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Abstract: Recent extraordinary flood events occurred in north-west England, with 19 

several severe floods in Cumbria, Lancashire and the Manchester area in 2004, 20 

2009 and 2015. These clustered extraordinary events have raised the question of 21 

whether any changes in the magnitude and frequency of river flows in the region 22 

can be detected. For this purpose, the annual maximum series of 39 river gauging 23 

stations in the study area are analysed. In particular, non-stationary models which 24 

include time, annual rainfall and annual temperature as predictors are investigated. 25 

Most records demonstrate a marked non-stationary behaviour and up to a 75% 26 

increase in flood quantiles estimates during the study period. Annual rainfall 27 

explains the largest proportion of variability in the peak flow series relative to other 28 

predictors considered in our study, providing practitioners with a useful framework 29 

for updating flood quantile estimates based on the dynamics of this highly 30 

accessible and informative climate indicator. 31 

Keywords: Flood Hazard Assessment; Hydrological Extremes; Statistical 32 

Hydrology; Annual Maxima (AM); Generalized Logistic Model (GLO); Non-33 

stationary Flood Frequency Analysis; Cumbria UK. 34 

1. Introduction 35 

There is a perception that the frequency and magnitude of extreme flood events and 36 

storms have changed significantly over the last few decades throughout the world, mainly 37 

because of climate change, seasonal rainfall intensities, temperature variations, change in 38 

the land cover and deforestation (Coles et al., 2001; López and Francés, 2013; Milly et 39 

al., 2008, 2002; Prosdocimi et al., 2015; Salas and Obeysekera, 2014; Vogel et al., 40 

2011).These changes have in some cases altered the seasonality of flooding processes and 41 

the magnitude of flood flows across Europe, increasing remarkably fluvial flood hazard 42 

in large European regions (i.e., North-Central Europe, see Blöschl et al. 2017, 2019) and 43 

ultimately leading to the change in the characteristics of underlying distribution of river 44 

flood flows (non-stationarity). A stationary stochastic process is based on two 45 



assumptions, namely independence and identically distribution of time series (Coles et 46 

al., 2001). These assumptions might be violated if the flood characteristics of a catchment 47 

have changed over time, that is, the peak discharges are not identically distributed. 48 

Numerous studies have addressed the applicability and value of the stationarity 49 

hypothesis relative to flood frequency regime (Blöschl et al., 2015; Douglas et al., 2000; 50 

Milly et al., 2008; Montanari and Koutsoyiannis, 2014; Šraj et al., 2016; Vogel et al., 51 

2011). In fact, in recent years, there has been a lively debate about the advantages and 52 

disadvantages of stationary and non-stationary analysis, and many discussed on the 53 

preference of each framework (Milly et al., 2008; Montanari and Koutsoyiannis, 2014; 54 

Serinaldi et al., 2018; Serinaldi and Kilsby, 2015). Several studies argued that unless there 55 

is a clear deterministic process of change, the stationary setting should be still chosen and 56 

employed (Montanari and Koutsoyiannis, 2014; Serinaldi et al., 2018). This is mainly 57 

because of the large uncertainties associated with non-stationary models. While the 58 

scientific debate continues, flood managers and practitioners, who might witness 59 

numerous inundation events in the communities, need straightforward guidance on 60 

whether and how to change current designing approaches.  Among several studies carried 61 

out within the realm of non-stationarity, different fitting and goodness of fit approaches, 62 

as well as different covariates and frequency distributions have been utilized. 63 

Although significant increasing trends in time series of river flows were identified 64 

on most continents including: Asia, south America, north America (Labat et al., 2004) 65 

and northern Europe (Blöschl et al., 2019, 2017; Stahl et al., 2010), they showed 66 

decreasing trends in other regions including Africa (Labat et al., 2004), southern Europe 67 

and some parts of eastern Europe (Blöschl et al., 2019; Stahl et al., 2010). Mangini et al. 68 

(2018) investigated the existence of trends in the frequency and magnitude of flood events 69 

using both Annual Maximum (AM) and Peaks-Over-Threshold (POT) data recorded in 70 



rivers from across Europe during the period 1995-2005. They inferred that utilizing the 71 

AM approach results in more trends in the magnitude of flood events as opposed to POT 72 

series which showed more trends in the frequency of flood events. 73 

Additionally, numerous studies have been carried out focusing on parametric non-74 

stationary flood frequency analysis, most of which tackled the parameters of probability 75 

distribution depending on time as a covariate (Debele et al., 2017; Delgado et al., 2010; 76 

El Adlouni et al., 2007; Onuşluel et al., 2014; Strupczewski et al., 2001). Nonetheless, 77 

the problem of time-varying distribution parameters is that it can be sometimes unrealistic 78 

to extrapolate the detected changes in the future, which ultimately does not lead to 79 

accurate results (Agilan and Umamahesh, 2017; Ahn and Palmer, 2016). This reason 80 

encouraged researchers to incorporate hydrological and physically-based variables as 81 

covariates in the non-stationary models. For example Villarini, Smith, et al. (2009) 82 

employed non-stationary flood frequency analysis for Generalized Additive Models 83 

(GAMLSS) in which scale, location and shape parameters  varied with time, daily 84 

maximum rainfall, and population density for different basins in Little Sugar Creek 85 

watershed in North Carolina. They inferred that the recurrence intervals significantly vary 86 

over the time series for the specific river discharge. Prosdocimi et al., (2014) investigated 87 

non-stationary frequency analysis of the UK AM data using a 2-parameter lognormal 88 

distribution, the location parameter of which varied with time and 99th percentile daily 89 

rainfall. Their results demonstrated that various patterns are found for the peak flow 90 

series, and additionally, the variability of river flow data could be explained by means of 91 

extreme rainfall events for each year. Šraj et al. (2016) carried out flood frequency 92 

analysis using a non-stationary framework for two river gauging stations in Slovenia. 93 

Assigning the location parameter of Generalized Extreme Value (GEV) distribution 94 

model as a function of time and annual rainfall, they compared the results using 95 



Maximum Likelihood (MLE) and Bayesian-based Markov Chain Monte Carlo (MCMC) 96 

methods for the estimation of parameters. Their results showed that the stationary model 97 

underestimates flood quantiles compared to the non-stationary models in recent years. 98 

Furthermore, the inclusion of annual precipitation as a covariate into the model 99 

demonstrates the best goodness-of-the-fit performance. Likewise, Dong et al., (2019) 100 

performed bivariate non-stationary GEV flood frequency analysis using covariates such 101 

as precipitation, and urbanization/deforestation attributes in Dongnai river in Vietnam. 102 

