., 2014; Wobus et al., 2017; Ragno et al., 585 

2018]). 586 

The aim of this paper was to propose a novel framework that allows for estimating the 587 

changes in future flood magnitude with the signal of the direction of change expressed as the 588 

distribution of the overall change rather than the ensemble mean. We quantified these changes 589 

modelling the extreme values parameters using all multi-model ensemble simulations (GCM-590 

GIM) at once, and characterizing the uncertainty from both GCMs and GIMs as the variations 591 

of the random effects. Our approach was tested for selected locations of the eastern half of the 592 

United States of America: a region chosen to assess modelled and observed data effectively 593 
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because catchments are relatively free from anthropogenic disturbances and basin sizes are 594 

comparable with those of the model grid-cells. 595 

We revealed spatial patterns of change in future flood magnitudes over the eastern half of 596 

the USA, showing a general decrease in the southeast. We found that with our data set the 597 

extreme value distribution’s parameter that changes between historical and future periods is the 598 

location, while the scale can be left fixed. 599 

Although an increase in flooding has been documented in parts of the Midwest and from 600 

the northern Appalachian Mountains to New England, overall there is no clear sign of change 601 

in the area of study over the last few decades [Villarini and Smith, 2010; Mallakpour and 602 

Villarini, 2015; Archfield et al., 2016; Berghuijs et al., 2016; Hodgkins et al., 2017]. All the 603 

while, model projections indicate a reduction in flood magnitude towards the end of this century 604 

in the southeast of the United States. The signal remained the same even using fewer runs 605 

(~45%) deemed more credible, with the ensemble constrained using historical runoff, cE (as in 606 

e.g. [Yang et al., 2017]). 607 

There is a clear pattern southwest-northeast in which GCMs dominate uncertainty, while in 608 

the northwest and the southeast GIMs are the predominant factor reflecting their increased 609 

challenge in reproducing runoff under more complex storage-release processes (like ice-cold 610 

conditions in the north and increased evaporation and aquifer dynamics in the south). The 611 

uncertainty depicted by our results indicates that the composition of multi-model ensembles 612 

should be tailored to the region of analysis, favouring a rich set of GIMs while assessing floods 613 

in the south of the domain, and a rich set of GCMs in the central part of the domain. 614 

Constraining the ensemble produced similar partitions of uncertainty, with a few sites becoming 615 

GCM-dominated (from GIM-dominated in the full ensemble). Prioritizing better models does 616 

not necessarily reduce the uncertainty in the projections, but it does increase our confidence 617 
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when results are based on models that simulate relevant aspects of the current climate more 618 

realistically [Knutti et al., 2017].  619 

While global models are not expected to reach the same level of accuracy of e.g. catchment-620 

calibrated models in reproducing flood characteristics, devising rules for selecting them helps 621 

to improve their credibility. Among the many possible rules, in this instance we opted to 622 

constrain the ensemble measuring the ability of models to reproduce the seasonality of flows. 623 

This choice was in part dictated by the fact that flow magnitude are mostly not well reproduced 624 

in the model outputs, therefore prioritizing models by this characteristic would yield an 625 

ensemble with too few members. In fact, we argue that global model evaluation against 626 

observed data is an essential step while carrying out continental to global scale studies. This is 627 

important because global models are increasingly challenged to provide information for 628 

planning and decision making, as reported by the EDgE Project [Samaniego et al., 2020], which 629 

has shown promise in the application of water-related climate services for decision making. 630 

The difficulty of interpreting complex non-linear multi-model combinations in physical 631 

terms cannot be overemphasized. There are indeed multiple flood generating mechanisms in 632 

the domain of study and it is beyond the scope here to associate results in the occurrence of 633 

major floods at each site of the domain as seen with context-specific hydrological processes. 634 

