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Bias-corrected estimation of the Rudas-Clogg-Lindsay mixture index of fit

 

Abstract 

Rudas, Clogg and Lindsay (1994) introduced the so-called mixture index of fit, also known as 

pi-star ( *), for quantifying goodness-of-fit of a model. It is the lowest proportion of 

the model perfect. The mixture index of fit has been widely used in psychometric studies. We 

show that the asymptotic confidence limits proposed by Rudas et al. (1994) as well as the 

jackknife confidence interval by Dayton (2003) perform poorly, and propose a new bias-

corrected point estimate, a bootstrap test and confidence limits for the pi-star. The proposed 

confidence limits have coverage probability much closer to the nominal level than the other 

methods do. We illustrate that the proposed method is useful in practice by presenting some 

practical applications to loglinear models for contingency tables.  

 

Key words: RCL mixture index of fit, pi-star, two-point mixture model index, bootstrap, 

confidence interval, psychometrics 

 

1. Introduction 

Rudas, Clogg, and Lindsay (1994) proposed a measure of goodness-of-fit which is referred to 

-s  ( *)

which, if removed from the population or from the sample, makes the fit of the model perfect. 

They demonstrated the properties of the new measure for the independence model in two-way 
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contingency tables, but later the approach has been further developed, investigated, and used 

for addressing various other problems like testing the Rasch model, finite mixtures of item 

response models, minimax and logistic regression (Xi and Lindsay, 1996; Rudas, 1999; 

Schuster, 2002; Dayton, 2003; Verdes and Rudas, 2003; Formann, 2006; Böckenholt and 

Heijden, 2007; Revuelta, 2008; Ispány and Verdes, 2014). 

Rudas et al. (1994) also constructed an asymptotic lower confidence limit for pi-star. They 

mentioned that their confidence limit may be unreliable if the true pi-star is near zero. This 

claim was based on theoretical reasoning Now the 

considerably higher speed of computers allows assessment of coverage properties of 

confidence intervals by simulation. Our simulations revealed that the asymptotic confidence 

limit does not maintain its nominal level even if the true pi-star is large (even for 30% or 

more), and even for very large samples such as 10000 observations per cell. In practical cases 

of statistical modelling, pi-star is expected to be below 30% because a model is usually 

regarded to fit unbearably bad if 30% of the sample must be omitted to reach perfect fit. Thus, 

the RCL asymptotic confidence limit should be improved.  

Dayton (2003) described another method for computing confidence limits for the pi-star 

measure. This is based on normal approximation using the jackknife estimate of the standard 

error (SE) of the sample pi-star. Jackknife replicates are artificial samples by removing one 

sample element from the sample. In this way, from a sample with n elements, n jackknife 

samples can be generated. If a statistic of interest, now the pi-star, is computed from each of 

these jackknife samples, the resulting n pi-star values can be used to estimate the SE of the pi-

star. For more details about jackknife estimates see Efron and Tibshirani (1993). According to 

our experiences, in most practical cases the jackknife confidence limits for the population pi-

star perform better than the asymptotic ones. However, their actual coverage often remains far 
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below the prescribed nominal level. Medzihorsky (2013) developed an R package based on 

the algorithms in Rudas et al. (1994), in which the jackknife confidence limits proposed by 

Dayton (2003) are also implemented. 

We propose a test and a confidence interval (CI) based on bootstrap for pi-star. In Section 2 

we describe our methodology, in Section 3 we present a simulation study to explore the 

properties of the new CI and to compare it to those proposed by Rudas et al. (1994) and 

Dayton (2003). Section 4 describes practical applications of the method to loglinear models 

for contingency tables. Section 5 concludes the paper with some remarks and directions for 

future research. An R script for the proposed procedures is available upon request from the 

first author. 

 

2. Methods  

To define pi-star ( ) in full generality, c A, P), where P 

contains all probability distributions (p.d.) of interest. For a p.d. P P and a statistical model 

M P define  

where M is a p.d. from the statistical model M, and R is an arbitrary p.d. Thus, pi-star is the 

smallest proportion  of contamination so that the contamination-free part M of P fits exactly 

the model M. The definition explains why pi- -point mixture 

 

For count data, the distributions are probabilities of two- or multiway contingency tables, and 

the statistical model M can be the full independence model, a conditional independence 

model, or any other model. With regard to statistical inference, if P represents the population 
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distribution, sampling from this P results in a sample p.d. (or empirical p.d.) P . In this case 

the sample pi-star P  is a natural estimate of the population pi-star or true pi-

star ), see e.g. Xi and Lindsay (1996).  

