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We analyze about 200 naturally occurring networks with dis-
tinct dynamical origins to formally test whether the commonly
assumed hypothesis of an underlying scale-free structure is gen-
erally viable. This has recently been questioned on the basis
of statistical testing of the validity of power law distributions
of network degrees. Specifically, we analyze by finite size scal-
ing analysis the datasets of real networks to check whether the
purported departures from power law behavior are due to the
finiteness of sample size. We find that a large number of the
networks follows a finite size scaling hypothesis without any self-
tuning. This is the case of biological protein interaction networks,
technological computer and hyperlink networks, and informa-
tional networks in general. Marked deviations appear in other
cases, especially involving infrastructure and transportation but
also in social networks. We conclude that underlying scale invari-
ance properties of many naturally occurring networks are extant
features often clouded by finite size effects due to the nature of
the sample data.

network form | degree distribution | power laws | finite size
scaling | statistical physics

Networks play a vital role in the development of predictive
models of physical, biological, and social collective phenom-

ena (1–3). A quite remarkable feature of many real networks is
that they are believed to be approximately scale free: the fraction
of nodes with k incident links (the degree) follows a power law
p(k)∝ k−λ for sufficiently large value of k (4, 5). The value of the
exponent λ as well as deviations from power law scaling provides
invaluable information on the mechanisms underlying the forma-
tion of the network such as small degree saturation, variations in
the local fitness to compete for links, and high degree cutoffs
owing to the finite size of the network. Indeed, real networks are
not infinitely large, and the largest degree of any network can-
not be larger than the number of nodes. Finite size scaling (FSS)
(6–12), firstly developed in the field of critical phenomena and
renormalization group, is a useful tool for analyzing deviations
from pure power law behavior as due to finite size effects. Here,
we show that despite the essential differences between networks
and critical phenomena, FSS provides a powerful framework for
analyzing the scale-free nature of empirical networks.

The search of ubiquitous emergent properties occurring in
several different systems and transcending the specific system
details is a recurrent theme in statistical physics and complexity
science (13). Indeed, the presence and the type of such “uni-
versal” law give insights on the driving processes or on the
characteristic properties of the observed system. Notably, com-
plex systems have the propensity to display “power law”-like
relationship in many diverse observables (such as event sizes
and centrality distribution, to name a few). In particular, the
power law shape of the degree distribution, which is the hallmark
of scale-free networks, leads to important emergent attributes
such as self-similarity in the network topology, robustness to

random failures, and fragility to targeted attacks. Notably, scale
invariance extends far beyond the degree distribution, affecting
many other quantities as weighted degree, betweenness (14), and
degree–degree distance (15).

In the last decade, the existence of such power laws in complex
networks [but also in other areas (16); e.g., law in language (17)]
has been questioned (18). A reason of the shift in such conclusion
is in the availability of larger (and new) datasets and especially,
in improved statistical methods. Recently, Broido and Clauset
(19) fitted a power law model to the degree distribution of a vari-
ety of empirical networks and suggested that scale-free networks
are rare. Voitalov et al. (20) rebutted that scale-free networks
are not as rare if deviations from pure power law behavior are
permitted in the small degree regime. The different conclusions
may depend on very fine but critical assumptions at the basis of
the statistical test for the power law hypothesis. Moreover, a cru-
cial point that is typically ignored but represents the condition for
the proper use of maximum likelihood methods is the indepen-
dence of the empirical observations (21). In this work, we tackle
the problem of detecting power laws in networks from a different
perspective, based on the machinery of FSS.

Statistical physics of critical phenomena teaches us that a
system at criticality exhibits power law singularities of physical
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quantities, such as for example, the compressibility, the spe-
cific heat, and the density difference between the liquid and
vapor, as well as the latent heat. Water at its critical point
exhibits fluctuations at all scales between the molecular length
scale and the size of the container, which could be macroscop-
ically large. Moreover, one finds thoroughly mixed droplets of
water and bubbles of gas. Indeed, any large part of the sys-
tem looks like the whole—the system is self-similar. The length
scale of these droplets and bubbles extends from the molecu-
lar scale up to the correlation length, which is a measure of
the size of the largest droplet or bubble. The divergence of the
correlation length in the vicinity of a phase transition at the
thermodynamic limit thus suggests that properties near the crit-
ical point can be accurately described within an effective theory
involving only long-range collective fluctuations of the system.
However, both in experiments and in numerical simulations, the
infinite size limit cannot be reached, and thus, one observes
deviations from the predicted thermodynamics limit behavior.
The FSS ansatz has been developed precisely to infer the sin-
gular behavior (i.e., the exponents determining the universality
classes) of the physical properties of a system in the thermody-
namic limit, having only information on the system properties at
finite sizes.

