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When the connection to Internet is not available during networking activities, an opportunistic approach exploits the encounters
between mobile human-carried devices for exchanging information. When users encounter each other, their handheld devices can
communicate in a cooperative way, using the encounter opportunities for forwarding their messages, in a wireless manner. But,
analyzing real behaviors, most of the nodes exhibit selfish behaviors, mostly to preserve the limited resources (data buffers and
residual energy). That is the reason why node selfishness should be taken into account when describing networking activities: in
this paper, we first evaluate the effects of node selfishness in opportunistic networks. Then, we propose a routing mechanism for
managing node selfishness in opportunistic communications, namely, SORSI (Social-based Opportunistic Routing with Selfishness
detection and Incentive mechanisms). SORSI exploits the social-based nature of node mobility and other social features of nodes
to optimize message dissemination together with a selfishness detection mechanism, aiming at discouraging selfish behaviors and
boosting data forwarding. Simulating several percentages of selfish nodes, our results on real-world mobility traces show that SORSI
is able to outperform the social-based schemes Bubble Rap and SPRINT-SELF, employing also selfishness management in terms
of message delivery ratio, overhead cost, and end-to-end average latency. Moreover, SORSI achieves delivery ratios and average

latencies comparable to Epidemic Routing while having a significant lower overhead cost.

1. Introduction

Even if the Internet with its ubiquity has revolutionized
the way in which we communicate, there are still some
scenarios where this network infrastructure is not available.
Examples of these scenarios are disaster/recovery situations,
big sports events, and music festivals, or more in general,
areas where the Internet is expensive, not available, or
overloaded. In such situations, an alternative communication
medium is necessary. Delay Tolerant Networks (DTNs) [1-
3] and Opportunistic Networks [4] have gained a lot of
interests in these last years thanks to their capability to face
the uncertainty of a fixed network infrastructure providing
connectivity between mobile devices. In future Internet there
are some scenarios where it is not possible to guarantee an
any-time end-to-end connectivity and it is not always known

a priori the topology or network infrastructure. Examples
of these scenarios are disaster/recovery situations, big sports
events, and music festivals, or more in general, areas where
the Internet is expensive, not available, or overloaded. In
such situations, an alternative communication medium is
mandatory and, at this purpose, DTNs and ONs can become
a promising communication paradigm [5-7]. Since an end-
to-end path between mobile phone, hand-on devices, or
other terminals is not always available, opportunistic routing
algorithms need to be designed with different features in
comparison with routing for traditional Mobile Ad Hoc
Networks (MANETS). Because nodes are not always part of
a precomputed path, it is necessary for mobile nodes to store
messages waiting to meet during their movement some nodes
with good characteristics (on the basis of the metric) where
to forward the message. Because it is not known how long
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time a packet can be buffered, novel forwarding strategies and
a specific bundle layer need to be designed to guarantee a
hop-by-hop data delivery. Moreover, a stronger store-carry-
forward approach needs to be applied for each node and
all nodes form a DTN domain due to their capability to
tolerate data delivery delay. In this context, opportunistic
networking and forwarding can be a useful and mandatory
approach to offer to each node an opportunity to send data
packet freeing space in its buffer [8-11]. The opportunistic
approach assumes that nodes that want to transmit can use
some specific metric to select the next hop where forwarding
the data, and the receiving node is assumed that want to
receive the data packet sent by node encountered. However,
in these last years, the second assumption is not always
considered because it has been observed as in the real life
nodes can be also selfish instead of cooperative. Because
some resources are limited such as buffer size, energy budget,
or other constraints, mobile nodes cannot see benefits in
participating in a collaborative way to the communication.
This selfish behavior can also be evident not at the beginning
of the communication but during the network dynamic on
the basis of the constraints and budgets that can be exhausted.
In this case, if some countermeasures are not adopted, there
is the risk that after some period, some nodes stop to forward
data packet increasing the data delay, reducing the data packet
delivery ratio, and losing the advantage of a flexible paradigm
such as DTNs.

This paper proposes a routing mechanism for opportunis-
tic networks able to mitigate the effect of node selfishness.
Exploiting the social-based nature of human encounters, we
propose a selfishness-aware opportunistic routing scheme
able to maximize message delivery. As a matter of fact,
message dissemination in opportunistic networks can be
efficiently performed using social-based routing metrics.
Several works such as [6, 7, 12-17] demonstrate that the
nodes with a highly social behavior are good carriers and
are thus able to improve message delivery. However, how
to extract node sociality and define efficient routing metrics
is still challenging. First, opportunistic networks are highly
dynamic and it is not easy to reconstruct a nodes social
behavior. Second, when representing the network as a social
graph, several metrics are able to define the sociality and the
social position of a node (see, for example, the social metrics
analyzed in [18]). Each of these metrics is not always easily
computable in a distributed way on a dynamic graph. Third,
each node may interact in different social contexts like real
world when moving, online world using social networking
websites, and so on. As such, each node has a sociality that
can be defined “multilayer” [18].

Starting from the above considerations, to select an
effective forwarding node, the routing scheme we propose,
named SORSI (Social-based Opportunistic Routing with
Selfishness detection and Incentive mechanisms), measures
the forwarding capability of a node when compared to
an encountered node in terms of node centrality (i.e., the
importance/position of a node within a social graph), tie
strength, and link prediction. Each of these routing metrics
is computed in a distributed way on a particular social
network layer that describes a social dimension. Since each
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mobile user may have social relationships on several social
dimensions/layers (e.g., real life, Facebook, Twitter, etc.), this
protocol exploits the user multilayer sociality for computing
forwarding paths and improving message dissemination.
Moreover, it adds a selfishness detection mechanism based
on the history of message exchanges for incentivizing the
forwarding of packets. Starting from the work in [19] where
the effect of selfish nodes in the network performance has
been presented, in this paper we propose a mechanism to
detect selfish nodes and to discourage their behavior. This
mechanism has been designed and implemented in a multi-
layer social routing in order to test its effectiveness and it has
been compared with other well-known data dissemination
techniques for opportunistic networks. So, the contributions
of this paper can be summarized as follows:

(i) We characterize the situations in which an oppor-
tunistic network node may act selfishly.

