
Fernando De La Prieta · 
Alfonso González-Briones · 
Pawel Pawleski · Davide Calvaresi · 
Elena Del Val · Fernando Lopes · 
Vicente Julian · Eneko Osaba · 
Ramón Sánchez-Iborra (Eds.)

International Workshops of PAAMS 2019
Ávila, Spain, June 26–28, 2019
Proceedings

Highlights of Practical 
Applications of Survivable 
Agents and Multi-Agent 
Systems
The PAAMS Collection

Communications in Computer and Information Science 1047



Cross Chain Bribery Contracts: Majority vs Mighty Minority . . . . . . . . . . . . 121
Quang Tran, Lin Chen, Lei Xu, Yang Lu, and Weidong Shi

Workshop on MAS for Complex Networks and Social Computation (CNSC)

Decentralizing Decision Making Process of Simultaneous Bilateral
Negotiations of Large Multiagent Systems in e-Commerce
Applications Using Holonic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Subha Fernando, Damith Premasiri, Vishma Dias, Upali Kohomban,
Yohan Welikala, and Harsha Subasinghe

Collective Behavior of Large Teams of Multi-agent Systems . . . . . . . . . . . . 152
Franciszek Seredyński and Jakub Gąsior

Asymmetric Information and Learning by Imitation in Agent-Based
Financial Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Luca Gerotto, Paolo Pellizzari, and Marco Tolotti

A Preliminary Ontology for Human-Agent Collectives. . . . . . . . . . . . . . . . . 176
Pablo Pico-Valencia, Juan A. Holgado-Terriza,
and Luz M. Sierra Martínez

Workshop on Multi-agent-Based Applications for Energy Markets,
Smart Grids, and Sustainable Energy Systems (MASGES)

Hydro-Wind Balance in Daily Electricity Markets: A Case-Study . . . . . . . . . 193
Hugo Algarvio, Fernando Lopes, and João Santana

Collaborative Reinforcement Learning of Energy Contracts
Negotiation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Tiago Pinto, Isabel Praça, Zita Vale, and Carlos Santos

Potential Impact of Load Curtailment on the Day-Ahead Iberian Market:
A Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Francisco Rodrigues, Hugo Algarvio, Fernando Lopes, Anabela Pronto,
and João Santana

Workshop on Smart Cities and Intelligent Agents (SCIA)

Data Protection on Fintech Platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Elena Hernández, Mehmet Öztü rk, Inés Sittó n, and Sara Rodríguez

A Two-Phase Context-Aware Approach to Emergency Evacuation
in Smart Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Qasim Khalid, Alberto Fernández, Marin Lujak, and Arnaud Doniec

viii Contents



Asymmetric Information and Learning
by Imitation in Agent-Based Financial

Markets

Luca Gerotto1, Paolo Pellizzari1(B), and Marco Tolotti2

1 Department of Economics, Ca’ Foscari University,
Cannaregio 873, 30121 Venice, Italy
{luca.gerotto,paolop}@unive.it

2 Department of Management, Ca’ Foscari University,
Cannaregio 873, 30121 Venice, Italy

tolotti@unive.it

Abstract. We describe an agent-based model of a market where traders
exchange a risky asset whose returns can be partly predicted purchasing
a costly signal. The decision to be informed (at a cost) or uninformed
is taken by means of a simple learning by imitation mechanism that
periodically occurs.

The equilibrium is characterized describing the stationary distribution
of the price and the fraction of the informed traders. We find that the
number of agents who acquire the signal decreases with its cost and
with agents’ risk aversion and, conversely, it increases with the signal-to-
noise ratio and when learning is slow, as opposed to frequent. Moreover,
price volatility appears to directly depend on the fraction of informed
traders and, hence, some heteroskedasticity is observed when this fraction
fluctuates.