FSS has yet a more general validity and does not require
the existence of a phase transition or an evolution process.
Indeed, even though it was initially used to study finite sys-
tems near the critical point of the corresponding infinite system,
FSS can be actually applied to describe structures that are
self-similar when observed in a certain range of scales. As an
example, we consider a Cantor set where we stop the proce-
dure to divide intervals in three parts, removing the middle one
at a scale s0 = 3−m . This corresponds to a fractal structure on
scales between s0 and one and to a nonfractal structure on scale
smaller than s0. If we measure the total length, L(s), of the
set with a stick of length s = 3−n , we find L(s) = s1−DF (s/s0)
where F (x ) = 1 when x > 1, whereas F (x ) = x1−D when x < 1
and D = log3 2 is the Hausdorff–Besicovitch (or fractal) dimen-
sion of the Cantor set. Another illustration of FSS analysis is
given by the truncated geometrical series S(x ,N ) =

∑N−1
0 xn .

When x is close to one, it is easy to see that S(x ,N ) = t−1F (tN ),
where t = 1− x and F (z ) = 1− e−z . As a matter of fact, the
FSS approach has been used to test scale invariance (and self-
similarity) also for noncritical systems such as (just to mention
some very famous examples) polymers in confined geometries
(22) and interfaces (23, 24). In view of the above, FSS can also be
implemented on well-established models of scale-free networks
[like, e.g., the Barabási–Albert model (4) or the Bak–Tang–
Wiesenfeld toy model of self-organized criticality (25)] where
the scale-free behavior is not an emergent property at a critical
point. Whether or not the same hypotheses hold for real-world
network does not undermine the possibility of applying FSS
to them.

Employing the FSS machinery to test whether empirical net-
works display scale-free behavior in their degree distribution
is not, however, straightforward. Unlike for physical systems,
representations of a network at different scales are typically
not available. Thus, in order to test whether a network shows
a power law distribution of its degree k , we have constructed
smaller size subsamples, effective representations of the under-
lying population, drawn in an unbiased manner. We then use the
characteristics of the large original network as well as the derived
subnetworks to test the scale-free hypothesis. Fig. 1 shows an
illustration of this procedure for a snapshot of the structure of
the internet at the level of autonomous systems (26). FSS of
Networks provides a brief summary of FSS applied to network
topology. Ratio of Moments Test presents an independent method
of determining whether networks are scale free based on analy-

ses of the size dependence of the ratio of moments of the degree
distributions. Subsampling and Scaling Region provides informa-
tion on the sampling scheme used to build subnetworks and on
the region selected for the scaling analysis.

In Results, we test the scale-free hypothesis (the power law
behavior in the degree distributions) on around 200 large empir-
ical networks [those considered in refs. 19 and 20]. Remarkably,
we find that such a venerable hypothesis cannot be rejected
for many (but not all) networks. Moreover, the two scaling
exponents for such networks satisfy an additional scaling rela-
tionship, which derives from the shape of the degree cross-
over in scale-free networks. We benchmark our results against
the quality measure of the well-known scale-free graph intro-
duced by Barabási and Albert (4). Further, we show that
FSS allows discerning pure power laws from log-normal and
Weibull distributions. In conclusion, our results support the
claim that scale invariance is indeed a feature of many real
networks, with finite size effects accounting for quantifiable
deviations.

FSS of Networks
A scale-free network is postulated to have a degree distribu-
tion p(k)∝ k−λ beyond some lower-degree cutoff kmin. For an
infinitely sized network, since kmin≥ 1, the exponent λ> 1 in
order for p(k) to be normalizable. In what follows, we will
consider the cumulative distribution P(k) =

∫∞
k

p(q)dq ∝ k−γ

where γ=λ− 1> 0.
Networks are of course not infinitely large. In a network com-

prising N nodes, k can be at most equal to N − 1. This is the
intrinsic limit on k given by the network size. Thus, it is plausible
that, below some kc (cross-over value), the degree distribution
follows a power law behavior as would be expected for an infinite
network but falls more rapidly beyond kc . The FSS hypothesis
states that

P(k ,N ) = k−γf (kN d), [1]

where d < 0. The remarkable simplifying feature of the scal-
ing hypothesis is that P is not an arbitrary function of the two
variables k and N but rather, k and N combine in a nontriv-
ial manner to create a composite variable. The behavior of the
system is fully defined by the two exponents, γ and d , and the
scaling function f . The exponent d < 0 so that, for an infinite size
network (N →∞), the argument of f approaches zero. A pure
power law decay of P(k ,N ) with k for very large N requires that
f (x )→ constant as x→ 0. The additional normalization con-
dition is f (x )→ 0 sufficiently fast when x→ 1. The finite size
effects are quantified by the behavior of the function f as its
argument increases (e.g., when k & kc). For a network with a
finite number of nodes, the degree distribution does not follow
a pure power law but is modified by the function f (ref. 27 also
has a discussion of finiteness in the context of growing network
models).