(ii) We analyze the effect of node selfishness in oppor-
tunistic networks through simulations.

(iii) We propose a multilayer social-based routing scheme
with selfishness management and compare it to three
reference opportunistic routing protocols over two
experimental datasets of human mobility with differ-
ent connectivity patterns.

(iv) We show that, in general, as the proportion of nodes
acting selfishly in the network increases, the message
delivery ratio decreases and the average end-to-end
latency increases.

(v) We show that the use of multilayer social network
information together with selfishness detection is
able to achieve delivery ratios and average latencies
comparable to epidemic delivery with a much lower
overhead cost.

The paper has been organized as follows. Section 2
provides background information. Section 3 discusses the
selfish node problem in opportunistic networks and analyzes
its effect on routing through simulations. Section 4 describes
our proposal SORSI. In Section 5, we detail the simulation
setup for SORSI evaluation and discuss the results. Finally,
Section 6 concludes the paper summarizing the results
obtained and discussing the future research directions.

2. Related Works

Many works in literature, in these last years, are focusing on
the selfish behavior and on its effect on network performance.
However, a few contributions till now have been related
to DTNs and ONs because for these networks it is more
challenging to detect malicious behavior and it is not easy
to propose effective incentive mechanism that can tradeoft
between network performance and resource draining.

2.1. Selfishness Management in MANET. In MANET and
distributed wireless networks, some monitoring techniques
to detect malicious behavior or selfish nodes are applied. One
of the most adopted techniques is the watchdog technique
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such as that presented in [20]. According to this approach,
nodes monitor each other’s communications to ensure if the
considered node behaves as expected or not. On the basis
of the higher or lower adherence to an expected behavior,
it is assigned a reputation value. The computed reputation
value is then compared with some thresholds to decide
if the node is reliable, selfish, or to be monitored. The
main limitation of this approach, however, is that within
an opportunistic network many encounters might not be
observed by a third party. In [21] authors use the currency,
a method based on purchasing credits to assign to mobile
nodes for their forwarding service. A general model for
electronic coupons where a central system spreads electronic
coupons among interested users via access points installed
in shops is proposed. In [22] authors analyze the effect in
the introduction of a trust management scheme applied in
MANET to detect selfish nodes and to isolate them. Also if
trust management can be useful to avoid malicious nodes,
it can be expensive in terms of energy if it is not applied
carefully on a distributed network.

2.2. Selfishness Management in DTNs and ONs. The absence
of a predetermined path and a priori nodes belonging to a
path can present some risks in the data forwarding if some
mechanism to incentive the cooperation is not applied. In
[11] authors propose a mechanism where all nodes can store
in their memory a list of topics/interests. When they meet
some other node that can be interested to one or more of
these topics, they can spread the topic if the other node
behaves in the same way. This means that noncooperative
nodes will not share interesting topics in the network and
this penalizes the egoistic behavior. In [23] authors propose
collaborative contact-based watchdog (CoCoWa) as a col-
laborative approach based on the diffusion of local selfish
nodes awareness when a contact occurs, so that information
about selfish nodes is quickly propagated. This collaborative
approach reduces the time and increases the precision when
detecting selfish nodes. In [18], authors propose an incen-
tive mechanism called IRONMAN. It uses social network
information to bootstrap the detection and discouragement
of selfishness through an asynchronous bilateral trading. In
this work authors try to give a rank to nodes that behave
cooperatively and forward data. In particular, nodes that
forward data on behalf of other node can increase their
rank whereas other nodes that discard packets or behave
selfishly decrease their rank and they are not involved in
the data forwarding and sharing. The social network such as
Facebook is considered in the proposal to establish the initial
rank value on the online social network among involved
nodes. In [24], Ciobanu et al. propose SPRINT-SELF, a
routing mechanism for ONs that use preexisting online social
information for detecting communities and the prediction
of future encounters for routing data. This routing strategy
allows node to keep info about past data transfers and battery
level so that through these values they are able to compute
an altruism score that is used to select or not the next hop
forwarding the data. Only if this score related to the altruism
is within certain range, the message is sent.

3. The Selfish Node Problem in
Opportunistic Networks

From the viewpoint of an individual, selfishness is commonly
defined as a set of attitudes and behaviors aimed uniquely
to achieve the proper personal interests. A selfish individual
pursues his goals even at the cost of damaging the interests
of others. How this behavior is translated in the context of
opportunistic networks? Many researchers such as Urpi et
al. [25] consider the tradeoff between the cost in terms of
energy consumption and the benefits in terms of network
throughput as a key aspect to define an eventual selfish
behavior of a node involved in a routing operation. An
opportunistic network node may thus act in a selfish way
when induced by energy constraints. Another valid reason
for a node to act selfishly is related to message buffer status.
If a node has its buffer full, it may act selfishly deciding to
first drop the other nodes” packets. Moreover, considering
an opportunistic networking environment where the nodes
have high mobility and frequent disconnections, the contact
duration between them might be highly variable and this is
a further potential reason for being selfish. A node, once
assessed to have many short contacts, may decide to exploit
a contact for first exchanging its messages and subsequently
the messages belonging to other nodes in order to leave the
possible fragmentation of a message due to the interruption
of a wireless contact only to other nodes. Figure 1 depicts
the three main reasons for deciding to act selfishly in an
Opportunistic Network Environment.