Discerning which models simulate best which type of floods would require an in-depth study 635 

treating one model at a time and the validity of an assessment at a given catchment size may 636 

not apply to smaller or larger sizes [Wasko and Sharma, 2017]. 637 

Bayesian hierarchical models (like the one we apply herein) provide a valuable alternative 638 

to make use of numerous model runs in a robust and transparent way. Unlike previous studies, 639 

our methodology explicitly describes the overall signal of all runs, as opposed to the ensemble 640 

mean, thus minimizing loss of information and allowing at the same time a seamless 641 

partitioning the uncertainty. 642 
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Work in the direction of making the best use of ensemble runs will benefit from exploiting 643 

newer runs from ensemble experiments and from assessing historical performance using 644 

additional observation data sets (i.e., ground measurements like streamflow data or satellite and 645 

reanalysis data). Improving projections of future flood risk will happen also through the 646 

improvement in the representation of plant processes like plant growth and stomatal 647 

conductance response to CO2. Finally, a coveted step towards flood projections improvement – 648 

though a difficult step to implement everywhere due to lack of data – is the inclusion of water 649 

management and abstraction into global model simulations. An example of the importance of 650 

this aspect is the decrease over the last few decades in water retention capability (i.e. the fraction 651 

of precipitation lost by evapotranspiration decreased in favour of runoff) observed over eastern 652 

North America (among other regions of the world) that was not reflected in CMIP5 model runs, 653 

highlighting the importance of direct human intervention impacts, which strongly affects runoff 654 

estimates [Yang et al., 2018; Abbott et al., 2019]. The inclusion in global models of human 655 

interventions on water resources like irrigation, new dam construction, and stream channelling 656 

is a necessary step to improve the simulation of current and future hydrological processes over 657 

a great portion of the planet and would certainly benefit the estimates of hydrological extremes.  658 

Importantly, research efforts should go into finding ways to make the best use of the global 659 

model runs in order to produce the best possible estimates of future changes [Brunner et al., 660 

2019], adopting statistical frameworks that retain effectively the information and the 661 

representativeness of all model runs employed. 662 

6. Acknowledgements 663 

We thank the land-surface and hydrology modelling groups participating to the ISI-MIP 664 

Project, whose model output was used in this study. The ISI-MIP Fast-Track dataset is available 665 

upon request following the instructions provided at the url www.isimip.org/gettingstarted/data-666 

http://www.isimip.org/gettingstarted/data-access/


29 

access/. The observed (streamflow gauges) data are openly available via the url: 667 

http://waterdata.usgs.gov/nwis/sw. IG’s contribution was funded by a postdoctoral research 668 

associateship at the University of Birmingham, UK. 669 

References 670 

Abbott, B. W. et al. (2019), A water cycle for the Anthropocene, Hydrol. Process., 33(23), 671 

3046–3052, doi:10.1002/hyp.13544. 672 

Abramowitz, G., N. Herger, E. Gutmann, D. Hammerling, R. Knutti, M. Leduc, R. Lorenz, R. 673 

Pincus, and G. A. Schmidt (2019), ESD Reviews: Model dependence in multi-model 674 

climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dyn., 675 

10(1), 91–105, doi:10.5194/esd-10-91-2019. 676 

Alfieri, L., P. Burek, L. Feyen, and G. Forzieri (2015), Global warming increases the frequency 677 

of river floods in Europe, Hydrol. Earth Syst. Sci., 19(5), 2247–2260, doi:10.5194/hess-678 

19-2247-2015. 679 

Alfieri, L., F. Dottori, R. Betts, P. Salamon, and L. Feyen (2018), Multi-Model Projections of 680 

River Flood Risk in Europe under Global Warming, Climate, 6(1), 6, 681 

doi:10.3390/cli6010006. 682 

Ansari, A. R., and R. A. Bradley (1960), Rank-Sum Tests for Dispersions, Ann. Math. Stat., 683 