A powerful way of assessing whether a network is scale invari-
ant is to confirm the validity of the scaling hypothesis and
determine the two exponents and the scaling function f by using
the collapse plot technique. One may recast Eq. 1 as

P(k ,N )k γ = f (kN d). [2]

Then, the path forward is simple. For networks belonging to the
same class but with different N , one optimally selects two fitting
parameters γ and d by seeking to collapse plots of P(k ,N )k γ vs.
kN d for different N on top of each other (28). The fidelity of the
collapse plot provides a measure of self-similarity and scale-free
behavior, the optimal parameters are the desired exponents, and
the collapsed curve is a plot of the scaling function.

We start out with a single representation of an empirical net-
work with N nodes. For purposes of the scaling collapse plot,
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Fig. 1. An illustrative example of the concept of how the underlying true scale invariance in a network may be clouded by a scale imposed by the sample
size. If the degree distribution P(k) of the network is scale free, then small subsamples of the network will have the same distribution (i.e., the degree
structure of the network will not be altered apart from deviations at high values of k where the cutoff because of sample size operates). Specifically, the
P(k) vs. k log–log plots show the largest sample (Left); a reduced sample (Center), where for comparison the largest distribution is shown via gray dots;
and the smallest subsample, where the two previous distributions are shown for comparative purposes (gray dots; Right). Any Anderson–Darling-like test of
the sample being drawn from a scale-free distribution would fail. The network in this example is a snapshot of the structure of the internet at the level of
autonomous systems (26).

we seek additional representative networks of smaller sizes. In
order to accomplish this, we obtained the mean degree distri-
butions of multiple subnetworks of sizes N

4
, N

2
, and 3N

4
, which

were then collapsed onto each other and the original network to
create a master curve. The quality S of the collapse plot is then
measured as the mean square distance of the data from the mas-
ter curve in units of SEs. S is thus like a reduced χ2 test and
should be around one if the data really collapse to a single curve
and much larger otherwise (29).

Note that as a measure of the size of a network (or subnet-
work), one may use the number of nodes N or alternatively, the
number of links E . The scaling function in this case reads as
follows:

P(k ,E)k γ = fE (kEdE ), [3]

where the exponent γ is the same as before and the exponent
dE < 0 ought to be equal to the previously introduced exponent d
for networks satisfying the FSS hypothesis (see the next section).

Ratio of Moments Test
A simple alternative and independent test of the scale-free
hypothesis is to study the size dependence of the ratio between
the i th and the (i − 1) th moments of k , for various i . The i th
moment 〈k i〉 is defined to be

〈k i〉=
∫ ∞
kmin

dk k i−1k−γf (kN d)∝N−d(i−γ) [4]

provided i >γ. Instead, if i ≤ γ, 〈k i〉 converges to a constant
value for N →∞. Therefore, when i − 1>γ,

〈k i〉
/
〈k i−1〉∝N−d , [5]

independently of i . Thus, for a scale-free network, a log–log plot
of the ratio of consecutive moments vs. N is a straight line with
slope −d . Likewise,

〈k i〉=
∫ ∞
kmin

dk k i−1k−γfE (kEdE )∝E−dE (i−γ) [6]

when i >γ; otherwise, 〈k i〉 goes to a constant for E→∞.
Therefore, when i − 1>γ,

〈k i〉
/
〈k i−1〉∝E−dE . [7]

The exponents d and dE are not independent for scale-free net-
works. On the one hand, Eqs. 4 and 6 imply E ∝N d/dE . On
the other, in general 〈k〉∝E/N ∝N d/dE−1. Due to the above
equations, 〈k〉 is constant for scale-free networks with γ > 1,
implying that d = dE . Thus, the difference between d and dE val-
ues (that we statistically assess through their Z score) provides
an independent quality measure of the scale-free attributes of a
network.
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Subsampling and Scaling Region
In order to generate a subnetwork of a given size n <N , we pick
n nodes at random among the N nodes of the original network,
removing all of the other nodes and the links originating from
them. It is well known that the subsampling procedure modifies
the shape of the degree distribution of the network. In particu-
lar, subnetworks of scale-free networks are not scale free because
of deviations at low k values (30) [this happens independently
of the sampling scheme adopted (31)]. The problem of the left
tail of the distribution, however, applies more generally because
deviations from the scale-free behavior at low degrees are rather
common in empirical and network models. Therefore, we per-
form the scaling analysis described in FSS of Networks and Ratio
of Moments Test only for k ≥ kmin, where the lower bound of the
scaling region kmin is chosen such that the empirical distribution
of the original network and its best power law fit [with exponent
Γ, computed with the maximum likelihood method of Clauset
et al. (18)] (Materials and Methods) are as similar as possible
above kmin (32). In SI Appendix, we show that this allows us to
get rid of any deviations induced by the subsampling scheme.
However, when the empirical distribution of the network devi-
ates substantially from a power law over its entire domain, then
the estimated kmin can become very large and may even diverge.
In these cases, the number of nodes n∗ of the (sub-)network
with k ≥ kmin becomes very small or vanishing, yielding an unsta-
ble or undefined collapse. We thus use n∗≥ lnN as a condition
on the minimum number of nodes in each (sub-)network for the
feasibility of the scaling analysis.

