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0 Recognizing A7 by its set of element orders

E. Jabara – A. Mamontov

Abstract. Let G be a periodic group, the spectrum ω(G) ⊆ N of G is the
set of orders of elements in G. In this paper we prove that the alternating
group A7 is uniquely defined by its spectrum in the class of all groups.

Keywords: periodic group, locally finite group, spectrum.

1 Introduction

Let M be a class of periodic groups and G ∈ M. The spectrum of G is the
set

ω(G) = {n ∈ N | n is the order of some element in G}

and µ(G) is the set of maximal elements of ω(G) with respect to division.
In particular ω(A7) = {1, 2, 3, 4, 5, 6, 7} and µ(A7) = {4, 5, 6, 7}. A group
G is called recognizable by spectrum in M if for any H ∈ M the equality
ω(H) = ω(G) implies isomorphism H ≃ G.

Many finite simple groups are recognizable by spectrum in the class of
finite groups (see [3] for a survey of known results). Moreover, L2(2

m) [20],
L2(7) ≃ L3(2) [10], Mathieu group M10 [7], and L3(4) ≃M21 [8] are known
to be recognizable by spectrum in the class of periodic groups. There are
examples of finite simple groups that are recognizable by spectrum in the
class of finite groups but not recognizable in the class of periodic groups [16],
which are related to non-locally finite groups of large even exponent that
provide negative solution to the Burnside problem. In the paper we prove

Theorem. A7 is recognizable by spectrum in the class of periodic groups.

Note that [1] contains the classification of finite OCn groups, i.e. groups
with spectrum {1, 2, . . . , n} for some n ∈ N. In particular, it is shown that
A7 is recognizable by spectrum in the class of finite groups. Therefore our
major scope is to prove that a group G with ω(G) = ω(A7) is locally finite.

For n ≤ 6 it is known that OCn groups are locally finite [6, 14, 17, 18].
Theorem gives a positive solution to [11, Conjecture 7.2.1]. In [1] it is proved
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that if G is a finite group in OC8, then G ≃ L3(4)⋊〈β〉, where β is a unitary
automorphism of L3(4), and that if n ≥ 8 then there are no finite groups
in OCn. In this context it is interesting to highlight the following open
problems.

Problem 1. Is a group with spectrum {1, 2, . . . , 8} locally finite?

Problem 2. Is there a group with spectrum {1, 2, . . . , n}, where n > 8?

2 Notations, preliminary results and strategy

Let An and Sn denote the alternating and symmetric groups of degree n
correspondingly. Let also Ln(q) be the projective special linear group of
dimension n over the field with q elements. The prime power pk denotes
the elementary abelian group of order pk, the number n denotes the cyclic
group of order n, p1+2 denotes the extraspecial group of order p3 with no
elements of order p2. The following groups are defined by generators and
relations:

Fk2·6 =
〈
x, t

∣∣ x3, t2, (xt)6, [x, t]k
〉
≃ k2 : 6;

F294 =
〈
x, t

∣∣ x3, t2, (xt)6, [x, t]7
〉
≃ 72 : 6.

We have F42 = 〈x, z | ρ42〉, where

ρ42 = {x3, z2, (xz)6, b7, bx = b4} and b = zxz.

F36 =
〈
t, x | t4, x3, (t2x)2, [x, xt]

〉
;

31+2 : 2 = 〈x, t | x3, t2, (xt)6, [x, t]3〉.

We remark that F42 < F294 with z = txt.
We denote by Γn = Γn(G) the set of elements of order n in G and

∆ = ∆(G) = {x2 | x ∈ Γ4}.

If p is a prime then Op(G) is the largest normal p-subgroup of G. If A and B
are groups, A : B denotes some extension of A by B. Some local notations
are introduced at the beginning of paragraphs.

Speaking of computations we refer to computations in Gap [22] using
coset enumeration algorithm.

Further we assume that a groupG with ω(G) = ω(A7) = {1, 2, 3, 4, 5, 6, 7}
is a counterexample to Theorem such that the exponent of O2(G) is the
smallest possible.
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Lemma 1. G is not locally finite.

Proof. Assume that G is locally finite. Choose elements x4, x5, x6, and x7
in G so that the order of xi is i. Then H = 〈x4, x5, x6, x7〉 is finite and
ω(H) = ω(G). By [1] H ≃ A7. If G 6= H then take x ∈ G \ H. Again
〈H,x〉 is finite, and hence isomorphic to A7. Therefore H = 〈H,x〉 = G, a
contradiction.

A corollary of Lemma 1 and Shunkov’s Theorem [19] is

Lemma 2. The centralizer of every involution in G is infinite.

Our general strategy is to show first that G contains some nonabelian
finite simple subgroup K with an involution a ∈ K ∩∆, and then approach
this case via CG(a) as we describe at the beginning of paragraph 6.

The first step was started at [13], where the following statement was
proven:

Statement 1. Let H be a subgroups of G isomorphic to A4, whose involu-
tions are in ∆(G). Then either O2(H) ⊆ O2(G), or G has a finite simple
subgroup A5 or L2(7), whose involutions are in ∆(G).

Remark: Let H = V : A5, where V = 24. Then µ(H) = {4, 5, 6}.
Involutions of ∆(H) generate V = O2(H), and involutions, which are not in
∆(H) lie in a subgroup isomorphic to A5. This example shows the signifi-
cance of the condition O2(H) ⊆ ∆.

3 On factors with no elements of order 4

Throughout the paragraph T is a group and µ(T ) = {5, 6, 7}. Let

Γ∗
2 = Γ∗

2(T ) = {t ∈ Γ2(T ) | CT (t) is elementary abelian }.

We assume that this set is non-empty and we choose a ∈ Γ∗
2. Let

Λ2 = Λ2(T ) = {x3 | x ∈ Γ6(T )}.

Note that Γ∗
2 and Λ2 are two normal non-intersecting sets of involutions

and Λ2 6= ∅. The goal of this paragraph is to prove that 〈Γ∗
2〉 is a group of

exponent 6.

Lemma 3. If b ∈ Γ2(T ), then (ab)6 = 1. In particular, [a, t]6 = 1 for any
t ∈ T .
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Proof. Assume the contrary. If the involutions a and b are not conjugated,
then the order of ab is even, and conclusion of Lemma is true. Therefore we
assume b ∈ Γ∗

2.
Let c ∈ Λ2. Then the order of ac is even, and if it equals 6, then

the involution (ac)3 from the center of dihedral subgroup 〈a, c〉 is in Λ2.
Therefore a commutes with some element of Λ2, and we may assume that
[a, c] = 1. So the following relations hold in T (p odd):

τ(p) = {a2, b2, c2, (ab)p, [a, c]}.

Sets Γ∗
2 and Λ2 are normal and do not intersect, so the following relations

hold:
ρ1 = {(bc)6, (abc)6, (babc)6}.

Applying similar argument once again, we obtain the relations

ρ2 = {(a(bc)3)6, (a(abc)3)6, (a(babc)3)6}.

It follows that 〈a, b, c〉 is a homomorphic image of

T (p, i, j) =
〈
a, b, c

∣∣ ρ1 ∪ ρ2 ∪ τ(p) ∪ σ(i, j)
〉
,

where σ(i, j) = {(abc)i, (aabc)j}. Computations show that the order of
T (p, i, j) divides 4 for all p ∈ {5, 7} and i, j ∈ {5, 6, 7}: a contradiction.

Lemma 4. If x ∈ Γ3(T ), then (ax)6 = 1.

Proof. Lemma 3 implies [a, x]6 = 1. Therefore 〈a, x〉 is a homomorphic
image of K(ℓ) = 〈a, x | a2, x3, (ax)ℓ, [a, x]6〉, ℓ ∈ {5, 6, 7}. Computations
show that K(5) = 1 and K(7) ≃ L2(13), which is not possible. So ℓ = 6 as
required.

Lemma 5. If b, c ∈ Γ∗
2(T ), then [(ab)2, (bc)2] = 1.

Proof. First assume that orders of ab and bc divide 3 and hence the following
relations hold:

ρ = {a2, b2, c2, (ab)3, (bc)3}.

Using Lemmas 3 and 4 we obtain the following set of relations

τ = {(ac)6, (abc)6, (ab · c)6, (b · (ac)3)6}.

Therefore 〈a, b, c〉 is a homomorphic image of

K =
〈
a, b, c

∣∣ ρ ∪ τ
〉
.
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Computations show that K ≃ 31+2 : 2. The center of K has order 3 and
so it is contained in the kernel of the corresponding homomorphism. It
follows that 〈a, b, c〉 is an extension of an elementary abelian 3-group by an
involution. In particular, [ab, bc] = 1.

Let now b, c be arbitrary elements of Γ∗
2(T ). Then b, ba, bc ∈ Γ∗

2(T ) and
(bab)3 = (bbc)3 = 1. We have shown that [(ab)2, (bc)2] = [bab, bbc] = 1.

Lemma 6. If b, c ∈ Γ∗
2(T ), then (abc)2 = 1. Moreover, [a′b, cd] = 1 for any

a′, b, c, d ∈ Γ∗
2(T ).

Proof. Let w = (abc)2 and let

σ = {a2, b2, c2, (ab)6, (bc)6, (ac)6, [(ab)2, (bc)2], [(bc)2, (ca)2], [(ca)2, (ab)2},

by Lemma 5 〈a, b, c〉 is a homomorphic image of

T (i) =
〈
a, b, c | σ ∪ {(abc)i}

〉
, i ∈ {5, 6, 7}.

Computations show that |T (5)| = |T (7)| = 4, therefore i = 6 and the order
of w ∈ T divides 3. With further computations we can prove that in T (6)
the element wwa has order 3 and centralizes a. So in T we have wa = w−1.
Similarly wb = w−1 and wc = w−1. It follows that w = wabc = w−1. The
order of w divides 3, so w = 1.

In order to prove that [a′b, cd] = 1, we can assume a′ = a. We have
(abc)2 = 1 = (abd)2. Consequently, (ab)c = (ab)−1 = (ab)d and therefore
(ab)cd = ab.