They showed that the stationary condition remarkably underestimates the flood quantiles 103 

compared to the non-stationary models. 104 

That being said, the majority of studies mentioned above addressed the detection 105 

of trends in the frequency and magnitude of extreme meteorological events through non-106 

parametric tests (e.g., Mann Kendall test). The use of parametric non-stationary frequency 107 

analysis, in which a distribution is assumed to be the parent distribution for the data under 108 

study is less common. In particular, parametric studies often assumed a GEV distribution 109 

model. As far as covariate is concerned, the majority of studies in the literature consider 110 

time in describing the non-stationary behavior of flood characteristics, as opposed to a 111 

systematic implementation of hydro-meteorological data as covariates. As a result, to the 112 

best of our knowledge, there is still a research gap for fully capturing the characteristics 113 

of non-stationary settings based on generalized logistic (GLO) distribution model, by 114 

integrating various sequences of hydrological predictors. In this context, although limited 115 

studies have been undertaken to investigate the changes underlying the stochastic process 116 

of riverflow data in north-west England (Faulkner et al., 2020; Spencer et al., 2018), these 117 

have been making use of the GEV model as the fitting distribution, while the GLO 118 

distribution is the recommended frequency model on most UK catchments. This 119 

discrepancy can have a major impact on the outcome of the analysis, and indeed further 120 



assists plan investment in flood alleviation in north-west England, experiencing 121 

successive extreme flood events over recent years.  122 

The main objectives of the present study are as follows:  123 

• Identification of significant changes in the annual flood peak series observed in north-124 

west England;  125 

• Evaluation of the importance of applying different components as covariates in the 126 

frequency models;  127 

• Detection of the responsible mechanism driving the non-stationary behaviour of flood 128 

characteristics;  129 

• Selection of the best model, which is capable to deliver the best fit over the flood 130 

series;  131 

• Quantification and comparison of the (design) flood quantiles under stationary and 132 

non-stationary settings at all river gauging stations across the study area. 133 

2. Materials and Methods 134 

2.1. Data 135 

Annual maximum (AM) series of river flow data has been obtained from the National 136 

River Flow Archive for a total of 39 catchments located in the north-west of England 137 

(NRFA, 2018). AM series were utilized with the last water year in the records being the 138 

year 2015. The characteristics of the investigated river stations are showed in Table A1 139 

in the Appendix, as well as in Figure 1. Additionally, regional climate datasets for north-140 

west England were obtained from the UK’s national weather service, the Met Office. 141 

Specifically, monthly rainfall (mm) and temperature (C) for the years from 1910 to 2018 142 

were obtained, and matched to the river flow recording periods. 143 



2.2. Non-Parametric Tests 144 

A preliminary analysis of the study AM series was performed to detect changes in the 145 

frequency regime. In particular, two well-known and widely used non-parametric tests, 146 

in which no explicit assumption about the parent distribution for the data is made, have 147 

been utilized in this study to detect any significant change in the annual maximal flood 148 

peak series, namely: the non-parametric Mann-Kendall Test (MKT) and Pettitt Test (PT) 149 

(see Kendall 1975; Douglas, Vogel, and Kroll 2000; Pettitt 1979). MKT is widely used 150 

to identify the significant monotonic upward or downward trends in hydro-151 

meteorological data series, while PT aims to detect sudden changes in the mean (and/or 152 

the variance) of the time series.  153 

2.3. Frequency Distribution Model 154 

The generalized logistic (GLO) distribution model is the recommended distribution curve 155 

for flood frequency analysis in the UK (Reed and Robson, 1999). For this reason, it is 156 

employed here instead of the more commonly used GEV distribution. In this regard, the 157 

cumulative distribution function of the GLO distribution, F(x), is shown as follows 158 

(Hosking and Wallis, 2005): 159 

  𝐹(𝑥) =
1

1+𝑒−𝑦             𝑦 = {
−𝜉−1 × 𝑙𝑜𝑔 (1 − 𝜉 ×

(𝑥−𝜇)

𝜎
)     𝜉 ≠ 0

𝑥−𝜇

𝜎
                                                 𝜉 = 0

                    (1) 160 

The corresponding GLO quantile function, inverse of F(x), corresponding to a 161 

given recurrence interval, x(F), is given by Equation 2 as follows, where F is the 162 

cumulative function showed in Equation 1 (Hosking and Wallis, 2005): 163 

  𝑥(𝐹) =  {𝜉 +  𝜎 
[1−{

1−𝐹

𝐹
}

𝑘
]

𝐾
 ,                            𝜉 ≠ 0

𝜉 −  𝜎 𝑙𝑜𝑔 {(1 − 𝐹)/𝐹} ,                𝜉 = 0

                               (2) 164 

The location, scale and shape parameters are denoted μ, σ and ξ respectively. 165 



2.4. Parametric Non-stationary Framework 166 

While in the classical stationary setting, all parameters are constant (Model 1), in the non-167 

stationary framework the statistical properties of distributions can be specified as a 168 

function of different predictors. Six non-stationary models (Models 2-7) are introduced 169 

in this study: allowing the location parameter to change linearly as a function of the 170 

predictors. The scale and shape parameters are considered constant in all models. The 171 

reason why the shape parameter is treated constant is the fact that reliably achieving its 172 

correct value is generally challenging (Salas and Obeysekera, 2014). In addition, 173 

preliminary analyses performed for the study area clearly indicated the hypothesis of a 174 

time-varying scale parameter is not statistically significant for the vast majority of 175 

stations, therefore we assumed the scale parameter to be constant in our study. 176 

The first explanatory variable integrated into the parameter was time, that is, the 177 

years over which the flood happened (Model 2). Time can be viewed as a proxy for the 178 

identification of time-varying physical drivers, which are causing the change in the annual 179 

flood series (e.g., land-use and land-cover dynamics). As a further step, physically-based 180 

covariates were included to help identifying the flood changes and, therefore, aim to yield 181 

a better fit over the data. Hence, annual precipitation was included in the next step (Model 182 

3). Although extreme precipitation is often used as covariate in the literature (Prosdocimi 183 

et al., 2014; Villarini et al., 2009b), annual rainfall is considered in this study. This is 184 

because Salas and Obeysekera (2014) assessed that annual rainfall as a predictor can 185 

represent non-stationary behavior more accurately than short term extreme precipitation 186 

events. Because annual precipitation and event extreme precipitation are usually 187 

correlated, and annual precipitation has long-term impacts on the development of 188 

catchment characteristics (Salas and Obeysekera, 2014). The other reason is that annual 189 

precipitation influences the antecedent soil moisture of each single event, ultimately 190 

influencing the flood magnitudes (Gaál et al., 2012). Further, annual temperature was 191 



included as a covariate (Model 4) as a proxy for evapotranspiration. To provide additional 192 

alternatives, which may help giving a more accurate fit, Models 5, 6 and 7 were 193 

constructed, as additive models combining the aforementioned covariates. In summary, 194 

the following models are employed: 195 

(1) Model 1, stationary model in which all parameters are constant, 𝜇 , 𝜎, 𝜉  196 

(2) Model 2, non-stationary model in which location parameter varies linearly with 197 

time (t),  𝜇(𝑡) =  𝐵2,0 +  𝐵2,1  × 𝑡 , 𝜎, 𝜉  198 

(3) Model 3, non-stationary model in which location parameter varies linearly with 199 

annual rainfall (R),  𝜇(𝑅) =  𝐵3,0 +  𝐵3,1  × 𝑅  , 𝜎,   𝜉  200 

(4) Model 4, non-stationary model in which location parameter varies linearly with 201 

annual temperature (T),  𝜇(𝑇) =  𝐵4,0 +  𝐵4,1  × 𝑇 , 𝜎,   𝜉 202 

(5) Model 5, non-stationary model in which location parameter varies linearly with 203 

both time (t) and annual rainfall (R),  𝜇(𝑡, 𝑅) =  𝐵5,0 +  𝐵5,1  × 𝑡 +  𝐵5,2   × 𝑅 ,204 