Hypothesizing that a node acts in a selfish way for
the reasons described above, the routing performance of
opportunistic forwarding may severely degrade thus caus-
ing serious problems to the communications within the
opportunistic network. In this section, we show through a
preliminary analysis how routing performance is affected by
node selfishness. For modeling node selfishness, we proceed
as follows. Through a uniform distribution, we randomly
choose a subset of network nodes labeling these nodes as
selfish. We consider 25%, 50%, and 75% of selfish nodes and
the limit case when all nodes are selfish. We hypothesize that
each of these nodes acts selfishly for one or more of the three
reasons described above. For this initial study, we implement
a basic node selfishness behavior. When a selfish node
encounters another node, they will exchange their messages
as usually done in an opportunistic networking scenario with
a certain routing scheme. However, the selfish node will drop
the messages received for which it is not the destination. The
following subsections describe the simulation setup and the
results of this preliminary analysis.

3.1. Simulation Setup. In order to test the effect of node
selfishness on opportunistic routing, we carried several
simulations using the Opportunistic Network Environment
(ONE) simulator [26]. This simulation environment models
a node with a radio interface, persistent storage, several
movement models (including the simulation of realistic
mobility traces), several routing capabilities, a basic energy
consumption model, and different application interactions.
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FIGURE 1: Node A wants to send a message to node C using node B as forwarder. Node A forwards the message to node B, but node B is selfish
and will not forward the message to node C, because it wants to preserve his battery (energy constraints), it wants to leave space in the buffer
deleting the messages belonging to other nodes (buffer overflow), and/or it wants to privilege its own messages during routing due to short

contact durations (contact duration).

TaBLE 1: Characteristics of the two experimental datasets.

Experimental dataset SASSY LAPLAND
Environment Academic/Urban Conference
Device type T-Mote Imote
Radio interface ZigBee Bluetooth
Granularity 6.67 s [120-600] s
Duration 70 days 3 days

# of nodes 27 17

In the following subsections, we describe the mobility traces
used, the routing protocols we simulated, and the perfor-
mance measures analyzed.

3.1.1. Human Mobility Traces. We utilize two experimental
datasets of human mobility where the mobile devices ran
software logging contacts between them. Table 1 summarizes
the main features of the selected datasets. SASSY dataset [27]
contains the ZigBee encounter logs of 27 participants carry-
ing T-Mote sensors and their social network, generated from
Facebook data self-declared by candidates at the beginning
of the experiment. The experiment took place at University
of St. Andrews (United Kingdom) for an overall duration of
3 months between February 15, 2008 and April 29, 2008. For
our analysis, we consider one week of encounters, focusing
on the week having the highest number of encounters.
LAPLAND [28] dataset spans a shorter period and was
collected during the ExtremeCom09 workshop in Padjelanta
National Park (Sweden). The Bluetooth colocation data of
17 conference attendees were gathered during 4 consecutive
days of the experiment, from August 9, 2009 to August 12,
2009. Each candidate was asked to carry Imotes with him
detecting devices in proximity. This dataset includes also each
participant’s Facebook friend list and interests in terms of
scientific topics.

3.1.2. Routing Protocols. In simulations, we analyze three
benchmark opportunistic routing protocols, Epidemic Rout-
ing [29, 30], Spray & Wait [31], and Bubble Rap [13]. In the
following lines, a brief explanation motivates the reason for
which we choose to consider these protocols for our study.

(i) Epidemic Routing is a flooding-based protocol. When
two nodes encounter, they exchange all their messages
so that these messages are spread like viruses by
pairwise contacts between two nodes. This protocol is
considered a reference for opportunistic routing since
it determines an upper bound for message delivery.

(ii) Spray & Wait is a different kind of epidemic routing
which floods the network with a fixed number of
copies of a message. The source node “sprays” L
message copies to L distinct encountered nodes and
then “waits” hoping that one of these nodes will
carry the message to the intended destination node.
If the destination node is not found during the spray
phase, each of the L nodes holding a message copy
will forward the message only to the destination
node. This algorithm has shown to have routing
performance near to the classic epidemic routing with
a lower overhead cost.

(iii) Bubble Rap [13] is a social-based protocol, consid-
ered one of the most efficient protocols in terms
of messages delivered and delay in delivering them.
Bubble Rap uses two centrality values associated
with each node based on its global popularity in the
whole network and the local popularity within its
community or communities. The forwarding scheme
uses these centrality values so that a message is
transferred to nodes with higher global centrality
values until the carrier node meets a node with the
same community label as the destination node. Then,
a message is forwarded to nodes with higher local
rankings until successful delivery. Since opportunistic
networks are characterized by a social nature due to
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human mobility, this protocol has shown to reduce
the number of message replicas spread on the net-
work while maintaining a good message delivery.
For our simulations, we chose C-Window degree
[13] for implementing node centrality since it can be
computed in a fully distributed way providing a good
estimate of the suitability of a node as message relay.
This is a cumulative centrality measure averaging
degree centrality (i.e., the number of unique contacts
had with the encountered nodes) over a fixed number
of temporal windows. For detecting communities, we
chose k-Clique [32]. Even if several community detec-
tion methods are present in the literature, we chose
this method since it finds overlapping communities,
which are more similar to the communities formed
in real life. For this community detection method, a
community is defined as the union of all k-cliques
(complete subgraphs with k nodes) that can reach
each other through a series of adjacent k-cliques,
where two k-cliques are said to be adjacent if they
share k — 1 nodes.