Lemma 7. Let T be a group and µ(T ) = {5, 6, 7}. Then 〈Γ∗
2(T )〉 is a locally

finite group of period 6.

Proof. Let a1, a2, . . . , an ∈ Γ∗
2(T ) and let H = 〈a1, a2, . . . , an〉. By Lemma

6 the subgroup K = 〈aiaj | i, j ∈ {1, 2, . . . , n}〉 is normal and abelian of
exponent 6. Therefore H = K〈a1〉 is finite and satisfies lemma’s conclusion.
Any element of 〈Γ∗

2(T )〉 can be written as a finite word of generators and
this proves the lemma.

4 Reduction of the 2-radical

The goal of the paragraph is to prove the following

Statement 2. O2(G) = 1.
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Proof. Assume N = O2(G) 6= 1 and let G = G/N .
By a well known result of Sanov [18], N is locally finite. Let x ∈ Γ5(G)

then, by Schmidt’s theorem, 〈N,x〉 is locally finite and by Thompson’s the-
orem N is locally nilpotent. By Higman’s theorem [5], N is nilpotent and,
in particular, Z(N) 6= 1.

We consider several cases.
0. ω(G) = ω(G). By the choice of G, Statement’s conclusion holds for

G, and so G ≃ A7. By Schmidt’s theorem G is locally finite, a contradiction
by Lemma 1.

1. µ(G) = {3, 4, 5, 7}. Then, from [8], we have G ≃ L3(4). By Schmidt’s
theorem G is locally finite, a contradiction by Lemma 1.

2. µ(G) = {5, 6, 7}. In this case ∆ ⊆ N .
2.1. Assume that there is h ∈ G of order 4 which is not in N . Then h

is an involution in G.
We first prove that CG(h) is an elementary abelian 2-group. Let C be

a full preimage of CG(h) in G. Assume that C contains an element x of
order 3, then [x, h] ∈ N . Hence [x,N〈h〉] ⊆ N . Note that 〈x, h,N〉 is locally
finite as it is an extension of a locally finite group N by a (2, 3)-generated
(and hence finite [13, Lemma 2.1]) group 〈x, h〉. Changing N to a minimal
〈x, h〉-invariant subgroup in N that contains N ∩ 〈x, h〉, we may assume
that 〈x, h,N〉 is finite. Let P = 〈h,N〉. Since [x, P ] ⊆ N then P is a finite
〈x〉-invariant 2-subgroup of 〈x, h,N〉. Denote by Φ = Φ(P ) the Frattini
subgroup of P . Note that h2 ∈ Φ = P ′∆ and P/Φ is elementary abelian.
Since x is a nontrivial automorphism of P , it acts nontrivially on P/Φ.
Consequently all basis elements hΦ, hxΦ, hx

2

Φ of P/Φ are in [xΦ, P/Φ], and
CP/Φ(x) = 1. The equality P/Φ = [xΦ, P/Φ] × CP/Φ(xΦ) now imply that
P/Φ = [xΦ, P/Φ] ⊆ N/Φ, hence P ⊆ N , a contradiction.

Therefore, h ∈ Γ∗
2(G/N) and H = 〈Γ∗

2(G/N)〉 is a locally finite group
of exponent 6 by Lemma 7. Recall that N = O2(G), therefore H contains
an element of order 3. Let H be the full preimage of H in G. Then H is a
normal locally finite {2, 3}-subgroup of G, containing an element of order 3
and an element h of order 4. Let x ∈ Γ3(H) and y ∈ Γ5(G). By Schmidt’s
theorem H ⋊ 〈y〉 is locally finite. Therefore K = 〈x, h〉K ⋊ 〈y〉 is a finite
group. An element y acts on the subgroup S = 〈x, h〉K fixed point freely.
Therefore S is nilpotent and so is a direct product of its Sylow subgroups,
in particular, it contains an element of order 12, which is not possible.

2.2. Let Γ4(G) ⊆ N .
If a ∈ Γ2(G)\N and b ∈ Γ2(N), then N〈a〉 is a 2-group, and so (ab)4 = 1.

If ab ∈ Γ4 ⊂ N , then a ∈ N , a contradiction. Therefore (ab)2 = 1. Let
C = CG(Γ2(Z(N))). By construction Γ4 ⊆ N ≤ C. As already proven
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Γ2 ⊆ C. The set Γ2(Z(N)) is normal in G, therefore, C ⊳ G.
We have Z(N) 6= 1, therefore C is contained in the centralizer of an

involution, and so has no elements of orders 5 and 7. An element x ∈ Γ5(G)
acts freely on C. Using arguments above deduce that C is nilpotent. It
follows that C has no elements of order 3, as 12 6∈ ω(G). Therefore O2(G) =
C 6= N , a contradiction.

3. µ(G) = {2, 3, 5, 7}. By a result of Mazurov [15] one of the following
cases holds:

3.1. G is an extension of an abelian 2-group V by a group with no
involutions. Let V be a full preimage of V in G. Then O2(G) = V 6= N , a
contradiction.

3.2. G is locally finite. By Schmidt’s theorem G is locally finite, a
contradiction with Lemma 1.

4. µ(G) = {3, 5, 7}. Consider the following characteristic subgroups
L = 〈Γ4(N)〉 and D = 〈∆(L)〉. Since N is locally finite and nilpotent we
have L 6= D. Let G = G/D and x ∈ Γ3(G). Using similar arguments as
in 2.1 obtain CL(x) = 1, i.e. x acts fixed point freely on L 6= 1. It follows
that 〈x〉 is a normal subgroup of G [21, Theorem 3], and so it is necessarily
central. A contradiction, since 15, 21 6∈ ω(G).

5 Existence of nonabelian finite simple subgroup

The goal of the paragraph is to prove the following

Statement 3. G has a subgroup H isomorphic to A5 or to L2(7) such that
Γ2(H) ⊆ ∆.

Throughout the paragraph we assume the contrary, i.e. that G has no
finite nonabelian simple subgroups H with Γ2(H) ⊆ ∆.

Lemma 8. If t ∈ ∆ and x ∈ Γ3, then (xt)6 = [x, t]p = 1 and p ∈ {3, 5, 7}.

Proof. Let H = 〈t, x〉. All possible groups H∗ generated by an involution
and element of order 3 and such that ω(H∗) ⊆ ω(A7) are listed in [13, Lemma
2.1]. By Proposition 1, H has no subgroups isomorphic to A4, so (xt)6 = 1
and by [?, Lemma 9] the order of [x, t] is odd.

In the next lemmas we prove p = 3.

Lemma 9. G cannot have a subgroup H isomorphic to F42 or to F294 with
Γ2(H) ⊆ ∆(G).
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Proof. Since F42 < F264, it is sufficient to consider the case where H is
isomorphic to F42. Assume the contrary.

Let F42 ≃ H = 〈x, z | ρ42〉 ≤ G, where z ∈ ∆(G), b = zxz and

ρ42 =
{
x3, z2, (xz)6, b7, bxb−4

}
.

Then u = zx
2z ∈ ∆(G) centralizes x and C〈x,z〉(u) = 〈u, x〉. We break the

proof into several steps.

(1) CG(x) = 〈x, u〉.
Assume that y is an element of order 3 centralizing x, and y 6∈ 〈x〉.

By [13, Lemma 3.3] y ∈ CG(u).
If [z, y]7 = 1, then v = z[y

−1,z][y,z] is an involution centralizing y. By [13,
Lemma 3.1] u = v. Then 〈z, x, y〉 is a homomorphic image of

G(i) =
〈
z, x, y | ρ42 ∪ {y3, uyu, [x, y], (yz)6, (zyz)7, uv, ((zy)2x)i}

〉
,

where i ∈ {4, 5, 6, 7}. Computations show that xy is in the center of G(6),
which is not possible, and the orders of other groups G(i) are not greater
than 42 = |〈z, x〉|, therefore y ∈ 〈x〉, which contradicts the choice of y.

If the order of [z, y] is not 7, then, by Lemma 8, it divides 3 or 5. It
follows that 〈z, x, y〉 is a homomorphic image of

G(i1, i2) =
〈
z, x, y | ρ42 ∪ σ ∪ {(zyz)i1 , ((zy)2x)i2}

〉

where
σ =

{
y3, uyu, [x, y], (yz)6, (z · xy)6, (z · xy−1)6

}
,

i1 ∈ {3, 5} and i2 ∈ {4, 5, 6, 7}.
Computations show that the index |G(i1, i2) : 〈x, z〉| divides 3. This

index equals 3 only for groups G(3, 6) and G(5, 6) which contain an element
of order 3 in the center. It follows that 〈z, x, y〉 = 〈x, z〉 and this contradicts
the choice of y.

Let now v be an involution in CG(x). Then (uv)6 = 1.
If |uv| = 3, then by item (1) uv = x±1, and therefore v = ux±1 is an

involution, which is a contradiction. So we may assume that a dihedral
subgroup 〈u, v〉 ⊆ CG(x) has no elements of order 3 and we may choose v
so that [u, v] = 1. Then v = u by [13, Lemma 3.1].

(2) C∆(u) = {u}.
Assume that there is an involution t ∈ C∆(u) such that t 6= u and let

w = [x, t]. Note that 〈t, x〉 ⊆ CG(u), and therefore w3 = 1 by Lemma 8. By
(1) we have w 6= 1. So 〈x,w〉 is either elementary abelian or isomorphic to
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the extraspecial group 31+2 of exponent 3 and order 33. In any case either
there is an element y ∈ Γ3\〈x〉 centralizing x, which is a contradiction by
item (1), or (tx)2 = 1. In the last case 〈t, z, x〉 is a homomorphic image of a
group

G(i1, i2) =
〈
z, x, t | ρ42 ∪ {t2, (ut)2, (tx)2, (tzx)6, (ztx)6, (tz)i1 , (tzx)i2}

〉
,

where i1, i2 ∈ {4, 5, 6, 7}. Computations show that G(7, 5) ≃ G(7, 7) ≃ S7,
G(6, 7) ≃ L3(2) : 2, which is not possible and the order of G(i1, i2) divides
12 for other values of the parameters. So we have a contradiction.