31(4), 1174–1189. 684 

Archfield, S. A., R. M. Hirsch, A. Viglione, and G. Blöschl (2016), Fragmented patterns of 685 

flood change across the United States, Geophys. Res. Lett., 43(19), 10,232-10,239, 686 

doi:10.1002/2016GL070590. 687 

Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan (2016), Dominant flood 688 

generating mechanisms across the United States, Geophys. Res. Lett., 1–9, 689 

doi:10.1002/2016GL068070. 690 

http://www.isimip.org/gettingstarted/data-access/


30 

Bertola, M., A. Viglione, and G. Blöschl (2019), Informed attribution of flood changes to 691 

decadal variation of atmospheric, catchment and river drivers in Upper Austria, J. Hydrol., 692 

577, 123919, doi:10.1016/j.jhydrol.2019.123919. 693 

Bosshard, T., M. Carambia, K. Goergen, S. Kotlarski, P. Krahe, M. Zappa, and C. Schär (2013), 694 

Quantifying uncertainty sources in an ensemble of hydrological climate-impact 695 

projections, Water Resour. Res., 49, n/a-n/a, doi:10.1029/2011WR011533. 696 

Brunner, L., R. Lorenz, M. Zumwald, and R. Knutti (2019), Quantifying uncertainty in 697 

European climate projections using combined performance-independence weighting, 698 

Environ. Res. Lett., 14(12), 124010, doi:10.1088/1748-9326/ab492f. 699 

Buchanan, B., D. A. Auerbach, J. Knighton, D. Evensen, D. R. Fuka, Z. Easton, M. Wieczorek, 700 

J. A. Archibald, B. McWilliams, and T. Walter (2018), Estimating dominant runoff modes 701 

across the conterminous United States, Hydrol. Process., (September), 1–10, 702 

doi:10.1002/hyp.13296. 703 

Bürkner, P.-C. (2017), brms : An R Package for Bayesian Multilevel Models Using Stan, J. 704 

Stat. Softw., 80(1), doi:10.18637/jss.v080.i01. 705 

Camici, S., L. Brocca, F. Melone, and T. Moramarco (2014), Impact of Climate Change on 706 

Flood Frequency Using Different Climate Models and Downscaling Approaches, J. 707 

Hydrol. Eng., 19(8), 04014002, doi:10.1061/(ASCE)HE.1943-5584.0000959. 708 

Castellarin, A., S. Kohnova, L. Gaal, A. Fleig, J. L. Salinas, A. Toumazis, T. R. Kjeldsen, and 709 

N. Macdonald (2012), Review of applied-statistical methods for flood-frequency analysis 710 

in Europe, NERC/Centre for Ecology & Hydrology, Wallingford. 711 

Clark, M. P. et al. (2015), Improving the representation of hydrologic processes in Earth System 712 

Models, Water Resour. Res., 51(8), 5929–5956, doi:10.1002/2015WR017096. 713 

Coles, S. (2001), An introduction to statistical modeling of extreme values. 714 



31 

Collins, M. J. (2019), River flood seasonality in the Northeast United States: Characterization 715 

and trends, Hydrol. Process., 33(5), 687–698, doi:10.1002/hyp.13355. 716 

Crichton, D. (1999), The risk triangle, in Natural Disaster Management, edited by J. Ingleton, 717 

pp. 102–103, Tudor Rose, London. 718 

Dankers, R. et al. (2014), First look at changes in flood hazard in the Inter-Sectoral Impact 719 