3.1.3. Performance Metrics. We use two important oppor-
tunistic performance metrics for our analyses. First, we study
the system throughput, or delivery ratio, which is computed
here as the number of delivered packets divided by the
number of unique packets created in the system. Then we
study the system delay, or delivery delay, which only considers
the delivered messages. This metric measures the time it takes
a packet to be delivered to the destination node.

We evaluated these metrics as a function of the TTL
(Time To Live), which represents the maximum time a
message can stay in the system after its creation. The TTL is
fundamental for studying the ability of a routing protocol to
find an adequate number of relay nodes within a certain time.
The values of the main parameters used in our simulations are
shown in Table 4. We repeated each simulation 20 times and
took the average of each run as a result.

3.2. The Selfishness Effects

3.2.1. SASSY Results. We start evaluating the effects of node
selfishness on opportunistic routing by analyzing the SASSY
mobility trace. The main simulation parameters are listed in
Table 2. Delivery ratio and average latency for this trace are
shown in Figure 2. By analyzing delivery ratio, we observe
that as the proportion of nodes acting selfishly in the network
increases, this network performance decreases for all the
routing protocols considered. This means that if the selfish
behavior can be in some way detected and discouraged, it
might be possible to achieve the same performance as if no
nodes behave selfishly even if they have a propensity for being
selfish. Spray & Wait delivery, compared to epidemic delivery
achieving the highest message delivery, is slightly lower as it
can be expected since it disseminates a limited number of
message copies. As far as Bubble Rap evaluation concerns, we
found an interesting result: as the percentage of selfish nodes
increases, the system throughput does not vary significantly.

5
TABLE 2: Values for the simulation parameters.
Parameter Value
Network Buffer size 2000 MB
Message * size 1kB
Intermessage creation interval 1800 s
Spray & Wait L 5
Bubble Rap C-Window duration 6 hours
C-Window # of windows 5
k (k-Clique) 3

* Each message is exchanged between randomly selected source-destination
pairs.

For a message TTL equal to one week, for example, the
protocol is characterized by the maximum difference between
delivery with no selfish nodes and with all selfish nodes that
is equal to 0.1. We consider this difference low compared
to Epidemic Routing and Spray & Wait. This social-based
protocol if on one hand is characterized by a lower delivery
ratio due to its more restrictive forwarding rules, on the other
hand it is able to better manage node selfishness. We note
that by choosing the relay nodes that are more social, the
selfishness effect can be better balanced. Here, we think that
by choosing only the most central nodes as node relays, the
probability to find a relay node that can be also selfish is
reduced. In the case of Epidemic Routing, on the contrary,
where each encountered node is chosen as relay node, the
probability to find a selfish relay node is higher. A similar
thing happens in Spray & Wait. It can be further observed
that all algorithms deliver more packets to the destinations as
the TTL increases. However, as the TTL becomes high, the
increment in the delivery ratio is marginal, since the capacity
of the network to forward packets becomes the performance
bottleneck.

On the system delay, node selfishness causes a degra-
dation of this performance as the TTL increases. We note
that for TTLs greater than 3 days, the average latency highly
depends from the percentage of selfish nodes that are present
within the network, while for lower TTLs node selfishness
does not particularly degrade this protocol performance. This
effect characterizes all the protocols considered. This happens
because the longer TTLs result in higher probabilities for
the packets to be relayed to selfish nodes during their path
towards the destination. These packets will be discarded by
the selfish nodes thus increasing the corresponding average
latency. We can further note that Bubble Rap is less influenced
by the percentage of selfish nodes. The average latency
slightly varies from 0% to 100% of selfish nodes. Similarly
for the delivery case, the social-based routing rules result in
a better management of node selfishness. Finally, comparing
the delay values achieved by the three protocols considered,
Epidemic Routing has the highest average latency followed
by Spray & Wait and Bubble Rap. Even if Epidemic Routing
has usually the lowest delay due to the highest number of
message replicas injected into the network, in this mobility
scenario, the selfish behavior of some relay nodes together
with the particular node encounters dynamics that often
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FIGURE 2: SASSY routing performance under different % of selfish nodes.

assign packets to these relays resulting in packets delivered
with high delays.

3.2.2. LAPLAND Results. LAPLAND dataset covers a shorter
experimental period and has a smaller number of nodes
compared to SASSY. As such, the TTLs have been varied
from 1 to 7 hours. As it can be observed from the results in
Figure 3, similarly to SASSY, the increase in the proportion
of selfish nodes results in a lower delivery ratio for all the
protocols considered. We thus conclude that also in a smaller

dataset this feature is present. However, Bubble Rap shows
again to better manage node selfishness as it can be observed
by the trend of the curves in Figure 3(c). We can further
note that again all the algorithms deliver more packets to the
destinations as the TTL increases.

The average latency results confirm that the system delay
increases as the TTL and the percentage of selfish nodes
increase. In particular, for these lower TTL values, the
average latency is characterized by an almost linear trend,
which we also found in SASSY for TTLs lower than 3 days.
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FIGURE 3: LAPLAND routing performance under different % of selfish nodes.

Here, the interesting results deal again with Bubble Rap: for
this social-based protocol, the values of average latency are
similar both if the system contains selfish nodes and if the
system has all altruistic nodes. This result again confirms
that the social-based protocols offer a promising research
direction concerning nodes selfishness and opportunistic
routing. Comparing the average latency results achieved by
the protocols, we found an opposite trend with respect to
SASSY. Here, Epidemic Routing has the lower average latency,
followed by Spray & Wait and Bubble Rap. These results are
more similar to those usually found in the literature since in
most cases, the epidemic delivery results in a lower latency
(even if at a higher overhead cost) due to its flooding nature.