Asymptotic results 

The following results show that the sample pi-star is a consistent and asymptotically unbiased 

estimate of the population pi-star for discrete distributions with finite support, including two- 

and multiway contingency tables. However, for finite samples used in typical applications (10 

to 1000 per cell on average) it has a considerable upward bias, which is largest if the true pi-

star is near 0 (Rudas et al., 1994; Pan and Dayton, 2011). We also found by simulation that 

the bias decreases with increasing true pi-star. To illustrate the magnitude of bias, for sample 

sizes 700 and 7000 in a 7 by 10 table with true pi-star=0, sample pi-star is on average as high 

as 0.29 and 0.11, respectively. The aim of our method was to correct for bias in this realistic 

range of sample sizes. When the sample size goes to infinity, both the bias and standard error 

of the sample pi-star vanish, thus the difference between our estimate and the sample pi-star 

converges to zero, which means that they are asymptotically equivalent (disregarding the 

bootstrap error, which can be kept low if the number of replications B is high). The main 

advantage of our method lies in the better finite-sample behaviour of the point estimate and 

the confidence limits (see Tables 1 to 3).  

For the propositions below, let us consider the pi-star as a functional on discrete distributions 

with finite support (i.e. with finite number of cells with positive probability).  

Proposition 1:  

The pi-star is continuous on a space of discrete distributions having the same finite support. 
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Proof: 

Let D and D -Chebyshev distance, 

i.e., d(D, D ):  log D   

 with some small  >0, where the maximum is taken over the common support of D and 

D -Chebyshev distance is applied in the log-Chebyshev approximation, see, 

e.g., Exercise 11.21 in Boyd and Vandenberghe (2004). Clearly (1 ) D D ) D

D where  :=1-exp{- }. We will show that this implies (D  (D)+   and  (D)  (D   

and hence (D) - (D   which proves continuity since 0 implies 0. 

From the definition of (D) follows that there exists a distribution M in the model class of 

interest, for which (1 (D))M D. Then (1 )(1 (D))M  D )(1 (D))  

 (1 (D (D  1 (1 )(1 (D))  (D)+ . 

Starting with (D )D  D, the same calculation results in 

(D)   (D .  

Proposition 2:  

The sample pi-star (Dn) converges in probability to the population pi-star (D), 

(Dn)  (D), that is, the sample pi-star is a consistent estimate of the population pi-star.  

Proof: 

First let us note that if some cells in the population distribution D have zero probability, they 

will necessarily have zero counts in any sample (these are the so-called structural zeroes), thus 

these cells have zero probability in the empirical distribution Dn as well as in the model. So 

these cells do not affect the pi-star at all (neither the population pi-star, nor the sample pi-

star).  
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It is known that the empirical distribution Dn of the sample converges in probability to the 

theoretical or population distribution, Dn  D. From this follows that in those cells where the 

population distribution D has positive probability, for large enough samples zeroes occur with 

arbitrarily small probability even in the empirical distribution Dn. Taking into account that the 

pi-star is determined by those cells where the probability is positive, it follows from the 

continuity of pi-star (Proposition 1) that the sample pi-star converges in probability to the 

population pi-star, (Dn)  (D). 

Proposition 3:  

The sample pi-star is an asymptotically unbiased estimate of the population pi-star, and its 

standard error vanishes when the sample size goes to infinity.  

Proof:  

This follows from consistency and boundedness of the pi-star, as boundedness by [0,1] 

implies that all absolute moments of pi-star are finite, and this, together with the convergence 

in probability, provides convergence in Lr for all 0<r<  (see for example Loeve, 1977, 

p. 160).  

The proposed bias-correction 

By bootstrapping it is possible to estimate bias and standard error of estimates, and based on 

this, one can correct for bias and construct tests and confidence intervals (Efron and 

Tibshirani, 1993; Davison, Hinkley and Young, 2003). But in our case, since both the bias 

and SE of the sample pi-star varies with the true pi-star, it is not sufficient to bootstrap only 

from the observed sample. Therefore we generate resamples from the observed sample, and 

also from a distribution with pi-star=0, for which we use the model fitted to data. Although 
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according to our preliminary simulations the bias is not a linear function of the true pi-star, for 

simplicity we use linear interpolation to estimate bias and SE based on these two points 

(distribution of the sample and a distribution with pi-star=0), and evaluate the finite-sample 

performance of this approximate solution by simulation. Even though this linear 

approximation is rather simple, simulation results show that it works well for typical sample 

sizes occurring in empirical studies. It works much better than the jackknife, which estimates 

the bias and SE from the sample alone, thus it cannot take into account that they vary with the 

true pi-star.   