(3) If t ∈ Γ2\∆, then [u, t] = 1.
We consider the various possibilities for 〈t, x〉 using [13, Lemma 2.1].
Assume (tx)2 = 1. Note that t and u are not conjugated, therefore |ut| is

even. If |ut| = 4 then (ut)2 ∈ C∆(u) = {u}, which is not possible. It follows
that (ut)6 = 1 and (u · tx)6 = 1 (t and tx are conjugated in 〈t, x〉 ≃ S3).
Therefore 〈u, t, x〉 is a homomorphic image of

〈
u, t, x

∣∣ {u2, t2, x3, [u, x], (tx)2, (ut)6, (utx)6}
〉
≃ S3 × S3.

From item (1) it follows that (ut)2 = 1.
(3.1) Assume (tx)3 = 1. Then 〈t, x〉 ≃ A4. By [13, Lemma 4.2] either

G contains a subgroup isomorphic to S5, or O2(〈t, x〉) ⊆ O2(G). In other
words, we may assume that (ut)4 = (utx)4 = 1.

If |ut| = 4 then (ut)2 ∈ C∆(u) = {u}, which is a contradiction. Therefore
(ut)2 = 1.

If (tx)4 = 1, then 〈t, x〉 ≃ S4. So (tx)2 ∈ ∆ and 〈(tx)2, x〉 ≃ A4, a
contradiction with Statement 1.

(3.2) Assume (tx)5 = 1, then 〈t, x〉 ≃ A5.
We may identify t = (1, 2)(3, 4) and x = (1, 3, 5). Take v = (1, 3)(2, 4)

and w = (1, 3)(2, 5). Then 〈x, v〉 ≃ S3 and 〈w, x〉 ≃ A4. It is already proven
that in these cases v, w and wx centralize u. Note that t ∈ 〈v,w,wx〉 ≤
CG(u), and in this case we are done.

(3.3) Assume (tx)7 = 1.
We have 〈t, x〉 ≃ L2(7), against the hypothesis that G does not possess

a finite nonabelian simple subgroup H with Γ2(H) ⊆ ∆.
(3.4) tx ∈ Γ6.
If [x, t] is of order 5 or 7 then C〈x,t〉(x) contains an involution, which is

conjugated with t. By item (1) it should coincide with u and hence t ∈ ∆,
a contradiction.

If [x, t] ∈ Γ4, then v = [x, t]2 ∈ ∆ and 〈v, x〉 ≃ A4, which is a contradic-
tion by Statement 1.
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Therefore [x, t]6 = 1. If y = [x, t]2, then 〈x, y〉 is a homomorphic image
of an extraspecial group 31+2. By item (1) we get from here that y = 1. So
〈x, y〉 is a homomorphic image ofK = 〈x, t | {t2, x3, (xt)6, [t, x]2}〉 ≃ C2×A4.
If Z(〈x, t〉) contains an involution, then, by item (1), it should coincide with
u, and so [t, u] = 1 as claimed. The other possibility 〈x, t〉 ≃ A4 was already
considered.

(4) Lemma follows from item (3).
Note that u and z are conjugated. So u, z ∈ CG(t) by (3). It follows

that the element uz of order 7 centralizes t, a contradiction.

Lemma 10. If a ∈ ∆ inverts an element of order 5, then Γ2(CG(a)) = {a}.

Proof. From [13, Statement 2] it follows that if a ∈ ∆ inverts an element of
order 5 and CG(a) contains an involution t 6= a, then G contains a subgroup
isomorphic to A6, L3(4) or S5, which is contrary to hypotheses.

Lemma 11. Let a ∈ ∆ and b, c ∈ Γ2 with (ab)3 = (bc)3 = 1. Then
(ac)3 = 1.

Proof. Using Lemma 8 we obtain that 〈a, b, c〉 is a homomorphic image of

G(i) =
〈
a, b, c

∣∣ {a2, b2, c2, (ab)3, (bc)3, (ab · c)6, (ab · ac)6, (ab · acac)6, (ac)i}
〉
,

where i ∈ {4, 5, 6, 7}. Computations show that |G(i)| divides 6 if i 6= 6.
Let u = (ac)3. In G(6) the order of bu is 8 and the order of acb · ca is

36. So we consider G = G(6)/〈(bu)4 , (acb · ca)6〉. In G we have 〈ab, cac〉 ≃ S4
which by Lemma 8 implies (ab · cac)2 = 1. So we get to a factor

G/〈(abcac)2〉G ≃ 31+2 : 2,

in which the product of two involutions has order 1 or 3 and this proves the
lemma.

We now prove an analogue of Baer-Suzuki theorem for p = 3.

Lemma 12. Assume that y ∈ Γ3 and any two elements from yG generate a
3-group. Then H = 〈yG〉 is a 3-group.

Proof. Let h = y1 . . . yn be an arbitrary element of H where yi ∈ yG. Denote
x = y1 . . . yn−1 and y = yn. Using induction on n, it is sufficient to prove that
if the order of x is 3, then the order of xy is 3. By assumption the following
relations hold: ρ = {(yxy)3, (yxy−1)3, [yx, y]3, (yxyxy)3}. Therefore 〈x, y〉 is
a homomorphic image of

K =
〈
x, y

∣∣ ρ ∪ {x3, y3}
〉

and computations show that K is a finite group of order 39.
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Lemma 13. If a ∈ ∆, then a inverts no elements of order 5.

Proof. Assume the contrary. By Lemma 10 CG(a), contains the unique
involution a, hence for every b ∈ Γ2 the order of ab is odd and ∆ = Γ2 = aG.

Consider a graph Γ =
(
∆, E

)
with vertices ∆ and edges E = {(a, b) |

a, b ∈ ∆, ab ∈ Γ3}. Let ∆b be its connected component, passing through a
vertex b ∈ ∆, then, by Lemma 11, ∆b is a complete graph.

Assume that ∆a has a vertex b 6= a. Let x = ab. Note that CG(x) is
a 3-subgroup. Indeed, K = 〈a, b, c | {a2, b2, c2, [c, ab], (ab)r , (ac)s}〉 ≃ D2m,
where m = GCD(r, s) and a = b in K.

Let c ∈ ∆ and d ∈ ∆c. By assumptions (dx)6 = 1 and (ddx)p = 1.
By [13, Lemma 2.1] if p ∈ {5, 7}, then CG(x) contains an involution, which is
not possible. Therefore p = 3 and dx ∈ ∆c. So x normalizes each connected
component ∆b of the graph Γ.

Let y ∈ xG. Then y normalizes ∆a. Therefore, 〈x, xy〉 is a 3-subgroup.
Computations show that 〈x, y | {x3, y3, (xxy)3, [x, y]3, (xy)i}〉 is a 3-group
for i ∈ {4, 5, 6, 7}. Hence 〈x, y〉 is a 3-subgroup. By Lemma 12 x ∈ O3(G).

Our proof now uses only the fact that the product of any two involutions
is odd, which can be written as an identity, and therefore it is a property
that is preserved in homomorphic images of G.

Consider G = G/O3(G). If µ(G) = {3, 4, 5, 7}, then G ≃ L3(4) by [8],
and G is locally finite, a contradiction with Lemma 1.

Assume µ(G) = {4, 5, 7}. Then CG(a) is a 2-group of exponent 4, con-
taining the unique involtuion. Every infinite locally finite group contains an
infinite abelian subgroup [4,9]. It follows that CG(a) is finite. By Shunkov’s
theorem [19] G is locally finite. By Schmidt’s theorem, G is locally finite, a
contradiction with Lemma 1.

Hence µ(G) = µ(G) and we may assume that Γ is an empty graph. Let
q ∈ Γ3 such that [q, a] = 1 and take b ∈ Γ2 such that a 6= b, then bbq ∈ Γ5,
qb ∈ Γ6 and there is an involution in 〈q, b〉, which centralizes q. It follows
that a ∈ 〈q, b〉 and (ab)5 = 1.

Let K = 〈∆〉, r ∈ Γ4 and note that by [6, Lemmas 12 and 13] Kr ⊆ Γ4.
Therefore both K and G/K have an involution, and no elements of order 4.

By hypothesis there is an element x of order 3 such that a and x do not
commute. Then 〈a, x〉 ≃ F150, and u = axa(x

−1a)2 ∈ CG(x). There are no
elements of order 4 in K and in C = CK(u), therefore C ≃ O3(C) × 〈u〉,
and O3(C) is infinite by Lemma 2. Let y ∈ O3(C) such that 〈y〉 6= 〈x〉
and [x, y] = 1. Let z = xy. Select involutions v = aya(y

−1a)2 ∈ CG(y) and
w = aza(z

−1a)2 ∈ CG(z) in groups 〈a, y〉 and 〈a, z〉 correspondingly. Having
u, v ∈ CG(y) and u,w ∈ CG(z) we obtain relations u = v = w. It follows
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that L = 〈a, x, y〉 is a homomorphic image of

K =
〈
a, x, y

∣∣ κ
〉
,

where

κ =
{
a2, x3, y3, (ax)6, [a, x]5, (ay)6, [a, y]5, [x, y], (az)6, [a, z]5, uv, uw

}
.

Computations show that K is finite and has an element axayx of order
15. Therefore L is a homomorphic image of K(p) = K/〈(axayx)p〉, where
p ∈ {3, 5}. Computations show that K(3) has no elements of order 5, and
K(5) ≃ F150, hence 〈x〉 = 〈y〉: a contradiction.

Lemma 14. Let a ∈ ∆. If x ∈ Γ3 and xa = x−1, then x ∈ O3(G).

Proof. Let b = ax. By Lemma 12 it is sufficient to prove that for every
element y of order 3 the order of xy divides 3. By the assumptions we have
the following set of relations

ρ =
{
a2, b2, (ab)3, (ay)6, (aya)3, (by)6, (byb)3

}
.