Keywords: Agent-based modeling · Bounded rationality ·
Information in financial markets

1 Introduction

Information is of paramount importance in competitive financial markets and one
of the most sought-after properties of a market is its ability to spread information
in a timely manner. However, some of the paradoxical implications of information
are well known and have been widely analyzed in the last decades (see, for
example, Schredelseker [1], Kurlat and Veldkamp [2], Veldkamp [3], and the
evergreen Grossman and Stiglitz [4], hereafter referred to as GS). One of the
celebrated achievements in GS is to show that, in exchange economies, a trading
equilibrium among informed traders cannot exist, as a perfectly informative
price system would not compensate arbitrageurs for their (costly) activity of
information gathering and processing.
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In the standard treatment, fully rational agents ex-ante solve for the equi-
librium, trading (only) at the equilibrium price given the fraction λ of informed
traders and computing the unique λ that makes the expected utility of any
informed agent equal to that of the uninformed one. This is a grueling task
involving sophisticated cognitive and technical abilities that may belong to an
abstract Homo Economicus but are likely to be scant in more realistic depictions
of human behavior.

In this paper, we present an agent-based model of a dynamic market where
the risky return depends on a random component as well as on an informative
signal, which can be purchased for a constant cost. Informed agents can exploit
the reduction in uncertainty provided by the signal and increase their profit by
making educated bids on the future payoff. Uninformed agents do not bear any
information cost and face greater risks but, intuitively, there is an equilibrium
share of informed traders in which the benefits of purchasing the signal exactly
offsets the cost, thus making expected profits equal for informed and uninformed
traders.

In our model, agents are boundedly rational and noisily attempt to maximize
their cumulated wealth over some span of time, deciding whether to acquire the
signal (paying the required cost) or not. We do not assume the existence of an
utility function, nor the ability to solve sophisticated maximization schemes or
understand the complex endogenous structure of the stochastic equilibrium that
should materialize (prices depends on the fraction of informed traders which, in
turn, depends on the profit that are driven by the individual decisions ultimately
responsible for the price dynamics).

Instead, we assume that traders evolve using a simple learning by imitation
device: after a predetermined number of trading periods, some agents are ran-
domly paired, compare their performance (namely, cumulated wealth) and the
poorer trader ends up in copying the strategy of the richer; i.e., if the pair is
formed by an informed and an uninformed agent, after learning, both will adopt
the same (more favorable) strategy.1

We obtain three main results. First, for all the values of the parameters,
the model converges to some equilibrium expressed in terms of the fraction of
informed and the price of the risky asset. Second, the outcome is affected, as
expected, by the informativeness of the signal, but also by a set of “learning”
parameters of the model, and there are situations in which heteroskedasticity of
prices is observed. Finally, the length of the period used to cumulate profits has a
remarkable role and, say, short-term traders prefer not to use weakly informative
signals whereas the same knowledge is purchased and exploited if more periods
are allowed to average profits.

1.1 Related Literature

We depart from the seminal GS setup in that the “game” is no longer static
but dynamically develops in a series of periods through an explicit learning
1 To preserve diversity in the population, we add also a minimal degree of random
“mutation” in every period, see the details below.
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mechanism. Agents learn in a very simple and robust way, by checking whether
another trader makes larger profits. By contrast, Routledge [5,6] uses full-blown
genetic algorithms to equip agents with sophisticated learning skills. We enrich
this extant literature showing that market outcomes are affected by learning
in important ways and this holds even when learning takes place in extremely
simple ways (or, if you like, also when the “genetic algorithm” has no proper
selection or mutation operator and crossover is replaced by sheer imitation).

Perhaps more importantly, the agents of the model do not play a sequence of
repeated but otherwise identical trading games, as done previously. We introduce
a market maker in charge of adjusting the future price based on the excess
demand produced by the traders in the current time. Hence, in a somewhat
realistic fashion, price fluctuates because of random shocks, the changing fraction
of informed/uninformed traders, as well as due to price adjustments stickily
incorporating imbalances in demand for the risky asset.