Assume we have a population with true pi-star true (for better readability we omit the star in 

the formulas), and a sample drawn from it, that is, a sample generated from that distribution. 

Let us denote the sample pi-star by obs. Let us draw B bootstrap samples from the sample, 

and another B samples from the model fitted to the data, which represents a distribution with 

pi-star = 0. Let mb, mb0, sb, sb0 denote the mean and SD of pi-star for these bootstrap samples.  

The bootstrap estimate of the bias of sample pi-star is mb obs for true pi-star equal to obs, 

and mb0 for true pi-star equal to 0. From this, the linearly interpolated bias for an arbitrary true 

pi-star  is  

 bias   / obs) mb0 +  / obs (mb obs) (1) 

The bias-corrected bootstrap estimate of pi-star can be obtained by solving the equation  

obs =  + bias  

which gives 

est = obs ( obs  mb0) / (mb  mb0).  (2) 
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By the same reasoning we obtain the following interpolated standard error of sample pi-star 

for an arbitrary true pi-star   

 s   / obs) sb0 + (  / obs) sb (3) 

If testing for H0: true = , normal approximation leads to the following acceptance region  

 + bias   tcrit s        to        + bias  + tcrit s  (4)

where tcrit denotes the critical value of the Student-t distribution on B

For a two-sided test tcrit /2) quantile, while for a one-sided test it is ) 

quantile of the distribution, where  denotes the prescribed Type I error rate. 

Combining the above results, we obtain for the lower endpoint of the acceptance region the 

following expression 

 L  =   / obs) mb0 +  / obs (mb obs)  tcrit  / obs) sb0 + (  / obs) sb}  (5) 

and similarly for the upper endpoint  

 U  =   / obs) mb0 +  / obs (mb obs) + tcrit  / obs) sb0 + (  / obs) sb}.  (6) 

If obs is within the acceptance region, that is, if L   obs U  , then we accept H0, else reject 

it. A confidence interval can be obtained by inverting this test, that is, by finding the minimal 

and maximal  for which the inequality L   obs U   holds. This can be obtained by 

solving the equations L  = obs and U  = obs for . This results in the following confidence 

limits 

 LCL = obs ( obs mb0 tcrit sb0) / {mb mb0 + tcrit (sb  sb0)}  (7) 

and  
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UCL = obs ( obs mb0 + tcrit sb0) / {mb mb0 tcrit (sb sb0)} . (8)

Figure 1 illustrates the proposed procedure. It demonstrates that dependence of both the bias 

and the standard error of the sample pi-star is approximated linearly by the procedure. Since 

the approximation is based on two points, on the sample and the fitted model (a distribution 

with pi-star equal to zero), it is expected to describe this dependence better than a method 

based only on the sample (like the jackknife, or bootstrapping only from the sample).  

(Figure 1 here) 

If working with a small number of bootstrap replications to reduce computer time, the 

estimate of SE may be imprecise. Therefore, to keep the CI conservative, we can substitute 

the smaller one of sb0 and sb with the larger one. This leads to the following confidence limits 

 LCL = obs { obs mb0 tcrit max(sb0, sb)} / (mb mb0)  (9) 

and  

 UCL = obs { obs mb0 + tcrit max(sb0, sb)} / (mb mb0 ) .  (10) 

If the procedure results in confidence limits less than 0 or greater than 1, the value is truncated 

to 0 or 1.  

 

3. Simulation study 

The proposed test and CI are based on bootstrap bias correction, linear interpolation, and 

normal approximation, thus they are not exact. In order to explore how well they perform for 

finite samples, we carried out a simulation study. To enable a comparison with the RCL lower 

confidence limit and the jackknife confidence limits by Dayton (2003), we included those too 



10

in the simulation study. Similarly to Rudas et al. (1994) and Pan and Dayton (2011), we 

investigated the performance of the methods in the context of independence model in two-

way contingency tables. We included table sizes of 3x5, 5x7, 7x10, and 10x14. For each table 

size, sample sizes were 10, 100, and 1000 per cell on average.  

For each combination of table size and sample size we generated 2000 populations (that is, 

distributions) and for each of them we determined its pi-star by the iterative procedure 

proposed by Rudas, Clogg, and Lindsay (1994) and 

(Medzihorsky, 2013). Then we drew a random sample from each population, determined the 

sample pi-star, and computed the 95% bootstrap, jackknife, and RCL confidence limits for the 

population pi-star, and recorded whether or not the confidence limits covered the 

corresponding population pi-star. In the followings, we give the details of data generation. 