𝜎,   𝜉 205 

(6) Model 6, non-stationary model in which location parameter varies linearly with 206 

both time (t) and annual temperature (T),  𝜇(𝑡, 𝑇) =  𝐵6,0 +  𝐵6,1  × 𝑡 +207 

 𝐵6,2  × 𝑇 , 𝜎,   𝜉 208 

(7) Model 7, non-stationary model in which location parameter varies linearly with 209 

both annual rainfall (R) and annual temperature (T),  𝜇(𝑅, 𝑇) =  𝐵7,0 +210 

 𝐵7,1  × 𝑅 +  𝐵7,2  × 𝑇 , 𝜎,   𝜉 211 

Where μ is the location parameter, σ is the scale parameter and ξ is the shape 212 

parameter, t is water year associated with each AM event. Note that time (t) is considered 213 

from the first observation records for each river gauge station until the end of flow 214 

observations (water year 2015). R and T represent cumulative annual rainfall depth and 215 

annual temperature, respectively, for north-west England ending in water year 2015. 216 



𝐵𝑚,𝑖 with m (model) varying from 2 to 7 and i=0,1,2 are unknown regression coefficients 217 

which need to be estimated based on the available annual maximum series, in order for 218 

the location parameter to be calculated. 219 

2.5. Parametric Estimation 220 

The unknown parameters of seven GLO distribution models defined in Section 2.4. are 221 

estimated using the Maximum Likelihood Estimation (MLE) method (Coles et al., 2001; 222 

Katz, 2013). If 𝑋 =  {𝑋1, 𝑋2, … . 𝑋𝑛} are observations from the distributed random 223 

variables, coming from a probability distribution model f with parameters P, the MLE 224 

measure maximizes the likelihood function, given by Equation 3:  225 

             𝐿(𝑷) = ∏ 𝑓(

𝑛

𝑖=1

𝑋𝑖; 𝑷)                                                           (3)   226 

However, it is often easier to work with the log-likelihood, instead of the 227 

likelihood function, given by Equation 4: 228 

𝐿(𝑷) = 𝑙𝑜𝑔[𝐿(𝑷)] =  ∑ 𝑙𝑜𝑔[𝑓(𝑋𝑖; 𝑷)]

𝑛

𝑖=1

                                         (4)   229 

The log-likelihood function for the GLO distribution function is then shown 230 

below: 231 

 𝐿𝑜𝑔 (𝐹(𝑥))  = - 𝑙𝑜𝑔 𝜎 + (
1

𝑘
 – 1) × 𝛴 𝑙𝑜𝑔 (1 − (

𝑋−𝜇 

𝜎
) ×  𝜉) − 2 ×  ∑ 𝑙𝑜𝑔( 1 + (1 − (

𝑋−𝜇 

𝜎
)

1

𝑘
                 (5) 232 

Thus, the MLE finds the values of the parameters of the log-likelihood, which 233 

makes the observed data sample most likely, and finally deliver the estimated parameters. 234 

In this study, non-linear optimization using “maxLik” package (Henningsen and Toomet, 235 

2011) is used in R software (Team, 2013), utilizing the Newton-Raphson algorithm, for 236 

numerically optimizing the log-likelihood function of the GLO models. 237 

2.6. Selection of the Best Model 238 



The Akaike Information Criterion (AIC) (Akaike, 1974) is a goodness-of-the-fit measure 239 

that aids to compare different frequency models and select the best-fitting one. It 240 

represents how well the model fits over the data relative to the other frequency models. 241 

The AIC Equation is as follows: 242 

𝐴𝐼𝐶 = [2𝑘 − 2 log(𝐿)]                                                 (6) 243 

In which L is the maximum value of the log-likelihood function, and k is the 244 

number of parameters. The smaller the value of AIC is, the better the model performs, in 245 

comparison to other models. This implies that the best model is recognized based on the 246 

balance between the goodness-of-the-fit (i.e., the value of the log-likelihood) and the 247 

model complexity (i.e., the number of parameters). Additionally, confidence intervals for 248 

the regression parameters for each predictor were derived using the Delta method (Salas 249 

and Obeysekera, 2014): these have been used to check whether the inclusion of a 250 

predictor into the model is significant at the 5% significance level. The literature presents 251 

various approaches to construct confidence intervals such as the delta method, bootstrap 252 

method, and profile likelihood method (Efron and Tibshirani, 1994; Royall, 1997). 253 

Although profile likelihood might deliver a more robust and accurate estimation of the 254 

uncertainties (due to assuming the asymmetrical characteristics of maximum likelihood 255 

estimates), it is oftentimes computationally demanding and burdensome (Obeysekera and 256 

Salas, 2014). Whereas, using locally computed derivatives (e.g., delta method) can be 257 

still relatively accurate and computationally easy and more efficient. This probably 258 

justifies the popularity of the delta method as an approach to assess uncertainties in the 259 

parameters and their transformations (e.g., quantiles) in the literature (see e.g., Macdonald 260 

et al. 2014; Obeysekera and Salas 2014; Šraj et al. 2016). This method is also used herein 261 

to calculate the uncertainties for the quantile estimations at the 95% confidence level.  262 



2.7. Study Area 263 

A total of 39 AM series of peak flow obtained from river gauging stations located in the 264 

north-west of England (Cumbria, Lancashire and the Greater Manchester area) are 265 

considered in this study (Figure 2). These stations were chosen due to their locations on 266 

rivers that have recently experienced extraordinary flood events in 2004, 2009 and 2015. 267 

The study area as well as the location of the river stations are illustrated in Figure 2. 268 

During storm Desmond, 4-6 December 2015, almost all gauges investigated in Cumbria 269 

observed discharges that exceeded their previous records. This region of England has 270 

been targeted in this study due to having exceptional nature of inundation events occurred 271 

over the past few years (Miller et al., 2013). Topological ordering of the rivers over the 272 

investigated catchments are represented as well in terms of Strahler stream order 273 

(Strahler, 1957) as shown in Figure 2. 274 

3. Results and Discussion 275 

First, AM series for all 39 stations were tested for trends and sudden changes, or change-276 

points, via the MKT and PT, respectively. Figure 3 shows the spatial pattern of MKT and 277 

PT results. The MKT has detected the presence of statistically significant trends (at 5% 278 

significance level) at 20 stations. Note that all monotonic trends detected across the study 279 

region are upward. The majority of series characterized by statistically significant trends 280 

are scattered around the Northern region of the study area (e.g. Cumbria). Additionally, 281 

PT detected significant sudden changes in the mean of the time series at 6 stations across 282 

the study area. Note that the very 6 stations for which PT detected statistically significant 283 

sudden changes, are also flagged by MKT as series characterized by statistically 284 

significant upward trend. That is, both tests detect significant changes in these series, 285 

which could be interpreted as trends, or abrupt changes. 286 



Second, based on the results of the non-parametric tests, the seven stationary and 287 

non-stationary distribution models introduced in section 2.4. have been estimated using 288 

peak flow series from each of the 39 stations in turn. Although the indication of 289 

implications is depicted for all of the 39 stations in the form of spatial maps (described 290 

and shown in the following sections), only results for stations number 69044 (located in 291 

Greater Manchester) and 75005 (located in Cumbria and Lancashire) with at least 40 292 

years of observations are presented here in more details to showcase the outcome of the 293 

study: detailed results for all stations can be found in the supplementary material of the 294 

current study. 295 

3.1. Identification of the Best-Fit Models 296 

3.1.1. Station Number 69044: River Irwell at Bury Ground 297 

Results from fitting the model parameters by the MLE method along with the ranking 298 

based on the AIC are presented in detail in Table 1 for River Irwell at Bury Ground. The 299 

results show that Model 2 where time is included as the only covariate is not statistically 300 

different from zero as B2,1 encompasses zero. Nonetheless, as an additional step, when 301 

annual rainfall is included (Model 3), the corresponding estimated parameter, B3,1, found 302 

to be significantly different from zero at the 5% significance levels (i.e., the 95% 303 

confidence interval does not contain zero value). This indicates that the inclusion of 304 

annual rainfall has been able to explain a large part of the variability of peak flow series.  305 