Results
To sum up, two independent statistical tests of the scale-free
attributes of a network explained in FSS of Networks and Ratio of
Moments Test are the quality of the collapse S (i.e., the reduced
χ2 between data and master curve) and the compatibility of d
and dE (measured through their Z score). SI Appendix, Fig. S1
outlines the flow of the analysis. In line with Broido and Clauset
(19) and Voitalov et al. (20), we use these tests to define a
classification for the degree distribution of empirical networks:

• SSF (strong scale free) if S ≤ 1 and ZddE ≤ 1,
• WSF (weak scale free) if S ≤ 3 and ZddE ≤ 3,
• NSF (nonscale free) otherwise or when n∗< lnN for the

original network or any of its subnetworks.

Note the nestedness of the classification, for which an SSF
network is also WSF.

Power Law and Poisson Distribution. We start analyzing the refer-
ence cases of Barabási–Albert (4) and Erdős–Rényi (33) mod-
els whose behavior is known. In the former case, p(k)∼ k−3,
whereas in the latter case, p(k)∼Poissonk̄ (k). Fig. 2 shows that
for a realization of the Barabási–Albert graph, the degree dis-
tributions of the (sub-)networks result in a collapse of very high
quality. The power law exponent γ yielding the best collapse is
consistent with the value Γ obtained by maximum likelihood fit-
ting the degree distribution of the mother network with a power
law (18). Additionally, the moments ratios are indeed parallel
lines, with compatible slopes d and dE . More robust statistics are

A

B

D

E

C

Fig. 2. Scaling analysis on a numerical realization of the Barabási–Albert model. The network has N = 104 nodes, and the minimum node degree is kmin = 14.
The best power law fit on this network yields Γ = 1.89± 0.02. Note that this value is smaller than Γ = 2 because of deviations from the pure power law
at small k’s: indeed, the theoretical p(k) in the Barabási–Albert model goes as [k(k + 1)(k + 2)]−1 (34). A–C show results of the scaling analysis using the
number of nodes as for Eqs. 2 and 5. A reports the dependence of various moment ratios on N; fitting these slopes yields d =−0.358± 0.035. B shows the
collapse of the cumulative degree distributions when scaled with N. The best collapse is obtained with γ = 1.89± 0.06 and yields S = 0.67. C shows how
the quality of the collapse reported in A varies on moving away from the optimal value of γ. D and E further show results of the scaling analysis using the
number of links as for Eqs. 3 and 7. In this case, the moment ratio test of D returns dE =−0.351± 0.031, while the best collapse of the cumulative degree
distributions reported in E is obtained with γ = 1.89± 0.05 and yields S = 0.66.
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obtained by analyzing 1,000 realizations of the Barabási–Albert
model (Fig. 3). Within this sample, 98% of the networks are clas-
sified as SSF, while 2% are classified as WSF. The estimated
scaling exponents are all consistent with each other among the
different realizations.

For the Erdős–Rényi model, the estimated kmin for the degree
distribution is so large that it is not possible to have (sub-
)networks with number of nodes n∗≥ lnN (in principle, for this
network, the kmin estimated from the Kolmogorov–Smirnov test
should be larger than the largest degree of the network). As such,
the Erdős–Rényi graph is classified as NSF. We obtained the
same outcome in an ensemble of 1,000 realization of this network
model.