Each population distribution D was generated as follows.  

1. First a k by m table D0 with independent marginals was generated. Each marginal 

distribution was a vector of uniform random numbers from [0.1, 1], divided by their sum, 

and cell probabilities were obtained as the product of the corresponding marginal 

probabilities. 

2. Then a k by m table of noise (D1) was generated with uniform random numbers from 

[0.1, 1], divided by their sum. 

3. The population distribution was generated by mixing D0 and D1 according to  

D = (1 p)D0 + pD1, where p was a uniform random number from [0.1, 1]. 

By applying this procedure, the pi-star of the generated population D is a random number that 

is typically less than the mixing proportion p. The reason for using this method is that no 

procedure is known for generating a distribution with a prescribed pi-star. In the simulation 
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study, the range of population pi-star values extended from 0 to 0.6, what we found sufficient 

to draw practical conclusions. We decided to generate a mixture of model and noise because 

when we generated just arbitrary tables (that is, pure noise), low pi-star values occurred very 

rarely, unlike practical applications, where low pi-star values may also occur. 

From each population one single sample was drawn. The reason for this was that, although 

this made the simulation slower, we wanted to include as many different populations as 

possible. In each simulation run with a fixed table size, 2000 populations were generated, and 

from each population the sample was taken according to the multinomial model (with fixed 

table total). Altogether 12 such runs were made (4 table sizes combined with 3 sample sizes). 

In the simulation we applied the bootstrap confidence limits defined by (9) and (10) with B = 

20. For the simulation we used our random search algorithm (2013) 

pistar  package. In a small validation run we compared the two procedures and found good 

agreement between the estimates.  

Simulation results 

Table 1 shows that the bias correction was successful, the new point estimate has 

considerably smaller bias than the sample pi-star for all simulated table and sample sizes. At 

the same time, its deviation from the true population pi-star is also smaller in most cases, no 

matter if it is measured by the absolute or squared deviation.  

(Table 1 here) 

Coverage rates of the lower confidence limit and the two-sided confidence interval obtained 

by the proposed method are presented in Tables 2 and 3. Each item in the tables is estimated 

from simulation with 2000 Monte Carlo replications. 
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(Tables 2 and 3 here) 

Table 2 shows that the coverage of the bootstrap lower confidence limit for various table sizes 

and sample sizes varies between 89.7% and 94.4% for 90%; between 94.9% and 97.9% for 

95%; and between 98.5% and 99.6% for 99% nominal confidence level. Table 3 shows that 

the coverage of the two-sided bootstrap confidence interval varies between 88.4% and 93.3% 

for 90%; between 93.6% and 96.7% for 95%; and between 98.2% and 99.3% for 99% 

nominal confidence level. Thus, according to the simulation results, the coverage of the lower 

confidence limit is acceptable for all table sizes, even for cell counts as small as 10/cell on 

average. For small contingency tables also the two-sided confidence interval has acceptable 

coverage, but it seems that for larger tables combined with small sample sizes the coverage of 

the two-sided interval gets too low.  

Table 4 reports the coverage of the 95% RCL lower confidence limit and the jackknife lower 

confidence limit for various table sizes and sample sizes, and shows that both the lower 

confidence limit by Rudas et al. (1994) and the jackknife limit by Dayton (2003) performs 

rather poorly even for samples as large as 10000/cell. In the worst cases the coverage turned 

out to be as low as 53.2% for the RCL, and 55.8% for the jackknife limit. Here too, coverage 

values are based on 2000 Monte Carlo replicates.  

(Table 4 here) 

 

4. Applications 

In this section we present four practical applications with real data, including applications to 

social science and psychology, and we show that the proposed method is useful in practice. 
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Let us consider first the two examples analysed in Rudas et al. (1994). In both cases, the 

model of interest is the independence model in a two-way contingency table. The first 

example, originally considered by Snee (1974), involves a 4 by 4 table cross-classifying eye 

colour and hair colour of 592 subjects. The proposed bootstrap procedure with B = 50 (that is, 

with 50 bootstrap replications from the sample and 50 replications from the model) results in 

a sample pi-star of 0.296, which is fairly close to 0.298, the value obtained by Rudas et al. 