When incorporating temperature as a covariate (Model 4), its parameter, B4,1, was 306 

not found to be significantly different from zero. In particular, the estimated confidence 307 

intervals for the parameters of all time and temperature-dependent regression models 308 

(Models 2, 4 and 6), that is, B2,1, B4,1, B6,1 and B6,2, do in fact contain zero value. Despite 309 

the improvement over the stationary fit when both rainfall and time (Model 5) and rainfall 310 



and temperature (Model 7) are included, the AIC measure indicates that including only 311 

annual rainfall as a covariate yields the best fitting model. This implies that allowing the 312 

location parameter of GLO frequency Model to vary as a linear function of annual rainfall 313 

(as the only covariate) expressed the alterations in flood peaks more accurately than the 314 

other covariates and, thus, gave a better fit of the data.  315 

3.1.2. Station Number 75005: River Derwent at Portinscale 316 

The second station explored in detail is station number 75005. Table 2 shows the 317 

estimated parameters (along with the limits of the 95% confidence intervals) and ranking 318 

of all models by the MLE and AIC respectively. According to this Table, the inclusion of 319 

time and temperature (Models 2 and 4) did not provide a statistically significant change 320 

in the model fit. On the other hand, the inclusion of annual rainfall in all models (Models 321 

3, 5, and 7) into the location parameter, B3,1, B5,1, B7,1, significantly improved the 322 

stationary model’s fit. This can be supported by AIC ranking alongside the confidence 323 

limit around B1 parameter which indeed does not encompass zero.  324 

However, according to the AIC goodness-of-the-fit measure, Model 3 with only 325 

annual rainfall as covariate was found as the best model to explain the ongoing changes 326 

in the peak river flow regimes compared to the other models. Detailed examination of the 327 

flood peaks and annual precipitation for this stream gauge also demonstrates that the 328 

maximum annual rainfall (119 mm) observed in north-west England in 2015 is associated 329 

with the second highest river flow (365 
𝑚3

𝑠
) happened in the same year: the main reason 330 

of which could be the intense precipitation occurred in November and December 2015. 331 

This measure is again highlighting the relevance of annual rainfall as covariate to help 332 

ascertain the changes in flood frequency. 333 



3.1.3. Identification of the Best-Fit Models at All Streamgauges 334 

Both stationary and non-stationary frequency analysis using the GLO distribution was 335 

repeated at all 39 gauging stations in the study area and the detailed results shown in 336 

supplementary material. The selected frequency models at all stations, as decided by the 337 

AIC measure, are shown in Figure 4. This highlights that the stationary Model 1 was 338 

preferred at only 3 streamgauges out of 39, meaning that treating the location parameter 339 

as a constant value at these stations revealed a better performance and fit to the data, as 340 

opposed to 36 stations at which non-stationary settings were found to give a better fit to 341 

the data. This reports that the driving factors such as meteorological conditions and time 342 

largely influenced the flood characteristics in north-west England. Non-stationarity, thus, 343 

might be a dominant process at most gauges, urging authorities and designers to take non-344 

stationarity as an option into account for the future construction of flood defense 345 

structures alongside conventional methods. Moreover, annual rainfall rather than time 346 

and temperature is often included in the best-fit models, indicating that this variable 347 

explains a large proportion of variability in the peak flow samples. At 22 stations out of 348 

39, the regression model with only annual rainfall as the explanatory variable (Model 3) 349 

was preferred, as the best fit. These findings are indeed in agreement with the other studies 350 

in the literature (Prosdocimi et al., 2014; Šraj et al., 2016), in which they reported the 351 

improvement achieved over the stationary’s performance when rainfall is included into 352 

the frequency analysis in preference to the time-based models.  353 

According to Figure 4, eight and six stations where the regression models were 354 

fitted with time (Model 2), as well as rainfall and time (Model 5) respectively, were found 355 

to maximize the AIC measure, making a significant improvement over the stationary fit. 356 

Note also that all the regression models, incorporating temperature as a covariate (Models 357 

4, 6 and 7), underperformed relative to other options at all streamgauges. This indicates 358 

that temperature appeared to be a poor predictor for change in the peak flow values. In 359 



other words, temperature (as a proxy for evapotranspiration) is not a good descriptor of 360 

the frequency of the flooding process and, hence, has not been able to properly detect the 361 

changes in the flood characteristics in the study area. It is worth highlighting that Model 362 

3 where annual rainfall as the only covariate was integrated, has been preferred at all 363 

streamgauges in the south of study area (i.e., Greater Manchester and Lancashire), 364 

whereas Cumbria, located in north, reported more diverse preferred models (i.e., Model 365 

1, 2, 3 and 5).  366 

It is worth noting that MKT has not detected statistically significant changes at 3 stations 367 

for which the stationary framework provided the best fit. Also, at 16 gauges with 368 

statistically non-significant trends, non-stationary models (mostly precipitation-included 369 

model) outperformed the stationary one (Figure 3 and 4). Bertola et al. (2019) report 370 

similar results; they show superior performance for rainfall-driven non-stationary models 371 

even at gauging stations without statistically significant trend. 372 

3.2. Resorting to Non-stationary Models for Quantile Estimation 373 

Flood return period is a key concept for the design of hydraulic facilities and flood control 374 

systems. For “stationary” models with constant parameters, the probability p of a flood 375 

peak to be larger than a certain design event QT in a year is expressed in terms of the 376 

return period T, which is the inverse of p (i.e., T=1/p). On average, a T-year flood is 377 

exceeded once in T years. Therefore, a 100-year flood event has a probability of 1% of 378 

occurring or being exceeded in one year. These simple relationships between design 379 

events, exceedance probability and return period rely on the assumptions that the 380 

probability distribution of high flows is constant in time: this is not the case for the non-381 

stationary models. There is a large body of literature on the necessity to revise the concept 382 

of return period and on possible adaptation of this quantity in the context of non-stationary 383 



conditions (Cooley, 2013; Obeysekera and Salas, 2014; Salas and Obeysekera, 2014; 384 

Volpi, 2019). In particular, there are two main approaches of flood return period 385 

approximations under non-stationary condition: 1) using the concept of expected waiting 386 

time for the first occurrence of a flood event exceeding the design flood (Salas and 387 

Obeysekera, 2014), and 2) defining the return period as the time interval in years for 388 

which the expected number of exceeding flood events is equal to one (Cooley, 2013). 389 

Instead of resorting to either one of the revised definitions listed above, we 390 

decided to discuss the practical implications of adopting the non-stationary models 391 

presented above to estimate the flood quantiles at a given location by calculating the at-392 

site flood quantiles for any given year by using the distribution parameters as estimated 393 

for that year (e.g. referring to the cumulative rainfall depth of that year). Once the 394 

parameters of the seven models (one stationary and six non-stationary) are estimated and 395 

the best-fit model is identified based on the AIC criterion, the flood quantiles for specific 396 

recurrence intervals and different models can be quantified and compared. This will allow 397 

for a direct assessment of impact of non-stationary frequency models e.g., on design 398 

events. Sections 3.2.1. and 3.2.2. present and compare the estimates for a rare and median 399 

flood (i.e. a one-in-T-years, or T-year flood, with T conveniently large, and a 2-year flood) 400 

obtained with the study models at the two aforementioned test sites stations (see Figures 401 