Model Intercomparison Project ensemble., Proc. Natl. Acad. Sci. U. S. A., 111, 3257–3261, 720 

doi:10.1073/pnas.1302078110. 721 

Davie, J. C. S. et al. (2013), Comparing projections of future changes in runoff from 722 

hydrological and biome models in ISI-MIP, Earth Syst. Dyn., 4(2), 359–374, 723 

doi:10.5194/esd-4-359-2013. 724 

Deser, C., A. Phillips, V. Bourdette, and H. Teng (2012), Uncertainty in climate change 725 

projections: the role of internal variability, Clim. Dyn., 38(3–4), 527–546, 726 

doi:10.1007/s00382-010-0977-x. 727 

Do, H. X. et al. (2020), Historical and future changes in global flood magnitude -- evidence 728 

from a model--observation investigation, Hydrol. Earth Syst. Sci., 24(3), 1543–1564, 729 

doi:10.5194/hess-24-1543-2020. 730 

Dottori, F. et al. (2018), Increased human and economic losses from river flooding with 731 

anthropogenic warming, Nat. Clim. Chang., 20, 9039, doi:10.1038/s41558-018-0257-z. 732 

England Jr., J. F., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas Jr., A. G. Veilleux, 733 

J. E. Kiang, and R. R. Mason Jr. (2018), Guidelines for determining flood flow 734 

frequency—Bulletin 17C, in 4, p. 168, USGS, Reston, VA. 735 

Eyring, V. et al. (2019), Taking climate model evaluation to the next level, Nat. Clim. Chang., 736 

9(February), doi:10.1038/s41558-018-0355-y. 737 

François, B., K. E. Schlef, S. Wi, and C. M. Brown (2019), Design considerations for riverine 738 



32 

floods in a changing climate – A review, J. Hydrol., 574, 557–573, 739 

doi:10.1016/j.jhydrol.2019.04.068. 740 

Gabry, J., D. Simpson, A. Vehtari, M. Betancourt, and A. Gelman (2019), Visualization in 741 

Bayesian workflow, J. R. Stat. Soc. A, 182(Part 2), 389–402. 742 

Gelman, A., and J. Hill (2006), Multilevel structures, in Data Analysis Using Regression and 743 

Multilevel/Hierarchical Models, pp. 237–250, Cambridge University Press, Cambridge. 744 

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin (2013), Bayesian Data 745 

Analysis Third Edition, Chapman and Hall/CRC. 746 

Giuntoli, I., G. Villarini, C. Prudhomme, I. Mallakpour, and D. M. Hannah (2015a), Evaluation 747 

of global impact models’ ability to reproduce runoff characteristics over the central United 748 

States, J. Geophys. Res. Atmos., 120(18), 9138–9159, doi:10.1002/2015JD023401. 749 

Giuntoli, I., J.-P. Vidal, C. Prudhomme, and D. M. Hannah (2015b), Future hydrological 750 

extremes: the uncertainty from multiple global climate and global hydrological models, 751 

Earth Syst. Dyn., 6(1), 267–285, doi:10.5194/esd-6-267-2015. 752 

Giuntoli, I., G. Villarini, C. Prudhomme, and D. M. Hannah (2018), Uncertainties in projected 753 

runoff over the conterminous United States, Clim. Change, 150(3–4), 149–162, 754 

doi:10.1007/s10584-018-2280-5. 755 

Goodess, C. M. (2012), How is the frequency , location and severity of extreme events likely 756 

to change up to 2060 ?, Environ. Sci. Policy, 27, S4–S14, 757 

doi:10.1016/j.envsci.2012.04.001. 758 

Gudmundsson, L., T. Wagener, L. M. Tallaksen, and K. Engeland (2012), Evaluation of nine 759 

large-scale hydrological models with respect to the seasonal runoff climatology in Europe, 760 

Water Resour. Res., 48(11), W11504, doi:10.1029/2011WR010911. 761 

Hagemann, S. et al. (2013), Climate change impact on available water resources obtained using 762 



33 

multiple global climate and hydrology models, Earth Syst. Dyn., 4(1), 129–144, 763 

doi:10.5194/esd-4-129-2013. 764 

Hawkins, E., and R. Sutton (2009), The Potential to Narrow Uncertainty in Regional Climate 765 

Predictions, Bull. Am. Meteorol. Soc., 90(8), 1095–1107, doi:10.1175/2009BAMS2607.1. 766 

Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek (2013), A trend-preserving 767 

bias correction – the ISI-MIP approach, Earth Syst. Dyn., 4(2), 219–236, doi:10.5194/esd-768 

4-219-2013. 769 

Hirabayashi, Y., S. Kanae, S. Emori, T. Oki, and M. Kimoto (2008), Global projections of 770 

changing risks of floods and droughts in a changing climate, Hydrol. Sci. J., 53(4), 754–771 

772, doi:10.1623/hysj.53.4.754. 772 

Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, 773 

and S. Kanae (2013), Global flood risk under climate change, Nat. Clim. Chang., 3(9), 774 

816–821, doi:10.1038/nclimate1911. 775 

Hodgkins, G. A. et al. (2017), Climate-driven variability in the occurrence of major floods 776 

across North America and Europe, J. Hydrol., doi:10.1016/j.jhydrol.2017.07.027. 777 

Institute of Hydrology (1999), The Flood Estimation Handbook, 5 Volumes, Centre for Ecology 778 

and Hydrology, Wallingford. 779 

Jiménez Cisneros, B. E., T. Oki, N. W. Arnell, G. Benito, J. G. Cogley, P. Döll, T. Jiang, S. S. 780 

Mwakalila, Z. Kundzewicz, and A. Nishijima (2015), Freshwater Resources, in Climate 781 

Change 2014 Impacts, Adaptation, and Vulnerability, edited by C. B. Field, V. R. Barros, 782 

D. J. Dokken, K. J. Mach, and M. D. Mastrandrea, pp. 229–270, Cambridge University 783 

Press, Cambridge. 784 

Katz, R. W., P. F. Craigmile, P. Guttorp, M. Haran, B. Sansó, and M. L. Stein (2013), 785 

Uncertainty analysis in climate change assessments, Nat. Clim. Chang., 3(9), 769–771, 786 

doi:10.1038/nclimate1980. 787 



34 

Knutti, R. (2010), The end of model democracy?, Clim. Change, 102(3–4), 395–404, 788 

doi:10.1007/s10584-010-9800-2. 789 

Knutti, R., J. Sedláček, B. M. Sanderson, R. Lorenz, E. M. Fischer, and V. Eyring (2017), A 790 

climate model projection weighting scheme accounting for performance and 791 

interdependence, Geophys. Res. Lett., 44(4), 1909–1918, doi:10.1002/2016GL072012. 792 

Koirala, S., P. J.-F. Yeh, Y. Hirabayashi, S. Kanae, and T. Oki (2014), Global-scale land surface 793 

hydrologic modeling with the representation of water table dynamics, J. Geophys. Res. 794 

Atmos., 119(1), 75–89, doi:10.1002/2013JD020398. 795 

Kooperman, G. J., M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. 796 

L. S. Swann, and J. T. Randerson (2018), Plant Physiological Responses to Rising CO 2 797 

Modify Simulated Daily Runoff Intensity With Implications for Global‐Scale Flood Risk 798 

Assessment, Geophys. Res. Lett., 45(22), 12,457-12,466, doi:10.1029/2018GL079901. 799 

Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong 800 

(2012), Climate change: new dimensions in disaster risk, exposure, vulnerability, and 801 

resilience, in Managing the Risks of Extreme Events and Disasters to Advance Climate 802 

Change Adaptation, pp. 25–64. 803 

Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. 804 

Hawkins (2020), Partitioning climate projection uncertainty with multiple large ensembles 805 

and CMIP5/6, Earth Syst. Dyn., 11(2), 491–508, doi:10.5194/esd-11-491-2020. 806 

Lim, W. H., D. Yamazaki, S. Koirala, Y. Hirabayashi, S. Kanae, S. J. Dadson, J. W. Hall, and 807 