Alternative Fat-Tail Distributions. While the power law is the only
distribution featuring scale invariance, there are other distribu-
tions characterized by a fat right tail that can resemble a power
law in finite systems. Hence, determining which of these distribu-
tions better fits empirical network data is often a nontrivial task.
In particular, the classic approach based on P values computed
from a Kolmogorov–Smirnov test (Materials and Methods) is able
to rule out some competing hypothesis but not to confirm one
(18). Moreover, the hypothesis testing approach may fail when
applied to regularly varying distributions (20). It is, therefore,
meaningful to put our FSS approach to the test of alternative
fat-tail distributions. Here, we consider the representative cases
of the log-normal and Weibull distributions. The log-normal dis-
tribution p(ln k) = Normal(µ,σ) is characterized by parameters
µ and σ the mean and SD, respectively, of the variable’s natu-
ral logarithm. For large values of σ, this distribution is highly
skewed and features a fat tail for large k values. The Weibull
distribution p(k) = (h/lh)kh−1 exp

[
−(k/l))h

]
is characterized

by parameters h (shape) and l (scale). The fat tail in this case
appears for h→ 0. We use the Viger–Latapy algorithm (35) to
generate networks with these degree distributions.

Fig. 4 shows the scaling analysis for a realization of a network
with log-normal p(k) and for another realization with Weibull
p(k). In both cases, we observe that the quality of the collapse is
poor and that the moment ratios are not parallel lines. There-
fore, both networks are classified as NSF. Moreover, S as a
function of γ does not show any minimum in the region around
Γ (the minimum does exist but is located elsewhere). This means
that the exponent estimated by FSS γ and that obtained from
maximum likelihood power law fitting Γ are substantially differ-

Fig. 3. Empirical distribution of the quality of collapse S obtained from FSS
analysis on 1,000 realizations of the Barabási–Albert graph (same param-
eters as Fig. 2). The distribution is well fitted by a log normal with µ=

−0.70± 0.1 and σ= 0.414± 0.009.

ent: the outcome of the scaling analysis is not consistent in this
case. However, the result depends much on the choices of param-
eters characterizing the distribution. Indeed, Fig. 5 shows that
the percentage of networks classified NSF decreases by increas-
ing σ in the log-normal case, as well as by decreasing h in the
Weibull case—up to a point where the variance of the distri-
butions becomes so large that the scaling analysis can hardly
distinguish these distributions from power laws at finite N . For
these cases, the value of γ that minimizes S is indeed compatible
with Γ.

Real-World Networks. At last, we move to real network data. We
consider a large set of empirical networks taken from the Index
of Complex Networks (ICON) as well as from the Koblenz Net-
work Collection (KONECT). These are the datasets used by
Broido and Clauset (19) and Voitalov et al. (20). Materials and
Methods has a discussion on how we built the dataset. Overall,
we have networks belonging to 10 different categories: biological
(protein–protein interaction), social (i.e., friendship and commu-
nication), affiliation, authorship (including coauthorship), cita-
tion, text (i.e., lexical), annotation (i.e., feature, folksonomy, rat-
ing), hyperlink, computer, and infrastructure. Fig. 6 shows results
of the FSS analysis for selected network instances, whereas Fig. 7
and Table 1 summarize results of the scaling analysis for all of the
networks considered. The main outcomes of the analysis are the
following.

• Fig. 7A: the scaling exponents d and dE obtained from the
moment ratio test are compatible in most of the cases.
• Fig. 7B: the value of γ computed from FSS is often in good

agreement with Γ obtained from the maximum likelihood
power law fit of the degree distribution (18).
• Fig. 7C: the exponents γ and d of the scaling function are not

independent but satisfy a universal relation d '−(γ+ 1)−1,
which derives from the nature of the degree cross-over in
scale-free networks—namely, the maximum degree for which
the power law behavior holds. According to Eq. 1, this is the
value kc for which the scaling function f (x )→ 0 [graphically
speaking, when the master curve P(k)k γ falls down], corre-
sponding to x & 1 whence kc ∼N−d . The analysis presented in
Fig. 7C suggests that kc ∼N 1/(γ+1), and in agreement with the-
oretical results, we find that also the maximum degree of the
network kmax scales in the same way (SI Appendix). However,
this scaling behavior is somehow different from the kc ∼N 1/γ

as predicted by hand-waving argument (40–42), likely due to
inner correlations in the networks that modify the value of the
cross-over (41).
• No particular relation between quality of collapse S and esti-

mated exponent γ is found nor any clusterization of networks
amenable to categories within the plane defined by these
two variables (SI Appendix). However, this result is obtained
when the different network categories are well balanced in the
dataset because networks that are very similar tend instead
to cluster together. This is for instance the case of protein
interaction networks belonging to different species. In order to
remove this artificial clustering effect, we have not considered
in our dataset these (and other) cases of very similar networks
nor repetitions of the same network (SI Appendix). This is the
main reason why our dataset is apparently smaller than that
used by Broido and Clauset (19).
• Overall, as shown in Table 1, the 185 networks of our dataset