Our paper can be related to the vast amount of work dealing with asymmetric
information in financial markets. Several scholars have explored different setups
and definition of information: Chen et al. [7], for instance, develop a model
where returns are affected by the volume of Google searches of the asset ticker
(the “driving force”) and propose a simple three-bodies approximation of the
resulting price dynamics. Billett et al. [8] examine how the reduction in analysts’
coverage of one stock predict worse industry-adjusted performance, due to the
reduction of the information available to investors.

Recently, Krichene and El-Aroui [9] presents a model in which, among other
features, “information” is assumed to be essentially equivalent to traders’ sen-
timent, which can spread and has the potential to trigger herds, bubbles and
crashes. We feel that the previous and non-exhaustive list of models appears to
depict knowledge (on a specific stock), more than information on the returns,
that is expressed through economic analysis, extent of web coverage and per-
ceptions/sentiment of investors. In our model, the signal directly refers to the
future yield and may be thought as a simplified (or, if you wish, distilled) form
of the just mentioned sources of knowledge.

The article is organized as follows. Next section describes the model and
provides details both on the structure of the market and on the features of the
agents. Section 3 presents the results of a NetLogo implementation of the model
and relates the findings to the literature. We then have some concluding remarks
and point out paths for future work.

2 The Model

Our model basically consists of two parts: a simple financial market where two
assets are available and a staggered learning mechanism involving, at selected
calendar dates, a random set of traders.

The Financial Market
We assume there are two assets in the market: a riskless asset with unit price and
a risky asset, whose price pt is determined by a market maker. While the safe
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asset yields as return the risk-free rate R ≥ 1, the risky asset has an uncertain
return ut that can be decomposed in three components:

ut = d+ θt + ϵt, (1)

where d ≥ 1 is a constant; θt ∼ N(0,σ2
θ) is a signal observable at the beginning of

the period by paying an amount c; and ϵt ∼ N(0,σ2
ϵ ) is an ex-ante unforecastable

zero-mean shock.
The market is populated by N traders who can be either informed or unin-

formed. At the beginning of each period t, a fraction λt of traders spends c to
be informed and learn θt, whereas the remaining traders are uninformed.

The information set Ωj
t of agent j at time t can be either θt or the empty

set, depending on whether he is informed. Accordingly, his demand for the risky
asset is determined by the following heuristic:2

Xt(Ωj
t ) =

E(ut|Ωj
t ) − ptR

αV ar(ut|Ωj
t )

=

{
d+θt−ptR

ασ2
ϵ

= XI
t if Ωj

t = θt
d−ptR

α(σ2
θ+σ2

ϵ )
= XU

t if Ωj
t = ∅ . (2)

Intuitively, the higher the expected excess return E(ut|Ωj
t ) with respect

to the riskless asset, the higher the quantity demanded. Hence, the demand
increases in d and, for informed traders, in θt, whereas it decreases in the price
pt and R, ceteris paribus. Under the assumption that agents are risk averse, their
demand is negatively related to their degree of risk aversion α and to the per-
ceived volatility of returns V ar(ut|Ωj

t ). The informed agents know the signal θt
concerning ut, which leads them to sell the risky asset when d+θt−ptR is negative
and buy the risky asset otherwise. They do so facing a residual risk that depends
on the shock ϵt alone (being θt known). In contrast, the uninformed trader takes
a short (long) position in the risky asset if d − ptR is negative (positive). The
demand of the uninformed is typically lower than the one of the informed as the
lack of knowledge of θt inflates the denominator to α(σ2

θ +σ2
ϵ ). As a consequence,

the trading volume of the informed is most often much bigger than the one pro-
duced by the uninformed agents. Observe that all informed agents demand the
identical amount XI

t . The same holds for uninformed quantity XU
t that is the

same for any uninformed trader.
At the end of the period, the wealths of the informed and uninformed agents

are, respectively:

wI
t = (ut − ptR)XI

t + (wI
t−1 − c)R (3)