Let g = yya. Then g3 = 1 and [ga, g] = 1. By Lemmas 8,9 and 13 we
obtain the relations

σ =
{
(bg)6, (bag)6, (bgb)3

}
.

By Lemma 11 (bag)3 = (abg)3 = 1. The group 〈a, b, g〉 is a homomorphic
image of

G(i, j) =
〈
a, b, g

∣∣ ρ ∪ σ ∪ {g3, [ga, g], (bag)3, (abg)3, (abg)i, (bag)j}
〉
,

where i, j ∈ {4, 5, 6, 7}. Computations show that G(i, j) is a finite group,
whose order divides 35 · 2. Hence, (abg)3 = (bag)3 = 1, similarly, if h = yyb,
then (abh)3 = (bah)3 = 1. Define the set τ as
{
y3, (ay)6, (aya)3, (by)6, (byb)3, (bay)3, (aby)3, (abg)3, (bag)3, (abh)3, (bah)3

}
,

then the group 〈a, b, y〉 is a homomorphic image of

G(i) =
〈
a, b, y | ρ ∪ τ ∪ {(aby)i}

〉
,

where i ∈ {4, 5, 6, 7}. Computations show that G(i) is a finite group whose
order divides 37 · 2, and hence the lemma is proved.

Lemma 15. Assume O3(G) 6= 1. Let S̄ be a nontrivial 2-subgroup of Ḡ =
G/O3(G), let S be its full preimage in G and Γ2(S) ⊆ ∆(G). Then NḠ(S̄)
has no elements of order 5 or 7.
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Proof. Assume that NḠ(S̄) contains an element x̄ of order 5 or 7. Then its
preimage x acts fixed point freely on O3(G)S̄ = S. By [?] S is locally finite.
By Schmidt’s theorem 〈S, x〉 is locally finite. Take a ∈ Γ3(S) and b ∈ S of
order dividing 4. Then 〈a, b, x〉 is a finite Frobenius group such that 〈x〉 is
its complement and 〈a, b〉 is in its kernel, which is nilpotent. It follows that
[a, b] = 1 and S = O3(G)× S′, where S′ is a nontrivial 2-subgroup.

Let c be an involution in S′ and let y ∈ G. Both c and cy centralize a
Sylow 3-subgroup O3(G) 6= 1 of S, hence 〈c, cy〉 has no elements of orders
5 and 7. We have c ∈ ∆ and hence, by Lemma 14, any element of order 3
inverted by c is in O3(G). At the same time, c centralizes O3(G), so 〈c, cy〉
is a 2-group. By an analog of Baer-Suzuki theorem for p = 2 (see [12])
c ∈ O2(G), a contradiction by Statement 2.

Proof of Statement 3.
Assume the contrary and take a ∈ ∆ and x ∈ Γ3. By Lemmas 9 and 10

we have (aax)3 = 1.
Assume first that for all x ∈ Γ3 we have a = ax. Then any two elements

of aG are in the centralizer of an element of order 3 and generate 2-subgroup.
Using an analog of Baer-Suzuki theorem for p = 2 [12], we obtain a ∈ O2(G),
a contradiction with Statement 2.

Choose x ∈ Γ3 such that y = aax ∈ Γ3. Then y ∈ O3(G) by Lemma 14.
Consider G = G/O3(G).

If µ(G) = {3, 4, 5, 7}, then G ≃ L3(4) by [8], and G is locally finite, a
contradiction with Lemma 1.

Assume that ω(G) = ω(G). Then ā commutes with Γ3(G) 6= 1 and, as
shown above, ā ∈ O2(G), a contradiction with Lemma 15.

Finally, assume that µ(G) = {4, 5, 7}. We denote H = G, we omit the
bars and we split the proof in several steps.

(1) All involutions of H are conjugated.
By the properties of dihedral subgroups it is sufficient to prove that if

b ∈ Γ2(H) and [a, b] = 1, then a and b are conjugated. By Lemma 15, 〈∆〉
is not a 2-group. By an analog of Baer-Suzuki theorem for p = 2 [12], there
is an involution c such that the order of ac is 5 or 7. Orders of bca and acab
are even. Therefore 〈a, b, c〉 is a homomorphic image of

Jp(i) =
〈
a, b, c | a2, b2, c2, [a, b], (bca)4, (acab)4, (ac)p, (abc)i

〉
,

with p ∈ {5, 7} and i ∈ {4, 5, 7}. Computations show that J5(5) ≃ 24 :
D10, J7(7) ≃ 26 : D14, |Jp(i)| divides 4 for the other parameters, moreover
b ∈ ∆(J5(5)) or ∆(J7(7)) correspondingly. So we obtain a contradiction by
Lemma 15.
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(2) Let X = {x | x ∈ H, ax ∈ CH(a)}. If x ∈ X, then x4 = 1.
Assume the statement is not true and let

ρ(i1, i2, i3, i4) = {(ax)i1 , (ax2)i2 , [a, x2]i3 , ((x2xa)2(xax2)−1)i4},

then 〈a, x〉 is a homomorphic image of

Jp = Jp(i1, i2, i3, i4) =
〈
a, x

∣∣ {a2, xp, [a, ax]} ∪ ρ(i1, i2, i3, i4)
〉
,

where p ∈ {5, 7} and i1, i2, i3, i4 ∈ {4, 5, 7}. Computations show that we
have |Jp| ∈ {1, 2, p} except the following two cases: J5(5, 5, 4, 5) ≃ 24 : 5
and J7(7, 7, 4, 7) ≃ V : 7, where |V | = 212, which are not possible by Lemma
15.

(3) Γ2(X \ CH(a)) = ∅. In particular x2 ∈ CH(a) for every x ∈ X.
Assume x ∈ Γ2(X \ CH(a)), then aax is an involution in CH(a). By

definition of X and step (1), there is y ∈ X such that ay = aax. Since
ayx = aax ∈ CH(a) we have yx ∈ X. From step (2) it follows that (xy)4 =
1 = (ayx)4 and (a(yx)2)4 = 1. Therefore 〈a, x, y〉 is a homomorphic image
of

T (i1, i2) =
〈
a, x, y

∣∣ τ ∪ {(xy2)i1 , (axyay2)i2}
〉
,

where
τ = {a2, x2, y4, (ax)4, (xy)4, (ayx)4, (a(yx)2)4, ayaax}

and i1, i2 ∈ {4, 5, 7}. Computations show that all such groups are finite, and
in all of them a = 1, a contradiction.

(4) If x, y ∈ Γ2(H) and (xy)4 = 1, then (xy)2 = 1. In particular,
J = 〈Γ2(CH(a))〉 is elementary abelian.

Let (xy)4 = 1, then xy ∈ CH(x) and hence y ∈ X(x). By step (3) we
have y ∈ CH(x).

(5) There is a contradiction.
Let x be an arbitrary involution commuting with a. By step (1) x = ag

and ax = ah for g, h ∈ X. By step (4) g, h ∈ NH(J). By Lemma 15 NH(J)
is a group of exponent 4, hence it is locally finite [18]. Therefore L = 〈a, g, h〉
is finite and nilpotent and

ah = ax = aag = [a, g] ∈ [L, a],

which is impossible (unless a = 1 = x). A contradiction. �
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6 Symmetric subgroups

By Statement 3, G has a subgroup H isomophic to A5 or L2(7) such that
Γ2(H) ⊆ ∆.

Our strategy of proof is to use the following “path” (see Figure 1): on
each step assume that G contains a subgroup H, isomorphic to a vertex
label, and deduce that G contains one of the subgroups connected with that
vertex by a path, or obtain a contradiction.

L3(2) A5

L3(4) A6 S5

A7 S6

Figure 1

The first step is to consider the case H ≃ A5, where we additionally
assume that Γ2(H) ⊆ ∆. In this case there is a ∈ ∆ which inverts an
element of order 5 and CH(a) contains an involution t 6= a. By Lemma 10
we deduce that G has a subgroup isomorphic to A6, L3(4), or S5. In this
paragraph we consider other symmetric and alternating groups.

The proof of the followig lemma is naturally obtained from the proof
of [6, Lemma 14].

Lemma 16. Let H be a subgroup of G isomorphic to S4 and V = O2(H).
Let c ∈ Γ3(H), s ∈ Γ2(H) such cs = c−1 and v ∈ H such that 〈v〉 = CV (s).
Set V1 = 〈s, v〉, and let S = V V1 be a Sylow 2-subgroup of H. Then one of
the following holds:

1. C = CG(V ) = V , S is a Sylow 2-subgroup of G, and N = CG(v) is an
extension of elementary abelian 3-group R by S, and [R, s] = 1.

2. H normalizes nontrivial cyclic subgroup. Moreover, if 〈V, c〉 is con-
tained in a subgroup, isomorphic to A5, then either H normalizes a
cyclic subgroup of order 2, or 〈V, c〉 is contained in a subgroup isomor-
phic to A7.
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3. There exists elementary abelian subgroup W of order 4 in C such that
W 6≤ H, H ≤ NG(W ) and c acts on W fixed point freely.

Lemma 17. Assume H = 〈x, y, t | σ〉, where

σ = {x2, y2, t2, (xt)2, (xy)5}.

If (yt)7 6= 1, then 7 6∈ ω(H) and either H is isomorphic to S5 or S6, or one
of the following sets of relations holds:

τ1 = {(yt)5, (xyt)6, ((xyt)2y)6, (x(yt)2)5},

τ2 = {(yt)6, (xyt)5, ((xyt)2y)6, (x(yt)2)5},

τ3 = {(yt)4, (xyt)5, ((xyt)2y)4, (x(yt)2)4},

τ4 = {(yt)5, (xyt)4, ((xyt)2y)4, (x(yt)2)4}.

Moreover

〈x, y, t | σ ∪ τ1〉 ≃ 〈x, y, t | τ(6) ∪ τ2〉 ≃ 24 : A5,

while
〈x, y, t | σ ∪ τ3〉 ≃ 〈x, y, t | σ ∪ τ4〉 ≃ 24 : D10.