F. Sun (2018), Long-Term Changes in Global Socioeconomic Benefits of Flood Defenses 808 

and Residual Risk Based on CMIP5 Climate Models, Earth’s Futur., 6(7), 938–954, 809 

doi:10.1002/2017EF000671. 810 

Mallakpour, I., and G. Villarini (2015), The changing nature of flooding across the central 811 

United States, Nat. Clim. Chang., (February), 1–5, doi:10.1038/nclimate2516. 812 



35 

Massey, F. J. (1952), Distribution Table for the Deviation Between two Sample Cumulatives, 813 

Ann. Math. Stat., 23(3), 435–441. 814 

McSweeney, C. F., and R. G. Jones (2016), How representative is the spread of climate 815 

projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1, 24–29, 816 

doi:10.1016/j.cliser.2016.02.001. 817 

Merz, B. et al. (2014), Floods and climate: emerging perspectives for flood risk assessment and 818 

management, Nat. Hazards Earth Syst. Sci., 14(7), 1921–1942, doi:10.5194/nhess-14-819 

1921-2014. 820 

Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. 821 

Rasmussen (2018), Projected increases and shifts in rain-on-snow flood risk over western 822 

North America, Nat. Clim. Chang., 8(9), 808–812, doi:10.1038/s41558-018-0236-4. 823 

Naz, B. S., S.-C. Kao, M. Ashfaq, D. Rastogi, R. Mei, and L. C. Bowling (2016), Regional 824 

hydrologic response to climate change in the conterminous United States using high-825 

resolution hydroclimate simulations, Glob. Planet. Change, 143, 100–117, 826 

doi:10.1016/j.gloplacha.2016.06.003. 827 

Northrop, P. J., and R. E. Chandler (2014), Quantifying Sources of Uncertainty in Projections 828 

of Future Climate, J. Clim., 27(23), 8793–8809, doi:10.1175/JCLI-D-14-00265.1. 829 

Oppenheimer, M., M. Campos, and R. Warren (2014), Emergent risks and key vulnerabilities. 830 

In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 831 

Sectorial Aspects. Contribution of Working Group II to the Fifth Assessment Report of 832 

the IPCC, Cambridge Univ. Press. Cambridge, UK New York, USA, 1039–1099. 833 

Padrón, R. S., L. Gudmundsson, and S. I. Seneviratne (2019), Observational Constraints 834 

Reduce Likelihood of Extreme Changes in Multidecadal Land Water Availability, 835 

Geophys. Res. Lett., 46(2), 736–744, doi:10.1029/2018GL080521. 836 

Papalexiou, S. M., and D. Koutsoyiannis (2013), Battle of extreme value distributions: A global 837 



36 

survey on extreme daily rainfall, Water Resour. Res., 49(1), 187–201, 838 

doi:10.1029/2012WR012557. 839 

Pendergrass, A. G. (2018), What precipitation is extreme?, Science (80-. )., 360(6393), 1072 840 

LP – 1073, doi:10.1126/science.aat1871. 841 

Prosdocimi, I., T. R. Kjeldsen, and J. D. Miller (2015), Detection and attribution of urbanization 842 

effect on flood extremes using nonstationary flood-frequency models, Water Resour. Res., 843 

51(6), 4244–4262, doi:10.1002/2015WR017065. 844 

Ragno, E., A. AghaKouchak, C. A. Love, L. Cheng, F. Vahedifard, and C. H. R. Lima (2018), 845 

Quantifying Changes in Future Intensity-Duration-Frequency Curves Using Multimodel 846 

Ensemble Simulations, Water Resour. Res., 54(3), 1751–1764, 847 

doi:10.1002/2017WR021975. 848 

Salas, J. D., J. Obeysekera, and R. M. Vogel (2018), Techniques for assessing water 849 

infrastructure for nonstationary extreme events: a review, Hydrol. Sci. J., 63(3), 325–352, 850 

doi:10.1080/02626667.2018.1426858. 851 

Samaniego, L. et al. (2020), Hydrological Forecasts and Projections for Improved Decision-852 