4. SORSI: Social-Based Opportunistic
Routing with Selfishness Detection and
Incentive Mechanisms

After being assessed through simulations that selfishness can
severely degrade opportunistic routing, we now describe how
this problem can be mitigated through a selfish detection
mechanism incentivizing node collaboration. Our scheme,
named SORSI (Social-based Opportunistic Routing with
Selfishness detection and Incentive mechanisms), exploits
node sociality and history of encounters to detect selfishness.
Once selfishness is detected, nodes do not forward messages
to selfish nodes. As such, selfish nodes are incentivized to
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TABLE 3: List of symbols used to define SORSI social metric.

List of symbols

i i" node

j 7" node

d destination node

t t" time slot

T number of time slots

M; number of neighbors of node i

M; number of neighbors of node j

l I'"™ online social network layer

L number of online social network layers
e encounter event

Chegree temporal degree centrality

Cepegree cumulative degree centrality

TS online tie strength

TSror total online tie strength

LP link predictor (common neighbors)
CS centrality utility score

TSS tie strength utility score

LPS link predictor utility score

MLS SORSI utility score

ESS SORSI encounter-based selfishness score

participate in forwarding if they want their messages to be
routed.

Social-based rules for opportunistic forwarding have
been shown to result in low-cost forwarding paths (see,
for example, [6, 7, 33]). Moreover, our previous analysis
shows that Bubble Rap, which is a reference for social-based
opportunistic routing protocols, is able to better sustain the
selfishness effect. As such, we choose to build SORSI routing
scheme on a social-based logic. However, differently from
Bubble Rap only considering offline sociality reconstructed
from node encounters, SORSI is based on a routing metric,
namely MLS, which exploits three social dimensions: wireless
proximity, online friendships, and interests. Since each of
these dimensions is able to represent a node’s sociality, we
choose to consider this set of social features in order to have a
wider view of a node’s social behavior. As a matter of fact, the
way in which we move, interact online with our friends, and
share our interests represents our sociality. MLS metric is thus
computed using a combination of three measures: (1) node
centrality computed on the DSN (Detected Social Network,
i.e., the social network detected through nodes” encounters)
graph layer, (2) tie strength computed on the OSN (Online
Social Network, i.e., Facebook, Twitter, etc.) graph layer(s),
and (3) a link predictor computed on the Interest network
layer (i.e., a social layer constructed on node interests). As
such, we model the network nodes’ sociality as a multilayer
social network where each layer is a social graph representing
a social dimension and computing MLS metric. Table 3 lists
the symbols used to define the social metric.

We consider centrality as one of the most important
factors to choose a good message relay. In graph theory
and network analysis, centrality quantifies the structural
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importance of a vertex within the graph. A central node has
usually a stronger capability of connecting other network
nodes. We therefore compute centrality at the DSN layer,
where the corresponding social graph is leveraged through
encounters between mobile devices. Here, the DNS social
graph of the multilayer social network is a dynamic graph
where an edge between two nodes represents a wireless
contact. There are several ways to measure centrality [18].
SORSI social metric computes node centrality for a node i,
Ceegree(i); using a long-term cumulative estimate of degree
centrality. Degree centrality basically quantifies the number
of connections a node has. The advantage in using this mea-
sure is that it can be easily computed locally considering only
a node’s ego network, while other centrality measures (e.g.,
betweenness, closeness, or eigenvector centrality) require
global knowledge of the network. More specifically, SORSI
computes the number of unique nodes seen throughout a
specific time slot and then averages this measure with a set
of previous measures. Degree of centrality for a node i during
a time slot ¢ is computed as follows:

M;
CDegree (i,t) = Ze (i’ j’ t) )
j=1

where

1 if i encounters j during time slot t
e(i,jit) = )
J 4
0 otherwise

representing an edge between node i and node j on the DSN
graph corresponding to the time slot considered (considering
that the DSN graph is a temporal graph, we form a static graph
for each time slot by amalgamating all contacts in that time
interval), and M; is the number of nodes in i’s range. The
cumulative degree, Cpegre. (1), is then calculated by averaging
the node’s degree values over a set of T' time slots including the
most recent time slot and all the previous ones:

L1y .
CCDegree (l) = T;}CDegree (l’ T- t) (3)

In that way, SORSI provides a fully decentralized approx-
imation for a node’s degree centrality, which is easy to be
computed.

Centrality described above is measured using the history
of contacts and does not consider future links availability.
Considering that the links in the network are time-varying,
an existing link to a central node may not be highly available.
We therefore include a tie strength indicator into SORSI
social metric. This indicator is able to identify the links that
have a higher probability to be activated and is measured
by considering online social ties between the individuals
carrying the mobile devices. This choice is driven by the
consideration that social ties on online social networking
websites, such as Facebook, Twitter (here we consider a tie
between a user A and a user B, if A follows B and vice
versa) or LinkedIn, are more stable and hence stronger than
contact network ties. Typically, an online tie between two
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TABLE 4: Values for the simulation parameters.
Parameter Value
Network Buffer size 2000 MB
Message * size 1kB
Intermessage creation interval 1800 s
TTL (SASSY) 4 days
TTL (LAPLAND) 240's
SORSI-NS Time slot 6 hours
T 5
SORSI Selfishness threshold thr 50
Initial selfish score ESS (altruistic node) 0
Initial selfish score ESS (selfish node) 100
Time slot 6 hours
T 5
Bubble Rap C-Window duration 6 hours
C-Window # of windows 5
k (k-Clique) 3
SPRINT-SELF w; 0.7
w, 0.3
k (k-Clique) 3
Cache size (I and O) 100 MB

* Each message is exchanged between randomly selected source-destination pairs.

users does not change over time. In Facebook, for example,
“intermittent” friendships are highly improbable. Moreover,
it has been shown in [18, 20] that nodes encounter other
online socially connected nodes with a high probability.
Consequently, online ties can be considered a good measure
of whether a link on DSN will be activated. SORSI calculates
tie strength between node i and node j at OSN layer [ as

TS (i, j,1)

1 if i and j are connected at layer |~ (4)

0 otherwise

The total tie strength between two nodes is the sum of the
indicators measured at each OSN layer:

L
TSror (i, ) = ZTS (i, ju1) ®)
I=1

where L is the total number of online social networking
websites considered.