Proof. The group 〈x, y, t〉 is a homomorphic image of one of the following
groups:

G(i1, i2, i3, i4) =
〈
x, y, t

∣∣ σ ∪ {(yt)i1 , (xyt)i2 , ((xyt)2y)i3 , (x(yt)2)i4}
〉
,

with i1 ∈ {4, 5, 6} and i2, i3, i4 ∈ {4, 5, 6, 7}. Computations show that

G(4, 6, 5, 6) ≃ G(6, 4, 5, 6) ≃ S5

and
G(6, 6, 5, 4) ≃ S6,

while other nontrivial cases are listed in statement of the lemma.

Lemma 18. If G contains a subgroup H isomorphic to A6, then G contains
a subgroup isomorphic to S6, A7, or L3(4).
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Proof. We identify H with A6 and we denote a = (1, 2, 3), b = (1, 2, 4),
c = (1, 2, 5), and d = (1, 2, 6). Then a, b, c, d generate A6 and satisfy the
following set of relations:

α = {a3, b3, c3, d3, (ab)2, (ac)2, (ad)2, (bc)2, (bd)2, (cd)2},

furthermore α gives a presentation for A6. Also denote x = ac = (1, 5)(2, 3),
y = cd = (1, 6)(2, 5), and z = ab = (1, 5)(2, 3).

Set V = 〈x, xa〉, s = xabcad = (2, 5)(4, 6), then NH(V ) = V 〈c, s〉 ≃
V S3 ≃ S4 and let V1 as in Lemma 16. If CG(V ) = V , then by Lemma 16
CG(V1) > V1. So, since all involutions of H are conjugated, we may assume
that CG(V ) > V .

By Lemma 16 either G contains a subgroup isomorphic to A7, or one of
the following holds:

(1) There is an involution t ∈ Γ2(G)\H, which centralizes NH(V ), or in
terms of relations

ρ =
{
t2, [c, t], [x, t], [xa, t], [s, t]

}
.

Note that xz ∈ Γ3, therefore the order of tz is not 7 by [13, Lemma 2.2].
We prove that 〈H, t〉 ≃ S6, moreover t ≃ (4, 6) if we use natural embedding
for H. The group 〈H, t〉 is a homomorphic image of G(j, i1, i2, i3, i4, i5, i6)
defined as

〈
a, b, c, d, t

∣∣ α ∪ ρ ∪ {(tz)j , (at)i1 , (bt)i2 , (dt)i3 , (abdt)i4 , (abcdt)i5 , (abcdt)i6}
〉
,

where x = ac and s = xabcad. Computations show that for all j ∈ {4, 5, 6}
and i1, i2, i3, i4, i5, i6 ∈ {4, 5, 6, 7} the order of G(j, i1, i2, i3, i4, i5, i6) is finite
and greater than |A6| only for G(6, 6, 4, 4, 6, 6, 6) ≃ S6. Calculations in S6
show that t ≃ (4, 6) as desired.

(2) There is an involution t ∈ Γ2(G)\H such that relations

σ =
{
t2, [x, t], [xa, t], (tc)3

}

hold. We prove that 〈H, t〉 ≃ L3(4).
Note that H1 = 〈x, y, t〉 and H2 = 〈xa, z, t〉 satisfy the conditions of

Lemma 17, so we plan to use the corresponding relations that define these
subgroups:

ψ1(i1, i2, i3, i4) = {(yt)i1 , (xyt)i2 , ((xyt)2y)i3 , (x(yt)2)i4},

ψ2(j1, j2, j3, j4) = {(zt)j1 , (xazt)j2 , ((xazt)2z)j3 , (xa(zt)2)j4}.
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Therefore 〈H, t〉 is a homomorphic image of

G(i1, i2, i3, i4, j1, j2, j3, j4) = 〈a, b, c, d, t
∣∣ α ∪ σ ∪ ψ1 ∪ ψ2〉.

By Lemma 17 we may assume that (i1, i2) 6= (6, 6) 6= (j1, j2), and
i1, i2, i3, i4, j1, j2, j3, j4 ∈ {4, 5, 6}. Computations show that for all such pa-
rameters index of 〈a, b, c, d〉 is finite; moreover, 〈H, t〉 is a homomorphic
image of L3(4), 2.L3(4)) or 2

5 : A6.

We remark that L3(4) is defined by the relations

α ∪ σ ∪ {(at)3, (bt)5, (ct)3, (dt)3, (abt)5}.

Lemma 19. If G contains a subgroup H isomorphic to S5, then G contains
a subgroup isomorphic to S6 or A7.

Proof. Assume the contrary. We identify H with S5 and a = (1, 2), b =
(2, 3), c = (3, 4), d = (4, 5). Then a, b, c, d generate S5 and satisfy the
following identities:

β =
{
a2, b2, c2, d2, (ab)3, (ac)2, (ad)2, (bc)3, (bd)2, (cd)3

}
,

which provide a presentation for S5. We also denote x = ab, u = ac, v = ux,
and V = 〈u, v〉. Then NH(V ) = V 〈a, b〉 ≃ V S3 ≃ S4.

By Lemma 16 we need to consider three cases:

(1) There is t ∈ Γ3 such that the relations of the following set

ρ =
{
t3, [t, a], [t, c], (t(abc)2)2

}

hold in G.
We consider the subgroupK = 〈a, b, c〉 ≃ S4 of H, then K = 〈a, b, c | β∗〉

where β∗ = {a2, b2, c2, (ab)3, (ac)2, (bc)3}. In this case 〈K, t〉 is a homomor-
phic image of

J = J(i1, i2) =
〈
a, b, c, t

∣∣ β∗ ∪ ρ ∪ {(bt)i1 , (abt)i2}
〉
.

Computations show that J(5, 7) ≃ A7 and |J(i1, i2)| ≤ 24 if (i1, i2) 6= (5, 7).

(2) There is t ∈ Γ2 such that [t, V ] = [t, x] = 1.
In this case 〈H, t〉 is a homomorphic image of the group

G(i1, i2, i3, i4, i5) =
〈
a, b, c, d, t | β ∪ γ(i1, i2, i3, i4, i5)

〉
,
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where γ(i1, i2, i3, i4, i5) is the set

{t2, (tu)2, (tv)2, ttx, (abct)i1 , (adt)i2 , (abcdt)i3 , ((dt)2c)i4 , (bcdt)i5}

and i1, i2, i3, i4, i5 ∈ {4, 5, 6, 7}. Computations show that if |G| > 120, then

G(4, 6, 6, 4, 5) ≃ S6 or G(4, 6, 6, 5, 7) ≃ A8.

(3) There is t ∈ Γ2 such that [t, V ] = 1 and (tx)3 = 1, i.e. the following
identities hold

σ =
{
t2, (tu)2, (tv)2, (tx)3

}
.

In this case 〈H, t〉 is a homomorphic image of

Ĝ = G(j1, j2, i1, i2, i3, i4, i5, i6, i7)

defined by

〈
a, b, c, d, t

∣∣ β ∪ σ ∪ δ1(j1, j2) ∪ δ2(i1, i2, i3, i4, i5, i6, i7)
〉
,

where

δ2 = {(bt)i1 , (dt)i2 , (abct)i3 , (bdt)i4 , ((bcd)2t)i5 , (adt)i6 , (abcdt)i7}

with i1, i2, i3, i4, i5, i6, i7 ∈ {4, 5, 6, 7} and

δ1 = {(at)j1 , (ct)j2}

with j1, j2 ∈ {4, 6}, since a, c ∈ CG(u).
Computations show that |Ĝ : Ĥ| ∈ {1, 24, 25, 210, 211, 216} (and in cases

where |Ĝ : Ĥ| > 1, then Ĥ ≃ S5). So it follows that this case cannot
happen.

Lemma 20. There are no subgroups isomorhpic to S6 in G.

Proof. Assume the contrary and identify a subgroup H with S6. Denote
a = (12), b = (23), c = (34), d = (45), e = (56). Then the following
identities hold:

κ = κ1 ∪ κ2

where
κ1 = {a2, b2, c2, d2, e2}

and

κ2 = {(ab)3, (ac)2, (ad)2, (ae)2, (bc)3, (bd)2, (be)2, (cd)3, (ce)2, (de)3}.
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Analyzing the structure of CG(e), it is shown in [6, Lemma 18] that it
is possible to choose t ∈ CG(e)\CH (e) so that one of the following sets of
relations hold:

π1 = {t3, (at)2, (bt)2, (ct)2, [ab, t]},

π2 = {t2, [a, t], [b, t], [c, t]},

π3 = {t2, [a, t]e, [b, t]e, [c, t]e},

π4 = {t2e, [a, t], [b, t], [c, t]},

π5 = {t2e, [a, t]e, [b, t]e, [c, t]},

π6 = {(at)2, (bt)4, (ct)4, (abt)3, (act)2, (bct)3}.

Also denote

χ = {[e, t], (td)i1 , (tcd)i2 , (ted)i3 , (tad)i4 , (tbd)i5 , (tabd)i6 , (tbcd)i7}.

Then 〈H, t〉 is a homomorphic image of a group

〈a, b, c, d, e, t | κ ∪ πℓ ∪ χ〉, ℓ ∈ {1, 2, 3, 4, 5, 6}.

Computations show that these groups are finite for all ℓ ∈ {1, 2, 3, 4, 5, 6}
and all i1, i2, i3, i4, i5, i6, i7 ∈ {4, 5, 6, 7}. Hence the lemma follows.

In the following lemma we show that there is only one natural way to
“glue” together two subgroups isomorphic to A6 with a common subgroup
isomorphic to A5. In the following with ∼ we denote an isomorphism.

Lemma 21. Assume that a ∼ (1, 2, 3), b ∼ (1, 2, 4), c ∼ (1, 2, 5), d ∼
(1, 2, 6) are elements of G generating a subgroup H ∼ A6. Assume that
t ∼ (1, 2, 6′) is such that 〈a, b, c, t〉 is another subgroup of G isomorphic to
A6 (t 6∈ H). Then 〈a, b, c, d, t〉 ≃ A7 and we may assume that t ∼ (1, 2, 7).