(1994), and is equal to that calculated by Ispány and Verdes (2014). This value was obtained 

by our random search algorithm as well as by Medzihorsky  (2013)  package. The 

estimated population pi-star, after correcting the bias of the sample pi-star, is 0.262. Our 90% 

bootstrap confidence interval is from 0.199 to 0.325, the lower endpoint of which can be 

regarded as a 95% lower confidence limit for the population pi-star. This means that the data 

deviate considerably from the independence model, which is in accordance with the chi-

square test ( 2 = 138.3, df = 9, p<0.0001) but the pi-star analysis reveals more details of their 

relation. The bias-corrected pi-star is markedly lower than those by Rudas et al. (1994) and 

Dayton (2003), which are 0.236 and 0.230, respectively. Note that the upper confidence limit, 

0.325 also has a clear meaning: it is not reasonable to think that the population pi-star is 

greater than this value because from a population with pi-star higher than 0.325 one would 

expect a sample with larger sample pi-star.  

The second example, which Rudas et al. (1994) took from Cramer (1946), is a 5x4 table 

cross-classifying the number of children by grouped annual income level of 25263 

households. For this contingency table the proposed bootstrap procedure (again with B = 50) 

results in a sample pi-star of 0.102, and in a bias-corrected estimate of the population pi-star 

of 0.099. Our 90% confidence interval is from 0.087 to 0.112. Here too, the sample pi-star is 

fairly close to 0.104, that obtained by Rudas et al. (1994), but the lower confidence limit is 

again a little below that obtained by them (0.091). Surprisingly, the jackknife lower 
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confidence limit is here higher (0.093) than the asymptotic one. Here again, although the 

results of the classical association analysis are similar to that of the pi-star analysis 

V = 0.087, 2 = 568.6, df = 12, p<0.0001), the latter quantifies the deviation in a more 

palpable way.  

Our third example, taken from Richburg et al. (2009), addresses an important issue in higher 

education learning: the relationship between student gender and course grades. The data are 

displayed in Table 5, summarizing gender and grade of 778 students in 30 different classes at 

a small regional university. The literature on the relationship between student characteristics 

and academic achievement in higher education is rather vast. However, most studies measure 

academic achievement through enrolment figures, degree attainment figures and grade point 

averages, rather than course grades, what makes the study by Richburg et al. (2009) 

remarkable. 

(Table 5 here) 

For this table, the sample pi-star is 0.076 and the estimated population pi-star after bias 

correction is 0.040. Our 90% bootstrap confidence interval is from 0 to 0.108. This estimate 

means that independence between gender and grade can be assumed for 96% of the student 

population. As the lower confidence limit is 0, the sample does not provide strong evidence 

against independence of gender and grade, given the deviation is measured by the mixture 

index pi-star. At the same time, the asymptotic and jackknife lower confidence limits are 

0.029 and 0.016, respectively. In the light of the above simulation results, presumably both of 

them are biased, in particular the asymptotic one. Classical methods for the analysis of 

association detected a weak but statistically significant association between gender and grade. 

coefficient was 0.126, and chi-square test ( ) resulted 

in p=0.0152. However, stating that this association affects about 4% of the students (and 



15

presumably not more than 11% of them) is much easier to interpret. The lower confidence 

limit being 0, the pi-star analysis concludes that these data are no strong evidence against 

independence. However, thinking of the critics against the chi-square test that it rejects the 

null hypothesis too often for large samples (Diaconis and Efron, 1985), this may even be 

considered as an advantage. 

In the last application we analyze the data set in Agresti (2002), page 322, representing the 

results of a survey in which 2276 high school students were asked in their last year in school 

whether they had ever used alcohol, cigarettes, or marijuana. The data set has been re-

analyzed several times and is also available in the R package vcdExtra (Friendly, 2015). First 

we fit the independence model that assumes full independence of the three factors. For this 

model, the sample pi-star is 0.330, and the 95% asymptotic and jackknife lower confidence 

limits are equal, namely 0.314. Our method (with B=50 replications) results in a bias-

corrected estimate of the population pi-star 0.304. The 90% CI (whose lower endpoint is a 

95% lower confidence limit) is [0.127, 0.481]. These results indicate that the fit of the 

independence model is rather poor. This is in agreement with the result of chi-square test for 

independence ( 2 = 2676, df = 7, p<0.0001), but expresses it more specifically. It should also 

be emphasized that the RCL as well as the jackknife lower confidence limits are much higher 

than the lower endpoint of the bootstrap CI. This is in accordance with our simulation results 

that the RCL limits may not maintain the nominal confidence level. 