are classified as SSF in 27% of the cases, WSF for 23%,
and NSF for 50%. This classification, however, does vary
substantially among the different network categories. On the
one hand, biological networks are very often classified at
least as WSF. The same happens for computer and hyper-
link networks, with outliers given by the Gnutella peer-to-peer
file sharing network [that has the same character of social
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Fig. 4. Scaling analysis (with N) on a numerical realization of a log-normal graph with (σ, µ) = (0.8, 1.8) (A, 1; B, 1; and C, 1) and of a Weibull graph
with (h, l) = (0.6, 1.8) (A, 2; B, 2; and C, 2). In both cases, the network has N = 104 nodes. Log-normal graph: the best power law fit is obtained with
Γ = 2.90± 0.12, the moment ratio tests yield d =−0.209± 0.033 and dE =−0.208± 0.033, and the best collapse is obtained with γ = 2.40± 0.37 and yields
S = 5.047. Weibull graph: the best power law fit is obtained with Γ = 3.43± 0.08, the moment ratio tests yield d =−0.230± 0.037 and dE =−0.219± 0.036,
and the best collapse is obtained with γ = 1.933± 1.055 and yields S = 3.271.

networks (43)] and by some hyperlink networks restricted to
specific domains, respectively. Citation and text networks are
few in our analysis but are often scale free. On the other
hand, infrastructure networks (i.e., road and flights network)
are rarely scale free (with the notable exception of air traffic
control systems), possibly because of the heavy cost of estab-
lishing a connection. Between these two extremes, there are
the social and other kinds of networks (for instance, the well-
known discussion of the Facebook case presented in refs. 44
and 45 and that of other information sharing social networks
presented in ref. 46].

Discussion
Since the onset of network science, scale invariance of complex
networks has been regarded as a universal feature present in real
data (18, 47–51) as well as reproduced in models (4, 34, 52–55).
Thus, the recent claim by Broido and Clauset (19) that scale-
free networks are rare created a stir, strengthening previous
claims along the same direction (16, 18, 56). Voitalov et al. (20)
replied to these arguments fitting data to generalized power laws:
that is, regularly varying distributions p(k) = l(k)k−λ [where l(k)
is a function that varies slowly at infinity and thus, does not
affect the power law tail]. By allowing deviations from the pure
power law distribution at low k , they argued that scale-free net-
works are definitely not rare. Gerlach and Altmann (21) very
recently touched on this issue, showing that correlations present
in the data can lead to false rejections of statistical laws when
using standard maximum likelihood recipes (in the case of net-
works, this can be important in the presence of degree–degree
correlations).

In this work, we go beyond statistical arguments and apply
powerful tools from the study of critical phenomena in physics to

analyze a wide range of model and empirical networks. Here, we
have shown that many of these networks spontaneously, without
fine tuning, satisfy the FSS hypothesis, which in turn, supports
the claim that complex networks are inherently scale free.

While a direct comparison with the results previously dis-
cussed would be interesting, the final results would not be
meaningful, given the differences in the underlying hypothe-
ses of the different models. We have shown how different
hypotheses can lead to distinct results. The hypothesis underly-
ing our approach, which came from results previously obtained
in the field of statistical mechanics and critical phenomena, goes
beyond the applications they were initially designed for and
does not require the existence of a critical point. Together with
previous work, our methodology fits in the bag of tools that a
researcher can use in order to assess the scale-free character of
a network.

Our scaling analysis is based on the extraction of small
representations of the networks using a random node selec-
tion scheme. Of course, an intrinsic limitation of any rescaling
method applied to network data is the impossibility to consider
system sizes spanning orders of magnitude. As a further gen-
eral remark, finding a robust method to rescale [or coarse grain
(57, 58)] a network is still an open issue in the literature since
networks are not embedded in any Euclidean space. Commonly
used approaches lack generality since they are based on the
choice of the embedding geometric space (59) or on the aver-
age path length (60). In order to avoid ad hoc assumptions,
we decided to follow the simplest (although not necessarily the
most accurate) scheme. As shown in SI Appendix, by averaging
over many extractions of the subnetwork we are able to pre-
serve the degree distribution of the original network, which is
what we are interested in. Finally, note our claims regarding the
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Fig. 5. Outcome of the scaling analysis (with N) on log-normal and Weibull networks as a function of the parameters of the degree distributions (µ, σ)
and (l, h), respectively. A, 1 and 2 show the percentage of networks classified as SSF, WSF, and NSF for varying σ at fixed µ= 1 and for varying h at fixed
l = 3.5, respectively. These statistics are computed over ensembles of 2,000 networks for each choice of parameters σ and h. B, 1 and 2 show representative
instances of the distribution in the range of parameters analyzed, whereas C, 1 and 2 display the corresponding value of the variance of the distribution.
Note that we do not report results for varying µ at fixed σ nor for varying l at fixed h because we observe almost no dependency of the classification on
these parameters.

self-similarity of the degree distribution, but we restrain our-
selves in making general conclusions about the overall self-
similarity of networks—this would involve the study of other
quantities such as clustering, average path length, and so on (61).