=
(
d+ θt + ϵt

)(
d+ θt − ptR

ασ2
ϵ

)
+ (wI

t−1 − c)R, (4)

2 This result corresponds to a simplified version of equations (8) and (8′) of Grossman
and Stiglitz [4]. Note, in particular, that our agents are not able to exploit entirely
the information revealed by the price pt on the signal θt (hence, on ut) as for the
fully rational agents in GS.
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and

wU
t = (ut − ptR)XU

t + wU
t−1R (5)

=
(
d+ θt + ϵt

)(
d − ptR

α(σ2
θ + σ2

ϵ )

)
+ wU

t−1R. (6)

Once trading has occurred, the market maker reacts to any excess demand
(supply) of the risky asset by proportionally increasing (decreasing) the price
that will be available in the next trading period. As customarily done (see
Cont and Bouchaud [10]), this is a simple device to introduce a reasonable price
dynamics in the model, by means of adjustments of the current price based on
the magnitude and sign of the current demand imbalance.

Given the average per-trader total excess demand Qt = λtXI
t + (1 − λt)XU

t

at the end of the period, the market maker determines next price

pt+1 = pt + k(Qt − ηt), (7)

where ηt ∼ N(0,σ2
η) is an exogenous supply shock. The value of the parameter

k > 0 determines the strength of the reaction of the market maker.

The Learning Mechanism
Staggered learning in the model is introduced assuming that from time to time
agents assess their performance comparing their wealth to the one of other peers.
We have two parameters in the learning mechanism: T is the horizon over which
profits are cumulated before a learning round by imitation begins, while h is
the number of couples of agents who compare the respective performances and
eventually copy the more profitable strategy. More formally, every T periods, 2h
out of the N agents are randomly paired. Denote by T = {zT, z ∈ N} , the set of
calendar dates at which random matchings happen. For large N , at dates τ ∈ T ,
approximately hλτ (1− λτ ) out of the h pairs are composed by an informed and
an uninformed trader.3 They compare their performance (i.e., cumulated wealth)
and the poorer trader ends up in copying the strategy of the richer. As a result,
after learning, they both will be either in the set of the informed or uninformed
agents for the next T periods.

When some traders modify their strategy at time τ ∈ T , a change in the
proportion of informed at the aggregate level follows: λτ+1 will be higher than
λτ if the informed outperformed the uninformed over the previous T periods,
and will be lower otherwise. To avoid trivial situations in which all agents are
either informed or uninformed, thus making the learning procedure useless, we
conclude the process assigning a random status (Informed or Uninformed) to
one agent.

Finally, in order to study the effects of the parameter T (the duration of the
accumulation period), after learning has taken place all agents start from the

3 Clearly, if the pair is formed by two agents that were equally informed or uninformed
in the last T periods, no change happens as both members in the couple have the
same wealth.
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same wealth level w0, i.e. all the previous gains and losses are reset (or wealth
is entirely consumed, if the reader prefers an equivalent interpretation).

It is worth pointing out that the previous learning mechanism is, basically, a
crude learning by imitation procedure requiring very little sophistication on the
part of the agents, who are only assumed to be able to know, every once in a
while, the wealth of a peer and whether he has been paying to obtain informa-
tion in the (recent) past. We believe this is a cognitive plausible representation
of agents and does not require the precise understanding of the endogenous equi-
librium possibly arising or, say, the skills needed to maximize a utility function.
Even if there are technical and conceptual similarities with genetic algorithms
(whose variety is, incidentally, sweeping), our setup is greatly simplified as selec-
tion is totally random and independent of fitness and the crossover operator is
replaced by sheer imitation.

Summarizing, we can argue that the equilibrium (λ, p) emerging in our model,
expressed in terms of proportion of informed traders and price of the risky asset,
is surely reachable by boundedly rational agents supported by a credible and sim-
ple learning heuristic. In the remainder of this article, we will analyze by means
of simulation the behavior of the model and the properties of the equilibrium
for different configurations of the parameters.