Proof. Note that

a1 = bc−1b−1db−1d−1 ≃ (4, 5, 6), a2 = bc−1b−1tb−1t−1 ∈ CG(a),

b1 = ad−1a−1ca−1c−1 ≃ (3, 6, 5), b2 = at−1a−1ca−1c−1 ∈ CG(b),

c1 = ad−1a−1ba−1b−1 ≃ (3, 6, 4), c2 = at−1a−1ba−1b−1 ∈ CG(c),

and therefore the following relations hold in G:

ρc = {(a1a2)
6, (b1b2)

6, (c1c2)
6}.
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Let
ξ = {a3, b3, c3, (ab)2, (bc)2, (ac)2},

and
µ1 = {d3, (ad)2, (bd)2, (cd)2}, µ2 = {t3, (at)2, (bt)2, (ct)2}.

We have 〈a, b, c | ξ〉 ≃ A5 and

〈
a, b, c, d | ξ ∪ µ1

〉
≃ A6 ≃

〈
a, b, c, t | ξ ∪ µ2

〉
.

Therefore 〈a, b, c, d, t〉 is a homomorphic image of

K = K(i1, i2, i3, i4, i5) =
〈
a, b, c, d, t | µ1 ∪ µ2 ∪ ξ5 ∪ η

〉

where

η = η(i1, i2, i3, i4, i5) = {(td)i1 , (abcdt)i2 , [t, d]i3 , (t−1d)i4 , (adt)i5}.

Computations show that if i1, i2, i3, i4 ∈ {4, 5, 6, 7} and i5 ∈ {4, 5, 6},
then |K : 〈a, b, c〉| divides 42. If i5 = 7 then 〈a, b, c, d, t〉 is a homomorphic
image of

K(i1, i2, i3, i4, 7)
/〈

(ad)tad)4
〉K(i1,i2,i3,i4,7)

by [13, Lemma 2.1], and computations show that for all i1, i2, i3, i4 ∈ {4, 5, 6, 7}
we have |K : 〈a, b, c〉| = 1.

Lemma 22. There are no subgroups isomorphic to A7 in G.

Proof. Assume the contrary and identify a subgroup H with A7.
Let u = (1, 2)(3, 4), v = (1, 3)(2, 4), w = (1, 2)(6, 7). Denote U = 〈u, v〉,

V = 〈u,w〉 and use the same notations for isomorphic images in A7. Then
S = UV is a Sylow 2-subgroup in H. Note that

CA7
(U) = U × 〈(5, 6, 7)〉 and CA7

(V ) = V,

NA7
(U) = S4 × 〈(5, 6, 7)〉 and NA7

(V ) = S4,

here x = (1, 3, 6)(2, 4, 7) ∈ NA7
(V ), xv = x−1, ux = (3, 4)(6, 7) = uw.

Therefore even though both U and V are normal in the corresponding
subgroups of H isomorphic to S4, applying Lemma 16 to them will yield
different effect. This observation together with the fact that all involutions
of A7 are conjugated is the key to the proof.

We apply Lemma 16 to subgroup K = 〈v,w, x〉 ≃ S4 such that O2(K) =
V and we consider the following cases.
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(1) CG(V ) = V , S is a Sylow 2-subgroup of G, CG(u) is an extension of
an elementary abelian 3-group Q by S and [Q, v] = 1.

It is convenient to present H using generators and relations as it appears

in case 2 of Lemma 16, when it is applied to a subgroup 〈U, (1, 2, 3)〉 isomor-

phic to S4. These relations and the corresponding permutations are shown

on the upper half of the diagram in Figure 2.

d ∼ (5, 6, 7)

a ∼ (1, 2, 3) b ∼ (1, 2, 4) c ∼ (1, 2, 5)

t ∼ (5, 6, 7)′

5

5

Figure 2

In other words we fix elements a, b, c, d ∈ G, which satisfy the following
relations:

ρH = {a3, b3, c3, d3, (ab)2, (bc)2, (ac)2, [a, d], [b, d], (dc)5 , (abcd)7},

such that H = 〈a, b, c, d〉 ≃ A7 and let u = [a, b] = (1, 2)(3, 4). Then d ∈ Q
and since Q is infinite by Lemma 2, there is t ∈ Q such that t 6∈ H.

We may assume that t centralizes a and b. Indeed, P = 〈a, b, t〉 is a
finite soluble group and V ⊆ O2(P ). If z ∈ Z(O2(P )), then z ∈ CG(U), and
hence z ∈ S; also z ∈ CG(v), and hence z ∈ V . Therefore V = O2(P ). If
O3(P ) = 1, then t ∈ CP (V ) ⊆ V , a contradiction. Let 1 6= f ∈ O3(P ), then
use a central element from a 3-subgroup 〈f, a〉 as t.

By Lemma 16 〈a, b, c, t〉 ≃ A7, moreover t is “located” in this group just
like d is “located” in H, hence the following relations are true:

ρt = {t3, [t, a], [t, b], (tc)5 , (abct)7}.

Note that 〈a, b, c, d, t〉 is a homomorphic image of

G(i1, i2, i3) = 〈a, b, c, d, t
∣∣ ρH ∪ ρt ∪ {[d, t], (tdc)i1 , (tdc)i2 , (abcdt)i3}〉,

where i1, i2, i3 ∈ {4, 5, 6, 7}.
Computations show that G(6, 5, 7) ≃ 36 : A7, which is not possible, and

|G(i1, i2, i3)| ≤ |A7| for the other values of parameters.
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Case (2) CG(V ) > V .
First we write the permutations mentioned above as words of generators:

x = bac(dc)2, v = a−1b−1, u = va, w = uux.

We proceed with introducing the notations to follow Lemma 18:

a1 = x, c1 = xvw, b1 = xabcadc, d1 = xabc
−1d−1c, x1 = a1c1, y1 = c1d1, z1 = a1b1,

and also let
s = uv, r = [c, d].

Note that the following identities hold:

σ =
{
a31, b

3
1, c

3
1, d

3
1, (a1b1)

2, (a1c1)
2, (a1d1)

2, (b1c1)
2, (b1d1)

2, (c1d1)
2
}
.

Moreover, x1 = a1c1 = u, V = 〈u, ua1〉, s = uv = (1, 4)(2, 3), and cs1 = c−1
1 .

By Lemma 18 for 〈a1, b1, c1, d1〉 ≃ A6 there is t ∈ G such that one of the
following subcases holds:

(2.1) 〈a1, b1, c1, d1, t〉 ≃ S6, and the conclusion follows from Lemma 20.
(2.2) 〈a1, b1, c1, d1, t〉 ≃ L3(4).
We note that a, b ∈ 〈a1, b1, c1, d1〉 and there is an involution

f ∈ 〈a1, b1, c1, d1, t〉 ≃ L3(4)

such that [f,O2(〈a, b〉)] = 1 and (af)3 = 1. In other words 〈a, b, f〉 ≃ 24 : 3
and 〈a, f〉 ≃ A4. Then fa−1, a, d satisfy the conditions of [13, Lemma 4.6].
Moreover, 〈f, d〉 is contained in the centralizer of an involution ab and so has
no elements of orders 5 or 7. Therefore f ∈ O2(〈a, f, d〉) and (ffd)4 = 1.

Denote e = (a−1)cbadb ≃ (1, 2, 6) and z = ab. Applying Lemma 18 to
〈a, b, c, e〉 and f we conclude that the following relations hold:

τ = {[f, z], [f, za], (af)3, (bf)3, (cf)3, (ef)5, (aef)5}.

Computations show that the group

〈a, b, c, d, f | ρH ∪ τ ∪ {(fd)i1 , (afd)i2 , (afd−1)i3}

is trivial for i1 ∈ {4, 5, 6} and i2, i3 ∈ {4, 5, 6, 7} unless i1 = i2 = i3 = 6. We
conclude that the following relations hold in G:

χ = {(fd)6, (afd)6, (afd−1)6}.
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Therefore 〈a, f, d〉 is a homomorphic image of

K = 〈a, f, d | {a3, f2, d3, [a, d], (af)3, (ffd)4} ∪ χ〉

and computations show that K is a finite group of order 210 · 32. We may
choose f to be in Z(O2(〈a, f, d〉)), and assume that

(fd)3 = (afd)3 = 1 or [f, d] = 1.

Finally, 〈a, b, c, d, f〉 is a homomorphic image of

〈
a, b, c, d, f | ρH ∪ τ ∪ µℓ

〉
, ℓ ∈ {1, 2},

where µ1 = {{(fd)3, (afd)3} and µ2 = {[f, d]}}. Computations show that
in both cases |〈a, b, c, d, f〉 : 〈a, b, c, d〉| = 1.

(2.3) 〈a1, b1, c1, t〉 ≃ A7. Let f ∈ 〈a1, b1, c1, t〉 be an element that
〈a1, b1, c1, f〉 ≃ A6 and the following identities hold

ρf =
{
f3, (a1f)

2, (b1f)
2, (c1f)

2
}
.

By Lemma 21 〈a1, b1, c1, d1, f〉 ≃ A7 and we may assume that (d1f)
2 = 1.

Let β = ρH ∪ ρf ∪ {(d1f)
2}. Denote S = 〈a1, b1, c1, d1〉. To distinguish

isomorphisms we will denote them in the following way H = 〈a, b, c, d〉 ≃↑ A7

and 〈S, f〉 ≃↓ A7 so that

a ≃↑ (1, 2, 3), b ≃↑ (1, 2, 4), c ≃↑ (1, 2, 5), d ≃↑ (5, 6, 7),

and

a1 ≃↓ (1, 2, 3), b1 ≃↓ (1, 2, 4), c1 ≃↓ (1, 2, 5), d1 ≃↓ (1, 2, 6), f ≃↓ (1, 2, 7).