5 and 6). According to report number 629 from Flood Defenses Standards for Designated 402 

Sites (Risk & Policy, 2006), the 100-year flood event is generally considered for 403 

constructing flood defenses in most parts of the UK, and for this reason we selected 404 

T=100 year in our study. Section 3.2.3. focuses on 100-year flood, and addresses 405 

implication and potential consequences of selecting a stationary or a non-stationary model 406 

at all streamgauges while designing flood defenses and flood risk mitigation measures. 407 



It should be pointed out, it is not quite straightforward to answer which (design) 408 

discharge should be taken into account for the flood risk management when they are 409 

associated with non-stationary outcomes (Serinaldi and Kilsby, 2015). This is due to the 410 

changing characteristics of non-stationary frequency analysis in time. As a result, we take 411 

the last year of the fitting period (2015) as indicated by Luke et al. (2017) to select and 412 

compare the (design) quantiles between non-stationary and stationary estimates 413 

throughout this study. However, to better showcase and represent the practical 414 

implications of our study, results of the second to last year (i.e., year 2014) have been 415 

included as well, and compared with those in 2015. 416 

3.2.1. Comparison of the 2 and 100-year Flood Quantiles at Station Number 69044: 417 

River Irwell at Bury Ground 418 

Considering Irwell at Bury Ground, as seen in Figure 5,where only the stationary and 419 

best-fit non-stationary estimates are displayed, incorporating annual rainfall as a covariate 420 

of the location parameter led to an abrupt change for both median and design flood 421 

estimates moving from one year to the next, as opposed to the stationary model for which 422 

the flood quantile is constant. Differences between stationary and the best-fit non-423 

stationary model predictions become more apparent at larger return periods in the flood 424 

estimations. The reason is attributed to the occurrence of larger uncertainties for non-425 

stationary settings at higher frequencies. The stationary model predicted the median to be 426 

105.85 
𝑚3

𝑠
, as opposed to the best-fit non-stationary model (driven by cumulative annual 427 

rainfall), that predicted the median equal to 146.79 
𝑚3

𝑠
 in the last year of fitting period. 428 

This value is approximately 40% greater than the one predicted by the classic stationary 429 

setting. This river also shows an abrupt increase in the median flood flows in the late 430 

1990s alongside 3 sharp spikes in 2007, 2011 and 2015 (Figure 5). Given the strong 431 



correlation between annual precipitation totals and annual floods for this catchment, these 432 

spikes are a consequence of the considerable amount of cumulative annual precipitation 433 

occurred in these years (above 1500 𝑚𝑚 in all three cases). For instance, the highest 434 

annual precipitation (1724 𝑚𝑚) is associated with the largest observed discharge 435 

(284 
𝑚3

𝑠
), which occurred in 2015. 436 

In terms of 100-year flood (i.e. the design flood quantile), see Figure 5, similar to 437 

the median (i.e. the 2-year flood), the best-fit non-stationary model was able to capture 438 

the design floods based on precipitation values occurring in each year. For example, the 439 

non-stationary model predicts the largest design flood (i.e. 276.85 
𝑚3

𝑠
) in 2015, reflecting 440 

the highest value observed for the cumulative annual precipitation value, occurred in the 441 

same year. Furthermore, the design flood (100-year flood) estimated under the best-fit 442 

non-stationary condition (Model 3) is associated with 160-year quantile under stationary 443 

condition. This implies that it might be a 60-year frequency difference between stationary 444 

setting (254.2 
𝑚3

𝑠
) and non-stationary one (276.85 

𝑚3

𝑠
) in the last year of flood records. 445 

Nonetheless, since 95% confidence limit becomes wider for the non-stationary estimate 446 

resulting from Model 3 (see Table A2 in Appendix) compared to the stationary one, the 447 

interpretation of change in the design quantile is not straightforward. As seen in Table 448 

A2, inspecting the confidence interval around the stationary and the preferred non-449 

stationary quantile does not allow us to infer whether we have certainly (at least with 95% 450 

confidence) underestimated the design quantile using stationary setting. These findings 451 

emphasize the incorporation of uncertainty analysis for non-stationary flood risk 452 

management schemes.   453 



3.2.2. Comparison of the 2 and 100-year Flood Quantiles at Station Number 454 

75005: River Derwent at Portinscale 455 

Comparing median and design flood quantiles for River Derwent at Portinscale (Figure 456 

6), the same interpretations described above can be concluded. As stated in section 3.2.1., 457 

the non-stationary model, where cumulative annual rainfall was integrated, generated 458 

jumps within Models 3. The median and design quantile exhibit a similar pattern over the 459 

flood period with larger differences between the flow estimates of the 100-year events. 460 

The median quantiles estimated by the regression model are consistently larger than the 461 

one obtained by the stationary model in the late 1990s especially since 2006   462 

Moreover, 100-year quantile of the rainfall-dependent model (Model 3) with 463 

338.36 
𝑚3

𝑠
 discharge in the last year can be associated with the 140-year flood quantile of 464 

the stationary one. It stands to reason that the rate of increase in the non-stationary design 465 

quantile might have been 7%. However, the implication of change between design 466 

quantiles based on stationary and the preferred non-stationary model is complicated as 467 

their 95% confidence intervals overlap each other’s values (see Table A2).  468 

3.2.3. Practical Implications of Selecting Non-stationary vs. Stationary Design 469 

Quantiles 470 

To assess the implications of selecting a non-stationary model vs. the stationary one for 471 

estimating the design flood quantile (as a measure of constructing flood defenses in most 472 

parts of the UK) in north-west England, the approach outlined above was repeated at all 473 

39 stations with a specific focus on 100-year return period. 474 

 In this context, to investigate the discrepancy between the design values, we 475 

measure the ratio between the design quantiles derived from the preferred non-stationary 476 

model (in case a non-stationary model was selected by the AIC criterion) in 2015 (the last 477 



year for which data is available), and the stationary one at each river station (Figure 7a). 478 

Furthermore, represented by confidence limits, uncertainties around the design quantiles 479 

were shown in Table A2 of Appendix at all stations. To further showcase and support the 480 

implication of our framework, the same procedure performed and explained above was 481 

repeated for the second to last year in our sample (i.e., year 2014), shown in Figure 7b. 482 

The importance of different window of records has been also emphasized by Griffin et 483 

al. (2019). 484 

 According to the results shown in Figure 7a, the stationary distribution produced 485 

the best fit at three stations (black squares). At six stations (shown in yellow), non-486 

stationary analysis reduced the stationary estimates in 2015. Whereas, at all of the 487 

remaining stations, the non-stationary regression models might have increased the 488 

conventional stationary design estimate. The most significant increase is observed mainly 489 

in the north of study area (Cumbria). This finding, however, alongside the design events’ 490 

confidence limits (see Table A2) make it difficult to conclude whether the stationary 491 

models do effectively underestimate or overestimate the quantile when compared to the 492 

non-stationary ones in 2015. For instance, the flow estimate resulting from the best-fit 493 

non-stationary model at gauge 73002 was around 75% (as the largest change across the 494 

area) higher than the one predicted by stationary model. However, by looking at their 495 

associated uncertainties (Table A2), it is not possible to properly judge the estimation of 496 

quantiles. This is because the confidence interval associated with the non-stationary 497 

model becomes wider compared to the stationary one, and indeed, overlap with each 498 