3 Results

We present here the results of many simulations of the model that was coded in
NetLogo, see Wilensky [11]. The parameters of the model belong to two main
sets. The first one is related to structural features including d,R, the informa-
tion cost c and the variances σ2

ϵ and σ2
θ . The second group of parameters are

associated to the learning procedure: the horizon T and the number of couples
h. In what follows, we assume the individual parameter α, the risk aversion of
the agents, to be constant across the population.

We run 27000 simulations for 10000 periods,4 setting N = 1000, d =
1.1, R = 1.01 and systematically allowing σ2

ϵ ,σ
2
θ to take all the values in

{0.03, 0.06, ..., 0.30} , c ∈ {0.1, 0.2, ..., 0.5} , T ∈ {1, 4, 16} , h ∈ {15, 30} and
α ∈ {1, 2, 3} . We check for the absence of transient effects in the simulations,
running the experiments beginning with a fraction λ0 of informed agents in
{0.3, 0.5, 0.7} .

To ease exposition, we define a benchmark model in which α = 2,σ2
ϵ =

0.06,σ2
θ = 0.09, c = 0.3, T = 1, h = 15,λ0 = 0.5, k = 0.05,σ2

η = 0.005. Figure 1
depicts the time series of prices and the evolution of λt in a representative run
of the benchmark case. The average price in this specific simulation is 1.091 and
λ fluctuates around an average value of 0.57.

Table 1 shows the estimate of the mean and standard deviation of the sta-
tionary distribution of the random variables p∗ (equilibrium price) and λ∗. We
denote them, respectively, by µp and σp (for price) and µλ and σλ (for the

4 For simulations involving T = 16, 12000 periods.
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Fig. 1. Price pt (black, left axis) and fraction of informed traders λt (red, right axis) in
the benchmark configuration (α = 2,σ2

ϵ = 0.06,σ2
θ = 0.09, c = 0.3, T = 1, h = 15,λ0 =

0.5) (Color figure online)

fraction of informed). The table displays results obtained in the benchmark con-
figuration, as well as in other situations in which one parameter alone is tilted
with respect to the benchmark.

Table 1. Main outcomes of the model for the benchmark configuration and selected
variations. Every entry in the table is the average of 6 independent simulations (3
values for λ0 × 2 values for h). Each row shows the sample mean and the standard
deviation of the stationary distribution of price and of the share of informed traders

µp σp µλ σλ

Benchmark 1.089 0.091 0.557 0.168

α = 1 1.089 0.239 0.958 0.015

σ2
θ = 0.12 1.091 0.160 0.925 0.024

c = 0.4 1.089 0.038 0.111 0.039

The time-average of the price is remarkably close to d/R = 1.089 for all our
simulations and all cases depicted in Table 1. Indeed, the mean aggregate demand
in Eq. (2) is proportional to d − Rp for all traders and any prolonged deviation
of p from d/R is corrected by the market maker, who would detect and act on
any sustained imbalance. In the benchmark case (first row), approximately 56%
of traders are informed at each period, with the presence of oscillations that are
visible in Fig. 1, as well as in the standard deviation σλ taking the value 0.17.
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A further point is related to the heteroskedasticity in prices: it can be seen
in Fig. 1 that the standard deviation of prices is high in every time interval
featuring an high share of informed individuals, λt. The intuition is that if a
large portion of traders acquires the information θt and acts accordingly, high
pressure (either upward or downward) is put on prices. Conversely, if only a few
individuals have superior information, they exploit the signal without heavily
affecting the market.

Table 1 also exemplifies other general and sensible outcomes of the model.
Other things being fixed, less risk-averse traders (with α = 1) acquire the infor-
mation in over 95% of cases. Raising σ2

θ to 0.12 (third row) makes the signal
more informative and appealing, thus raising µλ from 0.56 to 0.93. As expected,
if the cost is increased from 0.3 to 0.4 (fourth row), the fraction of informed
traders drops to about 11%.