Let i ≃↑ (1, 2)(3, 5) = a1b
(a1b1d

−1

1
b−1

1
c1d

−1

1
c−1

1
)

1 ≃↓ (1, 2)(6, 7). Then i inverts
b1, d1, f (↓) and a, b, c, d (↑).

Computations (with enumerating cosets by 〈a, b, c, d〉) show that a group

K(w) = 〈a, b, c, d, f | β ∪ {w}〉

is isomorphic to PSU(3, 5) if w is the 4-th power of one of the words in
W = {cd, df, cf−1, df−1}, and K(w) is trivial if w is the 5-th power of a
word in W . It follows that in G the order of words from W divide 6 or 7.
Also we have that index of 〈a, b, c, d〉 in K((cif)4), K((dif)4), K((acif)4),
K((adif)4) is 1.
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We remark that 〈c, i, f〉 is a homomorphic image (with ci → a, i →
b, if → c) of K = K(j, i1, i2, i3, i4) with presentation

〈
a, b, c

∣∣ {a2, b2, c2, (ac)j , (abc)i1 , (cabc)i2 , (bac)i3 , (abcac)i4}
〉
.

Also we remark that i·if ·ci·if = fcf ∼ cf−1. So j, i3 ∈ {6, 7}, i1 ∈ {5, 6, 7}
and i2, i4 ∈ {4, 5, 6, 7}. Computations show that 〈c, i, f〉 is a homomorphic
image of K(6, 6, 6, 6) of order 27 ·33, and [c, f ]3 = 1. Therefore the following
identities hold in G:

ρI = {(cd)6, (df)6, (cf−1)6(df−1)6, [c, f ]3, [d, f ]3}.

We then consider a subgroup of G generated by a, d, f , and note that its
structure is defined by the following relations:

(i) a3, d3, [a, d].

(ii) (af)3, (af−1)6, [a, x], where x = (af−1)2, which hold in K ≃↓ A6.

(iii) (fd)6, (fd−1)6, y3, where y = [d, f ], these relations come from RI .

(iv) (adf)6, (adf−1)6, [ad, f ]3. Since [a, d] = 1 and i inverts a and d, then
i inverts ad and we may apply arguments above to ad instead of d.

(v) (xd)3 = 1, this relation hold in 〈a, b, c, d〉 ≃↑ A7 (here we use x =

ac1d11 ≃↓ (3, 6, 5) = (af−1)2 ≃↑ (1, 2, 3)(4, 6, 7)).

(vi) ((adf)2fa)6 (this relation is added to eliminate an element of order
12).

Let F be a group defined by relations (i) – (vi). Then computations
show that |F | = 212 · 34.

If z = f−1af−1dfa−1f , then z ∈ CF (〈a, d〉) \ 〈a, d〉 and F/〈z〉F ≃ 32.
Therefore we may assume that z 6= 1 and z is an element of order 3. In the
centralizer CG(d) of an element of order 3 there is a subgroup 〈b, a, z〉 with
b3 = a3 = z3 = (ba)2 = [a, z] = 1. By [13, Lemma 4.6] ((ba)(ba)z)2 = 1.
Computations show that

∣∣ 〈a, b, c, d, f | β ∪ ρI ∪ {((ba)(ba)z)2}
〉
:
〈
a, b, c, d

〉 ∣∣ = 1

and the proof is complete.

We can summarize the results obtained in

Statement 4. There are not subgroups isomorphic to S5 in G.

Proof. This is a corollary of Lemmas 13, 18–22.
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7 L3(2)-subgroups

Lemma 23. Let x, y ∈ Γ3, a ∈ Γ2 be such that xa = x−1 and ya = y. Then
〈x, y, a〉 is a finite {2, 3}-group and the following relations hold:

χ1(x, y) =
{
(xy)6, (yyx)3, (xxy)3

}
.

Moreover, v = [x, y]2 ∈ CG(y), and v
a = v−1.

Proof. Indeed 〈x, y, a〉 is a homomorphic image of one of the group

G(i1, i2, i3, i4, i5) =
〈
x, y, a

∣∣ σ ∪ τ(i1, i2, i3, i4, i5)
〉

with
σ = {a2, x3, y3, (ax)2, [a, y]}

and

τ(i1, i2, i3, i4, i5) = {(xy)i1 , (xy−1)i2 , (axy)i3 , (axyx)i4 , (a(xy)2)i5}.

Computations show that G(5, 5, 4, 4, 6) ≃ S5, G(6, 6, 5, 6, 5) ≃ L2(11),
G(7, 7, 5, 7, 7) ≃ A7, which is not possible by Statement 4; G(6, 6, 6, 4, 6)
and its homomorphic images G(6, 6, 6, 6, 6) ≃ G(6, 6, 6, 2, 6) satisfy lemma’s
conclusion. The order of G(i1, i2, i3, i4, i5) is not greater than 6 for other
values of parameters i1, i2, i3, i4, i5 ∈ {4, 5, 6, 7}.

Lemma 24. Let t ∈ Γ4, x ∈ Γ3 be such that 〈t2, x〉 ≃ S3. Then 〈t, x〉 is
isomorphic to L3(2) or F36.

Proof. The group 〈t, x〉 is a homomorphic image of

G(i) =
〈
t, x | t4, x3, (t2x)2, (tx)i

〉
.

Computations show that G(4) ≃ F36, G(5) ≃ 1, G(6) ≃ S5, which is not
possible by Statement 4, and G(7) ≃ L2(7).

Lemma 25. Assume that b ∈ Γ2 inverts an element t of order 4 from a
subgroup H isomorphic to F36. Then K = 〈b,H〉 is either a finite {2, 3}-
group, containing an element w of order 3 such that the following relations
hold:

χ2(b, t, w) =
{
[b, w], (bwt)2, (wt2)2

}
,

or K ≃ A6.
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Proof. Let y ∈ Γ3(H), a = t2 and

ρ =
{
t4, b2, y3, (ay)2, [y, yt], (tb)2

}
.

Note that K is a homomorphic image of

G(i1, i2, i3, i4, i5, i6, i7) =
〈
t, b, y

∣∣ ρ ∪ κ
〉

where

κ =
{
(aby)i1 , (by)i2 , (tby)i3 , (t(by)2)i4 , (bybty)i5 , (byyt)i6 , (abyyt)i7

}
.

Computations show that K is a homomorphic image of

S = G(6, 6, 6, 4, 4, 6, 6),

and |S| = 23 · 36, since other nontrivial possibilities are G(4, 6, 5, 5, 5, 5, 5) ≃
G(5, 5, 4, 6, 5, 6, 4) ≃ G(5, 5, 6, 5, 6, 4, 6) ≃ G(6, 4, 5, 6, 6, 5, 5) ≃ A6.

The element z = (yyby)t has order dividing 3 in the group S and it
satisfies relations χ2. Therefore if z has order 3 in K we can take w = z. If
z = 1 in K, then K is a homomorphic image of S = S/〈z〉S and the required
set of relations hold in S for w = y.

Lemma 26. Let H < G with H ≃ L3(2) and let t ∈ Γ4(H). If t2 inverts
y ∈ Γ3, then 〈t, y〉 ≃ L3(2).

Proof. Let a = t2. Choose K ≤ H such that t ∈ K ∼ S4. Assume t ∼
(1, 2, 3, 4), and take b ∼ (2, 4), x ∼ (1, 4, 2), z ∼ (2, 3, 4). Then t = bxz and
the following relations defining S4 hold:

χ3 =
{
b2, x3, z3, xbx, zbz, (xz)2

}
.

By Lemma 24 we may assume 〈t, y〉 ≃ F36. Note that b inverts t. By
Lemma 25 there is w ∈ Γ3 such that relations χ2 = χ2(b, t, w) hold. By
Lemma 23 a subgroup 〈b, x, z, w〉 is a homomorphic image of

G(i) =
〈
b, x, z, w

∣∣ {w3, (twz)i} ∪ χ1(x,w) ∪ χ1(z, w) ∪ χ2 ∪ χ3

〉
.

Computations show that |G(i)| ≤ 24 for any i ∈ {4, 5, 6, 7}, and hence
w = 1, a contradiction.

Statement 5. Let a be an involution from a subgroup W , isomorphic to
L3(2). Then CG(a) is a 2-group.
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Proof. Assume the contrary and take an element w of order 3 in CG(a).
Let W = 〈t, x | β〉, where β = {t4, x3, (t2x)2, (tx)7}, and define a = t2,

y = xt, u = xyxy−1xyx. Note that a inverts the elements of the set

Σ = {u, ut} ⊆ Γ3,

and (xu)2 = (xut)2 = 1.
We may assume without loss of generality that

[x,w] = 1.

Indeed, consider 〈a, x,w〉, and let v = [x,w]2. By Lemma 23 [v,w] = 1
and va = v−1. So if the order of v is 3, then by Lemma 26 〈t, v〉 ≃ L3(2),
and we may change x to v and W to 〈t, v〉. If v = 1, then change w to
xxwxw−1 ∈ CG(〈a, x〉).

If z ∈ Σ, then, by Lemma 23, 〈a, x, z, w〉 is a homomorphic image of

G(i) =
〈
a, x, z, w

∣∣ γ ∪ χ1(z, w) ∪ {(axwz)i}
〉

were
γ = {a2, x3, z3, w3, (xz)2, (ax)2, (az)2, [a,w], [x,w]}.

Computations show that |G(i)| ≤ 24 for i 6= 6, and G(6) ≃ (A4 ×A4) : 2. It
is straightforward to check that [z, w]2 = 1 and x = z−1wxwz−1w.

Let v = ut, then 〈W,w〉 is a homomorphic image of

G(i1, i2, i3) =
〈
t, x, w | B ∪ δ1 ∪ δ2 ∪ ǫ(i1, i2, i3)

〉

where
δ1 = {w3, [a,w], (uw)6 , [u,w]2, (vw)6, [v,w]2, [x,w]},

δ2 = {x−1u−1wuwu−1w, x−1v−1wvwv−1w},

and
ǫ(i1, i2, i3) = {(vuw)i1 , (avuw)i2 , (auv−1w)i3}.