other.  499 

However, based on the achieved uncertainties shown in Table A2, we can infer 500 

with 95% confidence that at only 11 stations out of 39, stationary models underestimated 501 

the quantiles compared to non-stationary ones in 2015. These gauges (highlighted in red 502 



in Figure 7a), all located in Cumbria, are the ones which have been severely hit with 503 

floods especially in this year, producing tremendous discharge rates up to 65% higher 504 

than the stationary estimates. This conveys a crucial message that the non-stationary 505 

framework for designing hydraulic facilities in north-west England should be considered 506 

as an alternative option along with the traditional stationary setting, with special attention 507 

to such highly-flood-recorded stations. 508 

Comparing the results (see Table A2 and supplementary material) e.g., at station 509 

number 72005 on River Lune at Killington with a similar study in the literature (Faulkner 510 

et al., 2020), demonstrates a notable difference in terms of design flood event in water 511 

year 2015. The stationary and the best-fit non-stationary design event in the literature was 512 

calculated around 575 
𝑚3

𝑠
 [450; 700] and 600 

𝑚3

𝑠
 [550; 750] respectively. However, the 513 

same quantities were obtained equal to 622.08 
𝑚3

𝑠
 [583.51; 665.98] and 878.63 

𝑚3

𝑠
 514 

[820.24; 937.02] therein. This implies a 4% and 46% discrepancy with respect to the 515 

stationary and non-stationary design flood event at this gauge respectively. The reason is 516 

attributed to the selection of a different frequency distribution (i.e., Generalized Extreme 517 

Value distribution) in Faulkner et al. (2020). Although the inclusion of time was found to 518 

be significant both in Faulkner et al. (2020) and this study, the simultaneous incorporation 519 

of rain and time here gave the preferred fit at the investigated station which can be viewed 520 

as the missing part in the literature.  521 

In addition to the implications for the last year in the record (2015), in which the 522 

highest ever total rainfall accumulation was recorded, Figure 7b illustrates the ratios of 523 

the best-fit non-stationary design quantiles to stationary ones for 2014 (second to last year 524 

in the dataset). This Figure shows patterns of the ratio that are very similar to those 525 

depicted in Figure 7a (particularly in Cumbria). Also the gauges highlighted in red (i.e., 526 



stationary distribution underpredicts flood quantiles at 95% confidence level) show close 527 

similarity for both years, even though 2014 was not an extremely wet year (1302 mm 528 

cumulative annual rainfall) relative to 2015 (1724 mm cumulative annual rainfall).  529 

3.3. Non-stationary Design Flood Quantiles 530 

To gain a better insight towards how the design event might have changed between 531 

stationary and the best-fit non-stationary analysis in the last year of observations, Figure 532 

8a shows the results by dividing the non-stationary design quantile by the stationary one 533 

in 2015, and accordingly, obtaining the design “trend”. Similar to the previous section, 534 

results obtained by referring to 2015 have been compared with those associated with 2014 535 

(Figure 8b) to better draw the practical implications for the design quantiles. 536 

As seen in Figure 8a, a vast majority of stations (30 stations) recorded larger non-537 

stationary design values with respect to the stationary ones, that is, upward “trend”, 538 

supporting the conclusion that it is likely that large flood events might happen again in 539 

the future in those areas. In contrast, six stations revealed downward behavior, which 540 

means that the preferred non-stationary models accounted for lower quantiles compared 541 

to the stationary ones. However, the implementation of uncertainties e.g., confidence 542 

intervals as in Table A2, for both stationary and non-stationary analysis should be an 543 

integral part of any conclusion, all of which help detect the ongoing changes in the flood 544 

peak magnitudes. 545 

When it comes to the comparison of quantiles’ sensitivity to the selected 546 

predictors between 2014 and 2015 (Figure 8a and 8b), we observe an analogous situation 547 

across the region as discussed earlier. In other words, most river stations -especially in 548 

the North- show exactly the same setting in 2014 and 2015. The situation is slightly 549 

different in the South (Lancashire), where the positive signal (increasing estimates, blue 550 



triangle) obtained for 2015 show a negative signal (downward estimates, red triangles) in 551 

2014. 552 

This indicates that flood hazard can be quite sensitive to the changes in annual 553 

rainfall totals in the study region, and previous studies clearly pointed out significant 554 

changes in observed mean annual precipitation across the study area between 1960 and 555 

2000 (i.e. mean annual precipitation between 1960-1990 and between 1970-2000), 556 

showing increases as high as 15% in Cumbria (Jenkins et al., 2007). 557 

It is worth mentioning that common methods to quantify risk are based on the 558 

assumption that distribution of the phenomenon under study (e.g., flooding) is unchanged. 559 

Although alternative methods to quantify risk under changing conditions have been 560 

proposed (Parey et al., 2010, 2007; Rootzén and Katz, 2013; Salas and Obeysekera, 2014; 561 

Villarini et al., 2009a), there is still no standard paradigm to assess risk when using 562 

models which allow for change. When it comes to time-dependent models, extrapolation 563 

of the future design quantiles can be unrealistic as the change happening in the future 564 

might not be the same as it did in the past. Utilizing physically-based predictors, on the 565 

other hand, establishes a relationship between covariate and variable (flood flows), 566 

yielding a better fit, however, potential future risk assessment would depend on the 567 

unknown future distribution of the physical covariate. Further, the relationship between 568 

the variable of interest and the physical covariate would need to remain the same. Given 569 

these methodological challenges in the work, we do not attempt to assess future flood risk 570 

in north-west England but simply present the implication of the present-day (i.e., year 571 

2015) conditions relative to the second to last year in our sample (i.e., year 2014).  572 

4. Summary and Conclusions 573 

This study investigated the presence of non-stationarity in annual maxima (AM) of river 574 

peak flow data series for numerous catchments across north-west England. The study was 575 



motivated by the concerns over the suitability of traditional procedures for the estimation 576 

of flood frequencies following the successive extreme floods in 2004, 2009 and 2015 in 577 

north-west England. Taking into account the indirect impact of climate/human-induced 578 

attributes, a linear regression model for the location parameter of the Generalized Logistic 579 

(GLO) frequency distribution model was constructed, where explanatory variables such 580 

as time, annual rainfall, and annual temperature alongside their linear combinations were 581 

integrated. In this context, the Maximum Likelihood Estimation (MLE) and the Akaike 582 

Information Criterion (AIC) were applied to the frequency models at 39 river gauging 583 

stations across north-west of England to infer the estimated parameters and choose the 584 

best-fitting model respectively. Our analysis revealed that 36 river stations demonstrated 585 

non-stationary behavior, implying that the flood characteristics are changing in time. 586 

Whereas, three gauges recorded no significant changes in any of their models’ parameters 587 