One of the most interesting features of the model is the relationship between
µλ, the “informativeness” of the signal, σ2

θ , and the baseline level of the idiosyn-
cratic noise, σ2

ϵ . In Fig. 2 we plot the average equilibrium fraction of informed
agents as a function of σ2

θ , for different values of σ2
ϵ .
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0.
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0.
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1.
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σθ
2

µ λ
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2 = 0.12

σε
2 = 0.18

●

Fig. 2. Equilibrium fraction of the informed agents as a function of σ2
θ , for σ2

ϵ =
0.06, 0.12, 0.18. The thick point represents the benchmark configuration (α = 2,σ2

ϵ =
0.06,σ2

θ = 0.09, c = 0.3, T = 1). (Color figure online)

Without doubt, scarcely informative signals lead to small values of µλ and,
conversely, increasing σ2

θ to substantial levels (with respect to σ2
ϵ ) ultimately

pushes the fraction of the informed ones to very high values approaching, but
never reaching, 100%. Comparing the left solid line with the right dashed one,
for instance, it can be seen that tripling σ2

ϵ for a given informativeness, greatly
reduces the number of informed traders. This follows from the reduced utility
of the signal embedded in a setup where the background noise is prevalent. In
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Fig. 3, we further investigate how µλ depends on σ2
ϵ and σ2

θ , plotting the set
of couples of the parameters for which µλ takes the values 0.1, 0.5 and 0.9,
respectively (i.e., we plot three contour levels of the function µλ(σ2

ϵ ,σ
2
θ), keeping

fixed all the other parameters at the level taken in the benchmark case).

σε
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σ θ2
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9 
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●

Fig. 3. The set of (σ2
ϵ ,σ

2
θ) where µλ takes the values 0.1, 0.5 and 0.9 (from right to

left). The thick point represents the benchmark case and, for example, when σ2
ϵ and

σ2
θ are 0.10, we have µλ ∼ 10%

The rightmost line, relative to combinations for which µλ = 10%, shows that
very few traders acquire the information when the informativeness is about the
same size of the background noise (for the given values of the other parameters).
The steeper leftmost line depicts configurations in which 90% of the agents are
informed: this roughly occurs when σ2

θ is about the double of σ2
ϵ . More impor-

tantly, the almost linear shape of the three contour lines strongly suggests that
the signal-to-noise ratio ρ = σ2

θ/σ
2
ϵ is crucial in shaping the emerging equilib-

rium. For instance, whenever ρ = 3/2, we obtain µλ ∼ 50% (or, put differently,
one in two agents buys the signal). Essentially, and rather sensibly, it looks as if
the important thing in a market where information is costly is the signal-to-noise
ratio faced by the traders (and not the peculiar variances of the sources of noise
determining the dividends paid by the risky asset).5

We turn then to another significant insight provided by the extended set of
simulations we have run. An increase in the time T between two learning rounds
has a deep effect on the outcomes. Recall that h traders are randomly paired
with other agents every T periods and learn by imitation, copying the behavior
5 It should be stressed that the result obviously depends also on the other parameters,
say α and c, but the conclusion that the signal-to-noise ratio plays an important role
robustly holds for all the combinations we have simulated (specific details are not
discussed for brevity).
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Fig. 4. Equilibrium fraction of the informed agents as a function of σ2
θ , for T = 1, 4, 16.

The thick point represents the benchmark configuration (α = 2,σ2
ϵ = 0.12,σ2

θ =
0.09, c = 0.3, T = 1)

of the peer if the accumulated wealth over T periods proves to be higher. So
far we have discussed the case T = 1, corresponding to a market populated by
short-term traders, who revise their decision to buy (or not to buy) the signal
based on the profits gained in a single period. Figure 4, resembling what was
done in Fig. 2, depicts the average equilibrium fraction of informed agents as a
function of σ2

θ , for different values of T . For this analysis, we alter the benchmark
configuration setting σ2