Computations show that G(7, 4, 7) ≃ A8, which is not possible. Since the
order of G(i1, i2, i3) divides 3 for other parameters i1, i2, i3 ∈ {4, 5, 6, 7}, we
have reached a contradiction.

Lemma 27. G has a subgroup isomorphic to 23 : L3(2) or L3(4).
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Proof. By Statement 3, G has a subgroup H isomorphic to A5 or L2(7) such
that Γ2(H) ⊆ ∆. In the first case by Lemmas 13, 22 and Statement 4 G has
a subgroup isomorphic to L3(4). So we further assume that G ≥ H ≃ L3(2)
and identify H with 〈a, x | ρ〉, where

ρ = {a2, x3, (ax)7, [a, x]4}.

Let c = xt, then 〈a, c〉 ≃ S4 with a ≃ (1, 2) and c ≃ (2, 3, 4). Denote
v = (ac)2, s = aca so that V = 〈v, vc〉 ≃ O2(S4). Then NH(V ) = 〈a, c〉. If
CG(V ) = V then by Lemma 16 CG(V1) > V1. Since all involutions of H are
conjugated, we may assume that CG(V ) > V . By Lemma 16 mod Lemma
22 and Statement 5 there is an involution w ∈ G \H such that one of the
following holds:

(1) 〈a, c〉 centralizes w.
Then 〈a, x,w〉 is a homomorphic image of

G(i1, i2, i3) =
〈
a, x,w

∣∣ ρ ∪ {w2, [w, a], [w, c], (xw)i1 , [x,w]i2 , (axw)i3}
〉
.

Computations show that G(6, 4, 7) ≃ G(6, 6, 7) ≃ V : L3(2), where |V | = 26,
and |G(i1, i2, i3)| ≤ 168 for other parameters. The largest homomorphic
image of G(6, 4, 7) without elements of order 8 is 23 : L3(2).

(2) There exists a subgroup W ≃ C2 × C2 such that w ∈ W , W ≤ C,
W 6≤ H, H ≤ NG(W ) and c acts on W fixed point freely. Therefore the
following relations hold

σ =
{
w2, [w, v], [w, vc ], (cw)3, [a,w]

}
,

so that 〈a, c, w | σ〉 ≃ 24 : S3. Note that |v
c ·ax| = 3 in H. So by [13, Lemma

2.2] 〈vc, ax, w〉 has no elements of order 7. It follows that 〈a, x,w〉 is a
homomorphic image of

G(i1, i2, j) =
〈
a, x,w

∣∣ ρ ∪ σ ∪ {(axw)i1 , (xw)i2 , (wvcax)j}
〉
,

where i1, i2, j ∈ {4, 5, 6, 7}, and j 6= 7. Computations show that G(5, 7, 5) ≃
L3(4), G(4, 7, 4) ≃ 23 : L3(2), and G(7, 6, 6) ≃ 26 : L3(2); while for other
parameters we have |G(i1, i2, i3) : 〈a, x〉| = 1.

For any subset M of G we define

M+ =
{
x ∈M | ∃H < G such that x ∈ H ≃ L3(2)

}

and M− =M\M+.
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Lemma 28. G has no subgroups isomorphic to F42.

Proof. Assume F42 = 〈t, x〉 ≤ G, where t ∈ Γ2 and x ∈ Γ3. By Statement
5 t ∈ Γ−

2 . By [13, Statement 1] there is a unique involution u in CG(x).
Moreover u is conjugated with t, and so u ∈ Γ−

2 .
By [13, Lemma 4.3] x cannot sit in a subgroup isomorphic to A4.
Let a ∈ ∆+, and consider 〈a, x〉. By [13, Lemma 2.1] and Statement 5

we have xa = x−1. Indeed, if |ax| = 6 and order of [a, x] is even there is a
subgroup of 〈a, x〉 isomorphic to A4, which contains x; if order of [a, x] is
odd, then there is an element of order 3 in C〈a,x〉(a), which is not possible.

So for every a ∈ ∆+ we have xa = x−1. Take W ≤ G such that W ≃
L3(2) and choose a, b ∈ Γ2(W ) with ab ∈ Γ4. Then x

ab = x and we conclude
that 12 ∈ ω(G), a contradiction.

Lemma 29. G has a subgroup isomorphic to L3(4).

Proof. Assume the contrary. Then by Lemma 27 there is a subgroup H ≃
V : L3(2), where V ≃ 23. If v ∈ V , then CG(v) has an element of order 3.
Therefore, by Statement 5, v ∈ ∆−.

By Proposition 1 there is no subgroup isomorphic to A4 that contains
v. By Lemma 8, for every x ∈ Γ3 we have (xt)6 = [x, t]p = 1, where p is
odd and, by Lemma 28, p 6= 7. Since CG(v) > V ≃ 23, then by Lemma 13,
p 6= 5. Repeating arguments of Lemma 14: if v inverts x of order 3, then
x ∈ O3(G) and this case was considered in Paragraph 5. Therefore v ∈ ∆+,
a contradiction.

8 L3(4)-subgroup and Theorem proof

Throughout this section we assume L3(4) ≃ H ≤ G. Let i ∈ Γ2(H), and
C = CG(i). Then CH = CH(i) is a subgroup of C of order 26 with the
center V = Z(CH) ≃ 22. Let N = NH(CH(i)), and choose r ∈ Γ3(N) so
that N = 〈CH , r〉. Note that 6 6∈ ω(H), therefore r acts on CH fixed point
freely. In particular, 〈V, r〉 ≃ A4. Let j = ir so that V = 〈i, j〉.

Lemma 30. V ⊆ O2(C).

Proof. Assume that V is not contained in O2(C). Then by Baer-Suzuki
theorem [12] there is t ∈ Γ2(CG(i)) such that irt ∈ Γ3. Note that 〈i, r, t〉 is
a homomorphic image of a group

G(i1, i2, i3) =
〈
i, r, t | i2, r3, t2, (ir)3, (ti)2, (tir)3, (trr)i1 , (trrt)i2 , (irt)i3

〉
.
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Computations show that G(7, 4, 7) ≃ A7, which is not possible, and 〈i, r, t〉
is a homomorphic image of A4 for other parameters.

Lemma 31. O3(C) = 1.

Proof. Assume 1 6= x ∈ O3(CG(i)). Then 〈x, xj〉 is a 3-subgroup. Therefore
〈x, j〉 is a homomorphic image of 31+2 : 2. By Lemma 30 this implies
[x, j] = 1. So [x, V ] = 1 and r normalizes V , therefore [xr, V ] = 1 and in
particular xr ∈ C.

Let k be an arbitrary involution in CH(i), and recall that 〈k, r〉 ≃ A4.
Then 〈k, kr, x, xr, xr

2

〉 is a r-invariant subgroup of CG(i). It follows that
R = 〈k, r, x〉 is a {2, 3}-group. By [?, Statement 1] k, kr ∈ O2(R). Hence k
inverts no elements of order 3 from S = 〈k, x〉. On the other hand x ∈ O3(R)
and therefore S is a homomorphic image of 31+2 : 2; this is possible only
when [k, x] = 1.

Therefore x centralizes all involutions from CH(i). There are two non
commuting involutions in CH(i), and so 12 ∈ ω(G), a contradiction.

Lemma 32. There is a contradiction, proving Theorem.

Proof. The subgroup C has exponent 12, so its 2-length is ≤ 2 by [2]. By
Lemma 31 O3(C) = 1 and hence CC(O2(C)) ⊆ O2(C) by [6, Lemma 3] and
by Lemma 2, C is infinite. Therefore O2(C) is infinite.

It follows that P = 〈O2(C), CH(i)〉 is an infinite 2-subgroup, and CH(i)
is a finite subgroup of P . By Shunkov Theorem [8, Lemma 2] CP (CH(i)) is
infinite, and by [4,9] it contains an infinite abelian subgroup. So there is an
involution u 6∈ H such that [u,CH(i)] = 1.

We introduce the following sets of relations:

• α = {x3, y2, (xy)7, [x, y]4} defining L3(2);

• β = {t2, tyt, t[x,y]t}, which state that an involution t commutes with a
Sylow 2-subgroup of L3(2);

• γt(i1, i2, i3, j1) = {(xt)i1 , (xyt)i2 , (xytxt)i3 , (tyx
2y)j1}.

These relations were used in [8], where it is shown that they define a
finite group 〈x, y, t〉, when i1, i2, i3, j1 ∈ {3, 4, 5, 7} and j1 6= 7.

It is shown in [8, Lemma 8] (and can be verified by computations) that

R =
〈
x, y, t

∣∣ α ∪ β ∪ γt(7, 5, 7, 5)
〉
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is such that H = R/Z(R) ≃ L3(4), and so H can be identified with a

subgroup H in G. Denote t1 = tt
x

and t2 = tt
x
2

. Then we can verify that
Z(R) = 〈z〉R, where z = (t1yy

x)2t, and CH(t) = 〈y, yx, t, t1, t2〉.
Let v = ut, then 〈H,u〉 is a homomorphic image of

J(i1, i2, i3, j1, i4, i5, i6, j2) =
〈
x, y, t, u | α ∪ β ∪ γt(7, 5, 7, 5) ∪ δ ∪ {z}

〉
,

where δ = δ(i1, i2, i3, j1, i4, i5, i6, j2) is the set

{u2, [u, y], [u, yx], [u, t], [u, t1], [u, y2]} ∪ γu(i1, i2, i3, j1) ∪ γv(i4, i5, i6, j2)

and the parameters are in {4, 5, 6, 7}. Moreover j1 6= 7 and j2 6= 7, since
[x, y]2 ·yx

2y ∈ Γ3 and u centralizes [x, y]2 by [13, Lemma 2.2]. Computations
show that

|J(i1, i2, i3, j1, i4, i5, i6, j2) : 〈x, y, t〉| ≤ 2

for any choice of parameters. Therefore u ∈ H: a contradiction.
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