Next we consider the conditional independence model assuming that conditioned on the 

smoking status, alcohol and marihuana use are independent. For this model, the sample pi-star 

is 0.036, and the 95% asymptotic and jackknife lower confidence limits are equal again, 

0.029. Applying our method to this model, it turns out that in this case the bias of the sample 

estimate is negligible. The bias-corrected estimate of the population pi-star is also 0.036, with 
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a 90% CI of [0.023, 0.048]. Here too, the asymptotic and jackknife lower confidence limits 

are somewhat higher than the lower endpoint of the new CI, but now the difference is rather 

small. Chi-square analysis results in a rather bad fit of the model (p<0.0001) which 

demonstrates again sensitivity of the goodness-of-fit tests to sample size (Diaconis and Efron, 

1985). Although pi-star analysis does not support model fit either, it quantifies the deviation 

in a more specific and interpretable way, namely that this affects about 3% (at least 2%, at 

most 5%) of the population.  

 

5. Discussion 

Although computation of pi-star is very time-consuming, and procedures for this are not 

included in the most widely used commercial software packages, its applications have 

appeared from time to time in various research fields, among others in psychometrics 

(Schuster, 2002; Dayton, 2003; Formann, 2006; Revuelta, 2008).   

By now, the increasing speed of computers made it possible to examine the finite sample 

properties of the RCL asymptotic lower confidence limit and the jackknife confidence limit, 

and to compare the proposed new confidence interval to them. Our simulations revealed that 

both the asymptotic and the jackknife confidence limits have rather low coverage probabilities 

even with as large samples as 10000 per cell on average (Table 4). At the same time, the new 

CI has good coverage in most of the examined cases (Tables 2 and 3). It should be noted that 

our study has the limitation that we investigated the performance of the procedures only for 

two-way contingency tables.  

At first sight it may seem strange that the jackknife performs so poorly for the largest sample 

sizes. The reason for this is that in case of a very large sample removing one single sample 
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element causes just a minuscule change in the pi-star that is below the computational 

precision, which leads to numerically indistinguishable jackknife pi-star values, that is, to 

zero jackknife standard error, and as a result, the confidence interval fails.  

Xi and Lindsay (1996) noticed that the EM algorithm proposed by Rudas et al. (1994) may 

result in an infeasible solution, that is, in which the model counts are greater than the 

observed ones, while the algorithm proposed by Xi and Lindsay does not suffer from this. We 

also experienced this when using the R package by Medzihorsky (2013), although in most 

cases it affected just the third decimal of the resulting pi-star value.  

Our ad hoc method uses the bootstrap to estimate the bias and standard error of the sample pi-

star, then linear interpolation to correct for the bias, and normal approximation to compute the 

confidence limits, of which linearity is just a crude approximation. It is a future task to find a 

more realistic curve for describing the relation between population and sample pi-star, which 

may reduce length of CI.   

The question arises whether pure bootstrap would produce comparable results with this hybrid 

procedure. To explore this, we made simulation experiments with the two best bootstrap 

confidence intervals, the percentile interval and the bias-corrected accelerated (BCa) interval 

(Efron and Tibshirani, 1993; DiCiccio and Efron, 1996) applying them to 3 by 5 tables with 

n=15000. In spite of the much higher number of bootstrap replications (B=500, 12.5-fold of 

that used in the simulation with our method), the experiment resulted in disappointingly low 

coverage probabilities (88% and 77% at a nominal level of 95%).    

Although Rudas et al. (1994) focused on the lower confidence limit (most probably for 

computational reasons), it is meaningful to calculate an upper limit as well. As pi-star is a 

functional of a distribution, and it has a sampling distribution, it is also reasonable to search 

for two-sided confidence intervals. Even from the practical point of view, it is clear that one 



18

does not expect excellent model fit for a sample drawn from a population which is rather 

poorly described by that model. The two-sided CI represents the range of population pi-star 

values which are in accordance with the observed sample. It is plausible to reject too small as 

well as too large population pi-star values based on a sample from the population. 

The coverage of the two-sided bootstrap CI is not as good as that of the lower confidence 

limit. The reason for this is the linear approximation based on a population with pi-star=0. 

Simulations confirmed the expectation that while the lower limit is conservative, the upper 

limit is too liberal. A possible direction for future research is to apply double bootstrap around 

the observed pi-star to obtain a better solution (Booth and Hall, 1994). Unfortunately, this 

would increase the computing time so much that it would prevent from exploring the finite 

sample properties of the method by simulation, at least with the current computing facilities 

(Booth and Presnell, 1998). Another way to improve the coverage would be to find a non-

linear function that describes better the relation between population and sample pi-star than 

the linear approximation applied here.  