SORSI social metric takes into account a third measure
useful to predict future collaborations between two nodes. A
link predictor is computed on Interest network layer, where a
link between two nodes exists if they have at least one interest
in common. Examining common neighbors of a pair of nodes
on Interest network layer, we can predict future encounters to
which the transfer of information may arise. Several works on
coauthorship or collaboration networks demonstrated that
the probability of two nodes being connected by a link is
higher when the nodes in question have common neighbors.
In [34], for example, a network of scientific collaborations

was analyzed, showing that examining coauthors of authors
helps in predicting future collaborations. Since coauthorship
networks are networks of scientific collaborations and hence
networks of shared scientific interests, we chose Interest
network layer for link prediction, assuming that scientific
interest networks and more general interest networks have a
similar behavior. SORSI computes the link predictor LP(i, j)
of a possible future collaboration between node i and node j
as a common neighbor measure based on Jaccard coefficient:

) |MinMj

LP (i, j) = 7|M,~ - Mj'

(6)
where M; is the number of nodes in i’s range and M; is the
number of nodes in j’s range.

For each measure, SORSI determines the utility score of
node i for delivering a message to node d compared to node
j as follows:

CCDegree (l)

CS (i, i) =
(1 J) CCDegree (1) + CCDegree (]) (7)

SN TSyor (i, d)
i e Y E o 1) B
LPS (i, j,d) = LPG.d) 9)

LP (i,d) + LP (j,d)

The SORSI social metric is given by the combination of the
contributing score values as follows:

MLS (i, j, d)
(10)
=CS (i, ) [1 + TSS (i, j,d) + LPS (i, j, d)]
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(1) procedure ENCOUNTERNODE(M)

2) exchangeCentralityValues()

(3) exchangeOnlineContactsLists()

(4)  exchangelnterestNodeList()

(5) exchangeForwardingHistoryList()

(6)  for every message m in message_buffer do

(7) D «— m.destination()

(8) myMLS «— computeMLScore()

9) encounterMLS «— computePeerMLScore()
(10) if encounter MLS > myMLS || M;==D then
(11) forwardMessage(,M;)

(12) end if

(13) end for
(14)  for every message m in forwarding_history_list do

(21) end for
(22) end procedure

(15) if timestamp > last encounter with M; && msgSourceID==myID then

(16) if last encounter with forwarderID > last encounter with M; && forwarderID.receivedMessage(msgID)==false
then

(17) ESS «— forwarderID.selfishScore()

(18) forwarderID.setSelfishScore(ESS+1)

(19) end if

(20) end if

ALGorITHM 1: SORSI message forwarding with selfishness detection.

(1) procedure RECEIVEMESSAGE(m,M;)
2) if M;! = m.source() then

3) ESS «— M,.selfishScore()

(4) M,.setSelfishScore(ESS-1)

(5) receive(m)

(6) else

(7) if M,.selfishScore() < thr then
(8) receive(m)

9) else

(10) discard(m)

(11) end if

(12) endif

(13) end procedure

ALGORITHM 2: SORSI message reception with selfishness detection.

As can be observed, MLS captures the relay significance of a
node when compared to an encountered node across all social
network layers, in terms of centrality, tie strength, and link
predictor. Note also that node centrality is considered as the
predominant factor in message forwarding. Both tie strength
and tie predictor utility scores are weighted with centrality
utility score and then added to centrality utility score. In
that way, tie strength and link predictor utility scores will
reflect the centrality utility score (e.g., high, low, or medium)
between the sender node and the encountered node.

The forwarding process in SORSI is given by Algorithm 1.
The two nodes having an encounter exchange also their
forwarding history lists containing the forwarding activity
of the encountered nodes. Each past forwarding included

in the list of a node is logged through the ID of the
encountered node forwarding the message to that node, the
message 1D, the source ID of the forwarded message, and
the time when the message has been received. A history
list is thus implemented as a list containing [forwarderID,
msgID, msgSourcelD, timestamp] tuples. Then, after having
computed the MLS metric to decide whether forwarding
messages to the encountered node N is according to its
sociality and selfishness, the node checks the encountered
node forwarding history list to detect eventual selfish nodes.
Note that the messages in the buffer are received messages
that have successfully passed the selfishness check. If the node
detects another node as selfish (i.e,, N’s history does not
contain certain messages of the detecting node that should
have been passed by the selfish node), the detecting node
increments the encounter-based selfishness score ESS for
the selfish node. Similarly, when a node receive (and will
potentially forward) a message for which it is not the source
(see Algorithm 2), its altruism is awarded decrementing its
selfish score. In this way, an incentive mechanism to forward
messages is realized. Nodes do not receive the messages of
nodes that have a selfish score greater than a threshold.
Consequently, according to SORSI scheme, nodes that have
been labeled as selfish are obliged to forward the other nodes’
messages for forwarding their own messages.