(i.e., stationarity behavior was dominant). Among non-stationary-dominated 588 

streamgauges, the best model has often included annual rainfall as the predictor, 589 

signifying that annual rainfall is the most responsible climatic driver of changes in the 590 

flood characteristics in north-west England. Moreover, a general implication from this 591 

study for flood quantiles is that most rivers in the area showed a sharp increase in higher 592 

quantiles in the late 1990s with an even sharper increase within the last 10 years of the 593 

recording period. This implies that the stochastic process of the distribution underlying 594 

peak flows might be changing in most cases especially in recent years, the impact of this 595 

should be incorporated into the design of future hydraulic facilities. Hence, we highly 596 

recommend the consideration of non-stationary framework alongside the traditional 597 

stationary analysis in north-west England especially in Cumbria region as these 598 

implications can be put in practice (in the light of uncertainty analysis), and finally help 599 

predicting the ongoing alterations in the flood frequency. This would prompt local flood 600 



managers to further enhance the current flood management plans and reduce the flood 601 

risk. 602 

Despite the notable improvements over the stationary fit, resulting from the 603 

physically-based non-stationary distributions (e.g., when rainfall included as covariate), 604 

further research needs to be carried out towards the estimation of the frequency 605 

distribution for the covariate itself. This means that when introducing an extra stochastic 606 

component such as annual rainfall into the model, there should be an additional study on 607 

whether the stochastic component is stationary or not. Future studies could also 608 

potentially consider different precipitation indices as covariates in a non-stationary 609 

framework, such as design rainfall quantiles or seasonal rainfall characteristics: selecting 610 

those which are more aligned with the seasonality of floods and processes driving the 611 

flood production mechanism in the study area. 612 
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Appendix 768 

Table A1. Characteristics of all 39 river gauging stations in the study area 769 

Station 

Number 

Station 

Level 

(M/AOD) 

River 

Name 

Location Catchment 

Area 

(𝑲𝒎𝟐) 

Period 

of 

Record 

Samples 

Records 

(Years) 

Maximum 

Flow 

69023 62.9 Roch Blackford 

Bridge 

186  1948 - 

2015 

68 192 

69025 24.2 Irwell Manchester 

Racecourse 

557 1941 - 

2015 

75 700 

69044 79.8 Irwell Bury Ground 139.9 1975 - 

2015 

41 284 

69803 N/A Roch Rochdale 111 1993 - 

2015 

23 92.8 

71001 9.5 Ribble Samlesbury 1145 1960 - 

2015 

55 1100 

71004 39.9 Calder Whalley Weir 316 1970 - 

2015 

46 501 

71010 92.3 Pendle 

Water 

Barden Lane 108 1972 - 

2015 

44 197 

71013 98.3 Darwen Ewood 39.5 1973 - 

2015 

43 60.3 

71014 8.1 Darwen Blue Bridge 128 1974 - 

2015 

42 218 

72004 10.7 Lune Caton 983 1968 - 

2015 

48 1740 

72005 82.8 Lune Killington 219 1969 - 

2015 

47 627 

72011 84.1 Rawthey Brigflatts 200 1968 - 

2015 

48 460.4 

72014 16.6 Conder Galgate 28.5 1966 - 

2015 

49 33.7 



72015 165 Lune Lunes Bridge 141.5 1979 - 

2015 

37 409 

73002 38.6 Crake Low Nibthwaite 73 1962 - 

2015 

52 51 

73005 18.9 Kent Sedgwick 209 1968 - 

2015 

48 527 

73008 10.9 Bela Beetham 131 1969 - 

2015 

47 129 

73009 34.6 Sprint Sprint Mill 57.5 1969 - 

2015 

47 94.8 

73010 37.3 Leven Newby Bridge 247 1940 - 

2015 

76 224 

73011 50.3 Mint Mint Bridge 65.8 1969 - 

2015 

47 170 

73012 N Kent Victoria Bridge 183 1979 - 

2015 

37 403 

74001 14.8 Duddon Duddon Hall 85.7 1967 - 

2015 

49 267.9 

74002 54.2 Irt Galeyske 44.2 1968 - 

2015 

47 35.9 

74003 110.4 Ehen Bleach Green 44.2 1973 - 

2015 

43 102.44 

74006 26.4 Calder Calder Hall 44.8 1973 - 

2015 

43 

 

173.17 

74008 75.9 Duddon Ulpha 47.9 1973 - 

2015 

43 103.71 

75001 159.5 StJohns 

Beck 

Thirlmere 

Reservoir 

42.1 1974 - 

2015 

38 75.4 

75005 72.6 Derwent Portinscale 235 1972 - 

2015 

44 402.36 

75009 99.7 Greta Low Biery 145.6 1971 - 

2015 

45 350 

75017 26.6 Elien Buligill 96 1976 - 

2015 

40 57.2 

76001 189 Haweswater 

Beck 

Burnbanks 33 1979 - 

2015 

37 48.38 

76003 90.9 Eamont Udford 396.2 1961 - 

2015 

55 582 

76004 113.3 Lowther Eamont Bridge 158.5 1962 - 

2015 

54 271 



76005 92.4 Eden Temple Sowerby 616.4 1964 - 

2015 

52 1150 

76007 9.9 Eden Sheepmount 2286.5 1966 - 

2015 

50 1900 

76008 18.4 Irthing Greenholme 22 1967 - 

2015 

49 230 

76014 158.1 Eden Kirkby Stephen 69.4 1971 - 

2015 

45 140 

76015 144.2 Eamont Pooley Bridge 145 1976 - 

2015 

40 268 

76809 N/A Caldew Cummersdale 244 1997 - 

2015 

19 279 

 770 

 771 

Table A2. Estimated (design) flood quantiles for 100-year return periods for the year 772 

2015 and 2014 along with their 95% confidence intervals 773 

Gauge 

Number 

Design Flood Quantile 

Associated With Stationary 

Model With 95% Confidence 

Limits [m3/s] 

Design Flood Quantile 

Associated With the Preferred 

Non-Stationary Model in 2015 

With 95% Confidence Limits 

[m3/s] 

Design Flood Quantile Associated 

With the Preferred Non-

Stationary Model in 2014 With 

95% Confidence Limits [m3/s] 

69023 149.2 [136.04; 163.18] 172.84 [155.64; 190.04] 150.55 [129.91; 171.19] 

69025 643.78 [605.72; 688.24] 661.68 [615.95; 707.41] 652.3 [583.05; 721.55] 

69044 254.02 [235.01; 275.18] 276.85 [247.51; 306.19] 237.92 [210.27; 265.57] 

69803 82.26 [72.4; 92.64] 89.76 [77.41; 102.11] 70.25 [58.44; 82.06] 

71001 1148.13 [1084.32; 1222.5] 1246.76 [1166.88; 1326.64] 1083.77 [987.08; 1180.46] 

71004 512.65 [479.79; 548.59] 497.44 [461.3; 533.58] 205.35 [178.30; 232.40] 

71010 213.23 [196.99; 233] 238.09 [217.09; 259.09] 200.66 [177.28; 224.04] 

71013 71.52 [62.34; 81.7] 72.58 [61.24; 83.92] 63.86 [50.96; 76.76] 

71014 273.58 [252.58; 296.81] 271.38 [248.43; 294.33] 235.71 [210.41; 261.01] 

72004 1880.55 [1780.6; 1998.5] 2046.16 [1919.62; 2172.7] 1890.58 [1718.25; 2062.91] 

72005 622.08 [583.51; 665.98] 878.63 [820.24; 937.02] 824.28 [737.23; 911.33] 

72011 549.4 [515.85; 588.57] 549.4 [510.22; 588.58] 549.4 [515.85; 588.57] 

72014 39.63 [31.68; 47.09] 44.04 [34.36; 53.72] 38.75 [29.00; 48.50] 

72015 378.87 [353.15; 408.34] 524.48 [486.76; 562.2] 486.88 [436.17; 537.59] 

73002 12.27 [4.99; 18.31] 21.48 [13.12; 29.84] 16.04 [8.10; 23.98] 

73005 554.7 [520.53; 593.38] 488.76 [453.12; 524.4] 487.58 [436.05; 539.11] 

73008 106.19 [94.99; 118.32] 136.47 [121.4; 151.54] 125.02 [109.52; 140.52] 