It is important to recognize that the numerical precision of the pi-star calculation may have a 

non-negligible influence on the estimates. Especially with very large samples, when the 

magnitude of the numerical and sampling errors are comparable, the numerical imprecision 

may seriously affect the point estimate as well as the jackknife or bootstrap standard error. 

Therefore, as a general rule, the numerical error should be kept by one magnitude lower than 

the expected sampling error at the particular sample size. The algorithms allow this at the 

expense of longer computing time.    

 



19

References 

Agresti, A. (2002). Categorical Data Analysis, 2nd ed. John Wiley & Sons, Hoboken, New 

Jersey, USA. 

Booth, J. G., Hall, P. (1994). Monte Carlo approximation and the iterated bootstrap. 

Biometrika, 81, 331-340. 

Booth, J., Presnell, B. (1998). Allocation of Monte Carlo Resources for the Iterated Bootstrap. 

Journal of Computational and Graphical Statistics, 7, 92-112. 

Boyd, S., Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, 

Cambridge, UK. 

Böckenholt, U., van den Heijden, P. G. M. (2007). Item randomized-response models for 

measuring noncompliance: risk-return perceptions, social influences, and self-protective 

responses. Psychometrika, 72, 245-262. 

Cramer, H. (1946). Mathematical Methods in Statistics. Princeton University Press, Princeton, 

USA. 

Davison, A.C., Hinkley, D.V., Young, G.A. (2003). Recent Developments in Bootstrap 

Methodology. Statistical Science, 18, 141-157. 

Dayton, C. M. (2003). Applications and computational strategies for the two-point mixture 

index of fit. British Journal of Mathematical and Statistical Psychology, 56, 1-13. 

Diaconis, P., Efron, B. (1985) Testing for independence in a two-way table: new 

interpretations of the chi-square statistic. The Annals of Statistics, 13, 845-874. 



20

DiCiccio, T. J., Efron, B. (1996). Bootstrap Confidence Intervals. Statistical Science, 11, 189-

228. 

Efron, B., Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hall, London, 

U.K. 

Formann, A.K. (2006). Testing the Rasch model by means of the mixture fit index. British 

Journal of Mathematical and Statistical Psychology, 59, 89-95. 

Friendly, M. (2015). vcdExtra: 'vcd' Extensions and Additions. R package version 0.6-8. 

http://CRAN.R-project.org/package=vcdExtra (assessed on 2 June 2016) 

Ispány, M., Verdes, E. (2014). On the robustness of mixture index of fit. Journal of 

Mathematical Sciences,  

Loeve, M. (1977). Probability Theory I, 4th ed. Springer-Verlag, New York, USA. 

https://github.com/jmedzihorsky/pistar/blob/master/pistar_0.5.2_manual.pdf (assessed on 29 

April 2016) 

Pan, X., Dayton, C. M. (2011). Factors Influencing the Mixture Index of Model Fit in 

Contingency Tables Showing Independence. Journal of Modern Applied Statistical Methods, 

Volume 10, Issue 1, Article 16. 

Revuelta, J. (2008). Estimating the pi* goodness of fit index for finite mixtures of item 

response models. British Journal of Mathematical and Statistical Psychology, 61, 93-113. 

Richburg, K., Lewis, W., Barbour, K., Caines, W. R.  (2009). Academic grades: Does race or 

gender matter? The Journal of Learning in Higher Education, 5, 13-20. 



21

Rudas, T. (1999). The mixture index of fit and minimax regression. Metrika, 50, 163-172. 

Rudas, T., Clogg, C. C., & Lindsay, B. G. (1994). A new index of fit based on mixture 

methods for the analysis of contingency tables. Journal of the Royal Statistical Society, Series 

B, 56, 623 639. 

Schuster, C. (2002). A mixture model approach to indexing rater agreement. British Journal 

of Mathematical and Statistical Psychology, 55, 289-303.  

Snee, R. (1974). Graphical display of two-way contingency tables. The American Statistician, 

38, 9-12. 

Verdes, E., Rudas, T. (2003). 

Fit of Logistic Regression. In: Haitovsky, Lerche, Ritov (eds.), Foundations of Statistical 

Inference: Proceedings of the Shoresh Conference 2000, Springer Physica Verlag, 

Heidelberg.  