5. SORSI Performance Evaluation

5.1. Simulation Setup. We validate our proposal again
through the Opportunistic Network Environment (ONE)
simulator using SASSY and LAPLAND as human mobility
traces. In simulations, we compare SORSI to its version
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FIGURE 4: The effect of selfishness threshold on message delivery.

without selfishness detection, namely SORSI-NS, in order to
quantify the improvements brought by selfishness detection
and the mechanism incentivizing participation, to Epidemic
Routing, Bubble Rap, and SPRINT-SELE For this analysis,
we do not analyze anymore Spray & Wait since we only
focus on social-based schemes considering that we intend
to demonstrate the improvements brought to opportunistic
mobile social routing by SORSI. However, we still consider
Epidemic Routing to have an upper bound on message
delivery.

As previously specified, SPRINT-SELF protocol is social-
based and employs a selfishness detection mechanism dis-
couraging node selfishness. Here, we briefly describe its
features. Similarly to SORSI, SPRINT-SELF uses social net-
work information, future node behavior prediction, and a
selfishness detection mechanism. This is the reason why we
chose to compare SORSI to this protocol. However, differ-
ently to SORSI, SPRINT-SELF does not consider a multilayer
social structure to model the opportunistic network and
makes use of communities knowledge. Communities, since
most of the nodes are more likely to interact with the
members of its own community [20], are a fundamental
part of this protocol. They are both computed on-the-fly
through community detection algorithms such as k-Clique
or through the social communities/groups directly extracted
by online social networks (e.g., Facebook groups). However,
in a recent study [I8], we demonstrate that not always
online communities correspond to the offline ones. As such,
online community information is not always usable and may
lead to suboptimal forwarding paths. Moreover, due to the
computation of communities through community detection
algorithms and of a utility value taking into account several
information on contact and message exchange history, the
cost of computing this utility value is sensibly higher than
SORSI MLS value. Specifically, SPRINT-SELF uses a utility
function which uses two parts one of

For this protocol, when a node is labeled as selfish we
suppose its battery level is greater than a tolerance threshold
(e.g., for 2% of battery level a node is not considered selfish if
it does not forward messages, while for 30% of battery level it
is).

For our analyses, we use three opportunistic performance
metrics. First, we study again the system throughput. Then, we
study the system cost, or overhead cost, which measures the
number of packets transmitted across the air divided by the
number of unique packets created. This performance index
is important for our study since the duplicated messages
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injected into the network consume resources, such as battery
and memory. Finally, similarly to the previous analysis, we
study the system delay.

As first experiment, through a uniform distribution, we
randomly choose a subset of network nodes labeling these
nodes as selfish. We consider again 25%, 50%, and 75% of
selfish nodes and the limit case when all nodes are selfish,
hypothesizing that selfishness is driven by one or more of
the three motivations described in Section 3. For Epidemic
Routing, Bubble Rap, and SORSI-NS, a selfish node always
drops the messages for which it is not the destination. We
repeated each simulation 20 times and took the average of
each run as a result. The values of the main parameters
used in our simulations are shown in Table 4. Simulating
different selfishness thresholds (see Figure 4), we have chosen
a threshold equal to 50 for which we obtained the best SORSI
delivery performance in both datasets. As expected, as the
threshold increases being less restrictive with selfish nodes,
the delivery ratio starts decreasing.

As second experiment, we test and compare the effect of
energy consumption and buffer occupancy on node selfish-
ness and hence, on opportunistic routing. For each node, we
consider the energy consumption model adopted.

5.2. Results. We start evaluating our proposal by analyzing
the SASSY mobility trace for the first experiment where we
randomly choose a node as selfish. Delivery ratio, overhead
cost, and average latency for this trace are shown in Figure 5.
As expected, when the proportion of nodes acting selfishly
in the network increases, the delivery ratio decreases for all
the routing protocols considered. Similarly, the increase in
the percentage of selfish nodes degrades the average latency,
while the overhead cost decreases since the selfish behaviors
result in a lower number of forwarded packets. However,
Epidemic Routing is more influenced by the proportion
of selfish nodes, showing a more rapid degradation of its
routing performance indexes as the percentage of selfish
nodes present within the network increases. We further note
that when all nodes are selfish, the protocols deliver the same
number of messages, resulting in equal costs and delays. This
happens because every node forwards only its own messages.
When it is present, there is a certain percentage of selfish
nodes (25%, 50%, 75%); on the contrary, Epidemic Routing
performs the best achieving the highest delivery ratio values,
followed by SORSI which is able to outperform all the other
social-based schemes (its classic version SORSI-NS, Bubble
Rap, and SPRINT-SELF). However, SORSI is characterized by
delivery ratios and average latencies comparable to Epidemic
Routing with a much lower overhead cost. This result shows
that SORSI is able to manage node selfishness while sensibly
limiting the number of message replicas and, hence, the
energy consumption avoiding the development of selfish
behaviors. Moreover, SORSI with 50% of selfish nodes, for
example, is able to achieve almost the same delivery ratio of
Bubble Rap with no selfish nodes. Its multilayer social metric
together with selfish management is thus able to achieve
comparable routing performance of a reference social-based
protocol with no selfish nodes. Compared to its version
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FIGURE 5: SORSI routing performances compared to Epidemic Routing, Bubble Rap, SORSI-NS, and SPRINT-SELF for the SASSY human

mobility trace.