73009 109.75 [97.38; 123.07] 112.45 [98.78; 126.12] 112.13 [96.40; 127.86] 

73010 255.95 [236.68; 276.99] 234.41 [213.62; 255.2] 221.86 [197.06; 246.66] 

73011 200.59 [183.67; 219.41] 242.66 [221.39; 263.93] 235.83 [208.96; 262.70] 

73012 433.13 [404.66; 465.26] 433.13 [400.74; 465.52] 433.13[404.66; 465.26] 

74001 304.99 [282.87; 328.59] 392.98 [362.94; 423.02] 392.37 [346.97; 437.77] 

74002 42.64 [33.23; 50.82] 47.93 [38.03; 57.83] 42.14 [31.67; 52.61] 



74003 79.51 [68.83; 90.93] 127.03 [112.51; 141.55] 115.49 [97.44; 133.54] 

74006 184.83 [169.85; 201.03] 204.68 [185.63; 223.73] 203.96 [180.03; 227.89] 

74008 124.45 [111.91; 138.63] 149.81 [133.96; 165.66] 140.55 [122.48; 158.62] 

75001 84.81 [73.24; 96.24] 103 [91.47;  114.53] 88.14 [72.96; 103.32] 

75005 316.24 [293.96; 341.9] 338.36 [315.98; 360.74] 308.18 [271.25; 345.11] 

75009 426.4 [398.81; 457.33] 457.02 [423.24; 490.8] 423.37 [378.62; 468.12] 

75017 57.09 [46.8; 65.56] 64.24 [53.38; 75.1] 57.42 [45.56; 69.28] 

76001 68.26 [57.56; 78.72] 102.77 [89.66; 115.88] 90.85 [75.69; 106.01] 

76003 570.82 [535.75; 611.56] 695.01 [647.34; 742.68] 637.21 [568.01; 706.41] 

76004 406.3 [378.63; 436.31] 388.3 [358.53; 418.07] 387.51 [341.96; 433.06] 

76005 969.06 [914.04; 1034.02] 1598.2 [1497.81; 1698.59] 1533.83 [1376.83; 1690.83] 

76007 1719.56 [1627.37; 1829.06] 2319.85 [2177.33; 2462.37] 2135.57 [1934.53; 2336.61] 

76008 572.05 [537.28; 612.55] 828.37 [772.91; 883.83] 827.68 [745.23; 910.13] 

76014 152.11 [137.71; 167.12] 177.49 [160.02; 194.96] 176.85 [155.21; 198.49] 

76015 165.45 [150.01; 181.11] 165.45 [148.69; 182.21] 165.45 [150.01; 181.11] 

76809 445.01 [415.31; 477.28] 385.64 [356.02; 415.26] 380 [339.00; 421.00] 

 774 

 775 

Table 1. Parameters of stationary and non-stationary models estimated by the MLE 776 

method for station number 69044: River Irwell at Bury Ground 777 

Station Number 69044: River Irwell at Bury Ground 

Parameters μ σ ξ AIC Rank 

B0 B1 B2   

Model 1:S 105.851 

[95.18;116.52] 

- - 19.374 

 

-0.206 

 

412.05 5 

Model 2: μ(t) 95.584 

[77.25;113.92] 

0.502 

[-0.26;1.26] 

- 19.020 

 

-0.204 

 

412.37 6 

Model 3: μ(R) -12.225 

[-91.13;66.68] 

33.662 

[11.15;56.18] 

- 17.477 

 

-0.195 

 

405.57 1 

Model 4 μ(T) 10.867 

[-124.3;146.03] 

10.765 

[-4.581;26.11] 

- 18.956 

 

-0.190 

 

412.03 4 

Model 5: μ(R, t) -10.873 

[-88.27;66.52] 

31.192 

[8.71;53.67] 

0.330 

[-0.34;1] 

17.409 

 

-0.223 

 

406.72 2 

Model 6: μ(t, T) 32.152 

[-114.41;178.71] 

7.661 

[-9.91;25.23] 

0.298 

[-0.59;1.19] 

18.876 

 

-0.194 

 

413.6 7 

Model 7: μ(R, T) -49.163 

[-179.68;81.35] 

31.340 

 [8.09;54.59] 

5.105 

[-8.96;19.17] 

17.421 

 

-0.190 

 

407.05 3 
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 789 

Table 2. Parameters of stationary and non-stationary models estimated by the MLE 790 

method for station number 75005: River Derwent at Portinscale. 791 

 Station Number 75005: River Derwent at Portinscale 

Parameters μ σ ξ AIC Rank 

B0 B1 B2  

Model 1: S 102.926 

[93.19;112.66] 

- - 19.327 -0.338 445.38 6 

Model 2: μ(t) 91.398 

[76.67;106.13] 

0.526 

[-0.01;1.06] 

- 18.496 -0.344 443.62 4 

Model 3: μ(R) 10.106 

[-44.11;64.32] 

26.1 

[10.85;41.35] 

- 16.630 -0.376 435.61 1 

Model 4: μ(T) 88.057 

[-25.67;201.78] 

1.686 

[-11.17;14.5] 

- 19.291 -0.334 447.32 7 

Model 5: μ(R, t) 14.705 

[-41.46;69.61] 

24.11 

[7.37;40.85] 

0.145 

[-0.4;0.69] 

16.524 -0.368 437.34 3 

Model 6: μ(T, t) 141.367 

[38.91;243.83] 

-6.019 

[-18.24;6.2] 

0.667 

[0.06;1.28] 

18.366 -0.359 444.76 5 

Model 7: μ(R, T) 37.487 

[-34.62;109.59] 

28.508 

[12.32;44.7] 

-4.074 

[-12.2;4.04] 

16.556 -0.397 436.8 2 
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 807 

Figure 1. Annual maximum series of flood flows observed between 1940 and 2015 808 

in the study region (stations’ ID codes are indicated on the x axis, records are 809 

arranged from longest to shortest) 810 

811 



 812 

Figure 2. Study area and the location of river gauging stations considered in the 813 

study. 814 

815 



 816 

Figure 3. Mann-Kendall Test (MKT) and Pettitt Test (PT) results in terms of 817 

rejection of the null hypothesis (i.e. MKT: presence of a monotonic trend; PT: 818 

presence of an abrupt change in the mean) for the study sequences of annual 819 

floods (at 5% significance level). 820 

821 



 822 

Figure 4. Best-fit distribution model in north-west England based on AIC 823 

measure. 824 

 825 



 826 

 827 

 828 

Figure 5. Comparison of the estimated 2-year (median) and 100-year (design) flood quantiles for stationary 

and best-fit non-stationary model at gauging station Rock 69044 



 829 

Figure 6. Comparison of the estimated 2-year (median) and 100-year (design) flood quantiles for the 

stationary and best-fit non-stationary model at gauging station Derwent, 75005 



 830 

Figure 7. Ratio of the best-fit non-stationary design flood quantile to the stationary one 831 

in north-west England in 2015 (a) and 2014 (b); for the stations highlighted in red, the 832 

stationary model and the best-fit non-stationary model produce significantly different 833 

flood quantile predictions at 95% confidence level (top right tables list gauging stations 834 

and their ID codes). 835 

836 



 837 

Figure 8. ‘Trend’ map in the design flood quantiles in north-west England in 2015 (a) and 838 

2014 (b), representing how design quantile estimates differ from the stationary estimates 839 

(top right tables list gauging stations and their ID codes). 840 
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