Xi, L. & * index of fit for the analysis of 

contingency tables. Sociological Methods and Research, 25, 248 259. 



22

Table 1. Comparison of the new point estimate to the sample pi-star with respect to bias, 

mean absolute deviation (MAD) and root mean squared deviation (RMSD) from the true 

population pi-star. Each entry is calculated from 2000 simulated populations and samples.  

 Sample pi-star Bias-corrected pi-star 

 Bias MAD RMSD Bias MAD RMSD 

3x5,  n=150 0.097 0.104 0.123 0.001 0.086 0.107 

 n=1500 0.016 0.027 0.034 -0.005 0.027 0.035 

 n=15000 0.002 0.008 0.010 -0.001 0.008 0.011 

5x7,  n=350 0.133 0.135 0.154 -0.007 0.082 0.103 

 n=3500 0.023 0.029 0.037 -0.006 0.024 0.031 

 n=35000 0.003 0.008 0.010 -0.002 0.007 0.010 

7x10,  n=700 0.156 0.156 0.175 -0.010 0.073 0.092 

 n=7000 0.028 0.032 0.040 -0.008 0.021 0.027 

 n=70000 0.004 0.007 0.010 -0.001 0.006 0.008 

10x14, n=1400 0.184 0.184 0.203 -0.006 0.063 0.080 

 n=14000 0.034 0.035 0.045 -0.008 0.019 0.024 

 n=140000 0.005 0.008 0.010 -0.001 0.006 0.007 
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Table 2. Coverage of the bootstrap lower confidence limit for various table sizes and sample 

sizes. 

Table size n (n/cell) Coverage of the  
90% lower CL 

Coverage of the  
95% lower CL 

Coverage of the  
99% lower CL 

   3x5 150 (10/cell) 0.912 0.957 0.989 

 1500 (100/cell) 0.927 0.964 0.994 

 15000 (1000/cell) 0.913 0.960 0.992 

   5x7 350 (10/cell) 0.910 0.955 0.993 

 3500 (100/cell) 0.933 0.969 0.994 

 35000 (1000/cell) 0.915 0.958 0.990 

   7x10 700 (10/cell) 0.903 0.949 0.989 

 7000 (100/cell) 0.944 0.974 0.994 

 70000 (1000/cell) 0.919 0.958 0.989 

   10x14 1400 (10/cell) 0.897 0.951 0.985 

 14000 (100/cell) 0.949 0.979 0.996 

 140000 (1000/cell) 0.911 0.952 0.988 
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Table 3. Coverage of the two-sided bootstrap confidence interval for various table sizes and 

sample sizes. 

Table size n (n/cell) Coverage of the  
90% two-sided CI 

Coverage of the  
95% two-sided CI 

Coverage of the  
99% two-sided CI 

   3x5 150 (10/cell) 0.933 0.967 0.990 

 1500 (100/cell) 0.918 0.961 0.991 

 15000 (1000/cell) 0.908 0.951 0.987 

   5x7 350 (10/cell) 0.913 0.960 0.993 

 3500 (100/cell) 0.917 0.958 0.992 

 35000 (1000/cell) 0.894 0.947 0.986 

   7x10 700 (10/cell) 0.888 0.947 0.991 

 7000 (100/cell) 0.913 0.960 0.993 

 70000 (1000/cell) 0.903 0.946 0.987 

   10x14 1400 (10/cell) 0.876 0.936 0.985 

 14000 (100/cell) 0.885 0.942 0.989 

 140000 (1000/cell) 0.884 0.939 0.982 
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Table 4. Coverage of the 95% RCL lower confidence limit and the jackknife lower confidence 

limit for various table sizes and sample sizes. 

Table 
size 

Average sample size /cell 
100 1000 10000 

RCL  jackknife RCL  jackknife RCL jackknife 

3x5 0.870  0.892 0.904 0.924 0.938 0.794 

5x7 0.740 0.784 0.878 0.858 0.926 0.758 

7x10 0.619 0.686 0.826 0.732 0.906 0.716 

10x14 0.532 0.558 0.771 0.740 0.923 0.688 
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Table 5. Contingency table of grade by gender of 778 university students, as reported by 

Richburg et al. (2009). 

 Grade 

Gender A B C D F 

Female 76 128 130 45 31 

Male 51 104 121 38 54 
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Figure 1. Illustration of the linear interpolation of the bias and SE of the sample pi-star, and 

construction of the confidence interval. The x axis represents the pi-star of the distribution 

from which the resamples are generated, the y axis represents the pi-star of the resamples 

 