Materials and Methods
Here, we report the steps to test the FSS hypothesis of Eq. 2 together with
the moments ratio test of Eq. 5. Note that in order to test Eqs. 3 and 7, one
uses the number of edges E (e) associated with each (sub-)network of size N
(n) and replaces d with dE .

FSS Analysis. Given an undirected network of size N, our analysis is based
on the following steps.

1) We compute the degree distribution p(k, N) and use the method of
Clauset et al. (18, 32) to estimate the best-fitting power law parameters
Γ + 1 and kmin.

2) We generate an ensemble of 100 subnetworks for each size n∈
{ N

4 , N
2 , 3N

4 }. Each subsample is obtained by picking n nodes at random
from the original network and by deleting all of the other nodes and the
links incident to them. We then compute the mean degree distribution
p(k, n) over each subnetwork ensemble.

3) Both for the original network and for each subnetwork, we check
whether the (average) number of nodes n* with k≥ kmin is larger than
ln N. If this condition is not met, we classify the network as NSF, and
the analysis ends. Otherwise, we proceed by removing the region below
kmin in both p(k, N) and each p(k, n) and renormalize them afterward.
As explained in the text, this allows us to get rid of deviations at low
degrees, including those induced by the subsampling (SI Appendix).

4) Using the moment ratio test, we determine d (and its associated error)
as follows. We compute a given moment ratio 〈ki〉/〈ki−1〉 on each (sub-
)network of size n and use least squares to fit ln(〈ki〉/〈ki−1〉) vs. ln n.
We then average the resulting fit slope over different choices of the
moments (indexed by i) to obtain −d. Note that since this test is com-

putationally less expensive than the collapse analysis (see below), we use
more than four subnetwork sizes. In particular, we use 20 equally spaced
values of n∈ [ N

4 , N], for each of which we compute the moments ratio
(and associated error used as fit weight) over an ensemble of 100 n-sized
subnetworks built as described above.

5) For each (sub-)network size n∈{ N
4 , N

2 , 3N
4 , N}, we obtain the cumulative

degree distribution P(k, n). We then determine the exponents γ and d
(and their associated errors) that maximize the quality of the collapse
plot (see below). Notably, the scaling exponent d obtained from the col-
lapse is always compatible with that obtained from the moment ratio
test. Hence, in order to decrease the computational cost of the method,
one can in principle vary only γ while keeping d fixed at the value
obtained from the moment ratios fit.

Quality of Collapse. We now describe the procedure for deriving the mas-
ter curve of the scaling function from the cumulative degree distributions
of the various subnetworks, following the steps described in refs. 29 and
62. The key premise is that when these distributions are properly rescaled,
they can be fitted by a single (master) curve. The quality of the collapse
plot is then measured as the distance of the data from the master curve,
and the collapse is good if all of the rescaled distributions overlap onto
each other.

In practice for each (sub-)network size n∈{ N
4 , N

2 , 3N
4 , N}, we have the set

{j} of ordered points for the cumulative degree distribution in the form
{(kj , P(kj , n))}j . After applying the scaling laws, we have

{
xnj = kj nd

ynj = P(kj , n) kγj

so that xnj is the rescaled jth degree in the distribution of the n-sized
subnetwork and ynj is the rescaled value of such distribution relative
to the jth degree. We also assign an error on the latter quantity as
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Fig. 6. Scaling analysis (with N) on four real network instances. (A, 1; B, 1; C, 1; and D, 1) The 2005 version of the proteome-scale map for human binary
protein–protein interactions (N = 1,706, E = 3,155) (36). (A, 2; B, 2; C, 2; and D, 2) The word adjacency graph extracted from the English text The Origin of
Species by C. Darwin (N = 7,724, E = 46,281) (37). (A, 3; B, 3; C, 3; and D, 3) (Symmetrized) snapshot of the internet structure at the level of autonomous
systems in 2007 (N = 26,475, E = 53,381) (38). (A, 4; B, 4; C, 4; and D, 4) The collaboration graph of authors of scientific papers from database systems
and logic programming (DBLP) computer science bibliography (N = 13,14,050, E = 107,24,828) (39). A–C are analogous to those reported in Figs. 2 and 4,
whereas D visually shows the classic plots of P(k) in double-logarithmic scale together with the plot of the estimated slope γ using FSS analysis.
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A C

B

Fig. 7. Visual summary of results from the FSS analysis, in which each network dataset is represented as a point in a specific plane. A shows the relation
between d and dE resulting from the moment ratio test, with the solid black line representing the identity. The other two panels refer to the scaling analysis
with N. B shows the relation between γ computed from FSS and Γ from the maximum likelihood power law fit of the degree distribution (Materials and
Methods). The solid line again represents the identity. C shows the relation between the exponents γ and d of the scaling function, with the solid black line
representing the curve d =−(γ + 1)−1 (the text has details).

dynj = dP(kj , n) kγj , where dP(kj , n) is the Poisson error on the count P(kj , n)
(SI Appendix).