TABLE 5: Protocols performance when nodes have 50% of residual energy (SASSY).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.412 0.317 0.331 0.397 0.375
Overhead Cost 7121 3.136 1.951 1.875 1.056
Average Latency 2406.54 3229.35 2451.779 2394.832 2398.569

TABLE 6: Protocols performance when nodes have 50% of residual energy (LAPLAND).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.151 0.091 0.129 0.147 0.137
Overhead Cost 5.162 4125 3.165 1.551 2.945
Average Latency 1.147-10° 1.211-10° 1171-10° 1145 -10° 1.149 -10°

TABLE 7: Protocols performance when nodes have 75% of residual energy (SASSY).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.461 0.387 0.404 0.443 0.427
Overhead Cost 10.182 6.183 4.889 4.751 3.559
Average Latency 2009.573 3275.596 2354.773 2010.551 2009.762

without selfishness detection, we observe that SORSI is able
to reduce the effect of node selfishness behaving similarly to
SORSI-NS with a significantly lower number of selfish nodes.

Figure 6 shows the results obtained for the LAPLAND
mobility trace. This trace covers a shorter experimental
period and has a smaller number of nodes compared to
SASSY. As such, we chose a shorter TTL of 4 minutes.
Similarly to SASSY, the increase in the proportion of selfish
nodes results in a lower delivery ratio for all the protocols
considered. Again, SORSI outperforms Bubble Rap, SORSI-
NS, and SPRINT-SELF achieving a message delivery similar
to Epidemic Routing. We thus conclude that also in a smaller
dataset this feature is present. The overhead cost trends
confirm that SORSI is able to reduce the number of message

replicas achieving the lowest costs without compromising its
efficiency in terms of end-to-end delay.

In Table 5 SORSI outperforms SORSI-NS and Bubble
Rap with performance close to Epidemic Routing in terms of
delivery ratio. Also average latency is lower in SORSI in com-
parison with the other diffusion strategies. However, over-
head cost of SORSI is higher than SPRINT-SELE. This means
that the number of node involved in data dissemination is
grater in SORSI and SORSI-NS than SPRINT-SELE. The same
trend can be observed in Table 6 where SORSI in LAPLAND
scenario outperforms all data diffusion techniques in all
performance metrics. When the number of nodes switching
in selfish behavior increases such as that in Tables 7 and 8,
the performance metrics of delivery ratio and average latency
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TABLE 8: Protocols performance when nodes have 75% of residual energy (LAPLAND).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.231 0.189 0.201 0.229 0.211
Overhead Cost 13.769 5125 4.751 3.161 4.125
Average Latency 1.122:10° 1.209 -10° L131-10° 1122 10° 1123 -10°

TABLE 9: Protocols performance when nodes have 50% of full buffer (SASSY).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.391 0.311 0.334 0.375 0.359
Overhead Cost 6.125 2.566 1.956 1.873 1.018
Average Latency 2389.24 3119.775 2399.161 2355.22 2356.594

TABLE 10: Protocols performance when nodes have 50% of full buffer (LAPLAND).

Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.141 0.094 0.114 0.132 0.121
Overhead Cost 5.093 4.037 3.05 1.467 2.895
Average Latency L11-10° 1192 -10° 1153 -10° 1116 -10° 1.147 -10°

are always better than other strategies. However, the overhead
cost of SORSI is worst in SASSY and it is better in LAPLAND
scenario. This means that when few TTLs are allowed and the
scenario is small, SORSI does not have enough time to involve
more nodes in data dissemination. Similar considerations can
be applied when buffer occupancy threshold is used. It can
affect the selfish behavior such as presented in Tables 9-12.
In these cases, SORSI always outperforms in delivery ratio
and average latency the other data dissemination strategies
with the exception of Epidemic Routing that is considered as
benchmark for the delivery ratio. Moreover, the overhead cost
slightly increases in the SASSY scenario where SPRINT-SELF
is more performing than SORSI and SORSI-NS.

6. Conclusions

In this paper, we have presented a routing mechanism for
mitigating the effect of node selfishness on opportunistic
network routing. First, we have delineated the main reasons
for which an opportunistic node may act selfishly and
evaluated the effects of node selfishness on opportunistic
routing. Then, we have proposed SORSI, a selfishness-aware
opportunistic routing scheme using multilayer social net-
work information and the history of forwarding for driving
routing decisions. Simulating two real-world mobility traces,
we have demonstrated that SORSI is able to outperform
Bubble Rap, SORSI version without selfishness detection
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TABLE 11: Protocols performance when nodes have 75% of full buffer (SASSY).
Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.452 0.385 0.404 0.449 0.421
Overhead Cost 9.332 5.957 3.146 1.161 2.593
Average Latency 2002.765 2754.925 2012.48 1984.275 1999.734
TABLE 12: Protocols performance when nodes have 75% of full buffer (LAPLAND).
Epidemic Bubble Rap SORSI-NS SORSI SPRINT-SELF
Delivery Ratio 0.261 0.199 0.219 0.259 0.231
Overhead Cost 5.125 4.165 3.165 1.447 2.169
Average Latency 1139-10° 1172 10° 1154 -10° 1137 -10° 1138 -10°

and SPRINT-SELF achieving epidemic delivery ratios with
the lowest overhead cost. Moreover, SORSI outperforms
SPRINT-SELF and Bubble Rap also in cases where buffer
thresholds or energy thresholds can affect the selfish behavior
increasing or decreasing the number of nodes acting selfishly.
In these cases, SORSI continues to perform better in terms
of delivery ratio while reducing the average latency in
comparison with the other social-aware data dissemination
techniques. As a result, SORSI is able to increase the number
of nodes cooperating within the opportunistic network when
some nodes have an initial attitude to act selfishly.

In future work, we plan to further validate SORSI
extending the simulations to other datasets investigating also
the impact of other parameters like TTL and the message
generation rate. We also intend to analyze the theoretical
reasons behind SORSI performance.
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