ϵ = 0.12 (see the red line in Fig. 2) to help the reader spot
the increase in µλ implied by an increase in T . Observe, for instance, the thick
point in the figure where less than 10% of traders acquire the information when
T = 1: keeping the other parameters fixed, it suffices to raise T from 1 to 4 to
boost the number of the informed ones to over 60%. The effect is much stronger
if T = 16, a situation in which λ abruptly increases to almost 100% as soon as
the informativeness σ2

θ reaches 0.09.
Even though a greater T may be somewhat interpreted in terms of “stub-

bornness” on the part of the agents, who insist in using their strategy and less
frequently try to learn from their peers, an alternative explanation is in order: if
learning takes place less frequently, traders have more time to learn whether the
signal is, on average, worth the cost. In the present setup, the second effect is
clearly predominant over the first and the benefits of slower (and more accurate)
learning outweigh what can be gained with frequent (but necessarily noisier)
assessments of trading performances.

Our findings highlight that weakly informative signals, which will not be
acquired if short-term gains are sought for, are nevertheless valuable in the long
run (i.e., provided that multiple periods are considered and used to average the
profits and adjust behaviour). A similar idea was presented in the seminal paper
on the Santa Fe Artificial Stock Market, Arthur et al. [12], in which it is pointed
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out that “where investors explore alternative expectational models at a low rate,
the market settles into the rational-expectations equilibrium”, whereas high-
frequency exploration leads to more hectic behavior, with rich psychology and
“technical trading emerges, temporary bubbles and crashes occur”. In a related
fashion, fast revisions of the decision to acquire information in our model lead
to episodic adoption of the signal, volatility bursts and reduced use of aggregate
information; on the contrary, slow learning with larger T increases the fraction
of traders who get and use the information and, in this sense, produces what
can be deemed as more rational outcomes.

4 Conclusions

The model presented in this paper features boundedly rational agents who have
the option to acquire a costly informative signal on the return of the risky asset.
Paying for the information would make predictions more accurate and reduce
the residual risk, increasing the traded volume. Uninformed agents, on the con-
trary, face greater uncertainty and typically buy or sell less but do not bear any
additional cost. Some agents in the population learn by imitation whether their
choice to get (or not to get) the information is convenient by comparing their
profits every T periods with the ones of another peer.

We have shown that, similarly to Grossman and Stiglitz [4], the model con-
verges to an equilibrium where stationary distributions for the price and the
fraction of informed traders can be described. Numerical simulations demon-
strate how the adoption of information increases with the informativeness of the
signal or, more precisely, with the signal-to-noise ratio. Moreover, less informa-
tion is used by more risk-averse agents and when the signal is more costly.

The volatility of the price, which is adjusted by a market maker based on
the excess demand, is not constant and notably depends on the fluctuation of
the fractions of informed, as a larger (smaller) magnitude of returns is observed
on average when λ is big (small). The channel through which high values of λ
cause large shocks is the larger volume of trades prompted by informed agents.

Finally, we have shown how the interval T between two learning rounds
affects the equilibrium dynamics. An increase in T effectively results in slower
learning, a situation where traders stick to the same strategy in a stubborn way
for several periods, apparently renouncing the frequent opportunity to revise
their strategy. However, slow learning also gives the chance to assess the value
of the signal in a much more accurate (and less noisy) way. In our model, the
latter effect prevails on the former and a larger T gives rise to markets where
(many) more agents acquire the signal, suggesting that even weakly informative
signals can be profitable if the trading gain they produce is assessed over a long
horizon.

Further research would be needed to clarify how the market structure affects
the results that, in the present framework, are mainly driven by the signal-to-
noise ratio and by the frequency with which learning is activated. Indeed, the
market maker used in the model adjusts the price only after demands are revealed
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and transactions are cleared. As such, he may delay or hamper the chance to
infer the signal from the price and in principle a formal auction may disclose
information in a more efficient and timely manner (even though it is difficult to
ascertain under which dimensions this would be good or bad).
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