Making in the Water Sector in Europe, Bull. Am. Meteorol. Soc., 100(12), 2451–2472, 853 

doi:10.1175/BAMS-D-17-0274.1. 854 

Schewe, J. et al. (2014), Multimodel assessment of water scarcity under climate change, Proc. 855 

Natl. Acad. Sci., 111(9), 3245–3250, doi:10.1073/pnas.1222460110. 856 

Schoof, J. T., and S. M. Robeson (2016), Projecting changes in regional temperature and 857 

precipitation extremes in the United States, Weather Clim. Extrem., 11, 28–40, 858 

doi:10.1016/j.wace.2015.09.004. 859 

Seneviratne, S. et al. (2012), Changes in climate extremes and their impacts on the natural 860 

physical environment, Manag. Risk Extrem. Events Disasters to Adv. Clim. Chang. Adapt. 861 

A Spec. Rep. Work. Groups I II IPCC, 109–230. 862 



37 

Stan Development Team (2017), Stan Modeling Language: User’s Guide and Reference 863 

Manual. Version 2.17.1. 864 

Trigg, M. A. et al. (2016), The credibility challenge for global fluvial flood risk analysis, 865 

Environ. Res. Lett., 11(9), 094014, doi:10.1088/1748-9326/11/9/094014. 866 

Vehtari, A., A. Gelman, and J. Gabry (2017), Practical Bayesian model evaluation using leave-867 

one-out cross-validation and WAIC, Stat. Comput., 27(5), 1413–1432, 868 

doi:10.1007/s11222-016-9696-4. 869 

Villarini, G., and J. A. Smith (2010), Flood peak distributions for the eastern United States, 870 

Water Resour. Res., 46(6), 1–17, doi:10.1029/2009WR008395. 871 

Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe (2014), The 872 

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework., 873 

Proc. Natl. Acad. Sci. U. S. A., 111(9), 3228–32, doi:10.1073/pnas.1312330110. 874 

Wasko, C., and R. Nathan (2019), Influence of changes in rainfall and soil moisture on trends 875 

in flooding, J. Hydrol., 575, 432–441, doi:https://doi.org/10.1016/j.jhydrol.2019.05.054. 876 

Wasko, C., and A. Sharma (2017), Global assessment of flood and storm extremes with 877 

increased temperatures, Sci. Rep., 7(1), 7945, doi:10.1038/s41598-017-08481-1. 878 

Whitfield, P. H., D. H. Burn, J. Hannaford, H. Higgins, G. a. Hodgkins, T. Marsh, and U. Looser 879 

(2012), Reference hydrologic networks I. The status and potential future directions of 880 

national reference hydrologic networks for detecting trends, Hydrol. Sci. J., 57(8), 1562–881 

1579, doi:10.1080/02626667.2012.728706. 882 

Wilcoxon, F. (1945), Individual Comparisons by Ranking Methods, Biometrics Bull., 1(6), 80–883 

83, doi:10.2307/3001968. 884 

Wobus, C., E. Gutmann, R. Jones, M. Rissing, N. Mizukami, M. Lorie, H. Mahoney, A. W. 885 

Wood, D. Mills, and J. Martinich (2017), Climate change impacts on flood risk and asset 886 



38 

damages within mapped 100-year floodplains of the contiguous United States, Nat. 887 

Hazards Earth Syst. Sci., 17(12), 2199–2211, doi:10.5194/nhess-17-2199-2017. 888 

Yang, H., F. Zhou, S. Piao, M. Huang, A. Chen, P. Ciais, Y. Li, X. Lian, S. Peng, and Z. Zeng 889 

(2017), Regional patterns of future runoff changes from Earth system models constrained 890 

by observation, Geophys. Res. Lett., 44(11), 5540–5549, doi:10.1002/2017GL073454. 891 

Yang, H., S. Piao, C. Huntingford, P. Ciais, Y. Li, T. Wang, S. Peng, Y. Yang, D. Yang, and J. 892 

Chang (2018), Changing the retention properties of catchments and their influence on 893 

runoff under climate change, Environ. Res. Lett., 13(9), 094019, doi:10.1088/1748-894 

9326/aadd32. 895 

Yip, S., C. a. T. Ferro, D. B. Stephenson, and E. Hawkins (2011), A Simple, Coherent 896 

Framework for Partitioning Uncertainty in Climate Predictions, J. Clim., 24(17), 4634–897 

4643, doi:10.1175/2011JCLI4085.1. 898 

Zaghloul, M., S. M. Papalexiou, A. Elshorbagy, and P. Coulibaly (2020), Revisiting flood peak 899 

distributions: A pan-Canadian investigation, Adv. Water Resour., 145, 103720, 900 

doi:https://doi.org/10.1016/j.advwatres.2020.103720. 901 

  902 



39 

List of captions 903 

Tables 904 

Table 1 – Summary of the changes in the magnitude of AMax (seen in Figure 6) and corresponding 905 

dominant source of uncertainty in the full (oE) and the constrained (cE) ensemble. Changes are 906 

positive (negative) if the interquartile range, i.e. middle 50%, lies above (below) zero, and grey i.e. 907 

no change otherwise. The dominant source of uncertainty, (seen in Figure 7) is coloured depending 908 

on the distance from the other sources, i.e. pale (bright) coloured when there is high (low) overlap 909 

– its interquartile range does (not) overlap that of the other sources of uncertainty. 910 

Figures 911 

Figure 1 – Map of the 18 streamflow gauges noted with their USGS code (eluding the last two 912 

digits 00). On lower right, above the scalebar, the actual grid-cell size (0.5°0.5°) is shown in 913 

green. 914 

Figure 2 – Comparison of observed-modelled magnitude (a) and timing (b) of annual maxima: a) 915 

confidence intervals (95%) of observed data (grey band) and GIMs-GCMs combinations in their 916 

historical (black), and future (red) periods for the 30 years event; b) Average peak flow occurrence 917 

per season. Bars indicate percentage of peak counts for observed (black) and modelled (grey) data. 918 

Horizontal black lines correspond to the observed peak counts (the reference). Each GIMs com-919 

prises five GCM runs. Blue (red) flags indicate over (under) –estimation of peak counts ≥ (≤) 20%. 920 

Figure 3 – Flowchart of the statistical analysis framework. 921 

Figure 4 – Structure of the Bayesian hierarchical models. 922 

Figure 5 –Departure (%) from average observed peak flow (AMax) occurrences per season. Indi-923 

vidual GIMs (GCMs) are expressed in row (column). Red (blue) tones indicate under (over) –924 

estimation (“U/O”) of peak counts ≥ (≤) 10%. Model exclusions (GIMs lower left, GCMs lower 925 

right) are denoted with X. 926 



40 

Figure 6 – Posterior distribution of β (the parameter that describes the change in the location 927 

parameter in the future) of the full ensemble, oE. Shaded blue (red) depicts positive (negative) 928 

values; solid vertical line corresponds to 0, dashed lines correspond to the 95% credible intervals. 929 

The fluorescent green pdf refers to the constrained ensemble, cE. Inset plots with star ‘*’ indicate 930 

same results as oE, while plots with ‘NA’ indicate no cE results available. 931 

Figure 7 – Standard deviation of the random effects expressing main contributions to uncertainty 932 

in the changes due to GCM (yellow), GIM (green), GCM-GIM (gray) for the ß (time-window ef-933 

fect) of the location parameter. Lower three boxplots refer to the oE, while the upper three box-934 

plots to the cE (fluorescent green). The higher the boxplot value, the higher the contribution to 935 

uncertainty. Inset plots with star ‘*’ indicate same results as oE, while plots with ‘NA’ indicate no 936 

cE results available. 937 
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