The master curve Y is the function best fitting all these points. We define
the quality of the collapse as

S =
1

3|M|
∑

(n,j)∈M

(ynj −Ynj)
2

dy2
nj + dY2

nj

, [8]

where Ynj and dYnj are the estimated position and SE of the master curve
at xnj , while M is the set of terms of the sum (roughly, the set of points for
which the curves for the various n overlap).

For each xnj , in order to define Ynj and dYnj we first need to select a set
of points mnj as follows. In each of the other sets n′ 6=n, we select (and put
in mnj) the two points j′ and j′ + 1 that best approximate xnj from below
and above [i.e., the two points such that xn′ j′ ≤ xnj ≤ xn′(j′+1)]. If this pro-
cedure fails to select two points for each n′ 6=n, then Ynj and dYnj are

undefined at xnj , which thus does not contribute to S (this happens if set
n is alone in this region of x and is the master curve by itself). Otherwise,
we compute Ynj and dYnj using a linear fit through the selected points in
(n′, l)∈mnj , so that Ynj is the value of that straight line at xnj and dYnj is the
associated SE:

Ynj =
WxxWy −WxWxy

η
+ xnj

WWxy −WxWy

η
[9]

dY2
nj =

1

η
(Wxx − 2xnjWx + x2

njW), [10]

where wn′ l = 1/dy2
n′ l for the fit weights and W =

∑
(n′ l)∈mnj

wn′ l, Wx =∑
(n′ l)∈mnj

wn′ lxn′ l, Wy =
∑

(n′ l)∈mnj
wn′ lyn′ l, Wxx =

∑
(n′ l)∈mnj

wn′ lx
2
n′ l,

Wxy =
∑

(n′ l)∈mnj
wn′ lxn′ lyn′ l, and η= WWxx −W2

x for the fit parameters.

Table 1. Classification of empirical networks (split into categories)

Total Affiliation Annotation Authorship Biological Citation Computer Hyperlink Infrastructure Social Text

No. 185 8 38 15 30 5 13 14 12 39 11
SSF, % 27 63 21 27 40 40 39 22 0 13 55
WSF, % 23 12 24 20 30 0 38 21 17 18 27
NSF, % 50 25 55 53 30 60 23 57 83 69 18

For each category, we report the total number of networks and the percentages of SSF, WSF, and NSF instances. Detailed results on each network analyzed
are in Dataset S1.
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The quality of the collapse S measures the mean square distance of the
sets to the master curve in units of SEs, analogously to a χ2 test (29). The
number of degrees of freedom can be estimated by noting that each of the
|M| points of the sum of S has in turn three intrinsic degrees of freedom:
|m| points as described above (six in our case) minus two from computing
mean and variance of Y , minus one. Hence, by using 3|M| as normalization
factor, S should be around one if the data really collapse to a single curve
and much larger otherwise.

We optimize the quality S of the collapse by varying the scaling expo-
nents γ in the interval Γ− 0.5≤ γ≤Γ + 0.5 and d in the interval d− 0.1≤
γ≤ d + 0.1. The errors associated with γ and d are estimated with an
S + 1 analysis: ∆γ is such that S(γ + ∆γ) = S(γ) + 1, and ∆d is such that
S(d + ∆d) = S(d) + 1.

Dataset
We extract a collection of real network data from the ICON at https://icon.
colorado.edu/ as well as the KONECT at https://west.uni-koblenz.de/konect.
The full list of networks we consider together with detailed results of the FSS
analysis is reported in Dataset S1. To define the dataset, we select networks
(removing duplicates appearing in both ICON and KONECT) according to the
following criteria.

First, to allow for a reliable scaling analysis, we only use networks with
N> 1,000 and E> 1,000 (for computational reasons, we did not consider
networks with more than 50 million links). We then include undirected
networks, as well as the undirected version of both directed and bipartite
networks. Similarly, we consider binary networks as well as the binarized
version of weighted and multiedge networks. We, however, ignore net-
works that are marked as incomplete in the database. Importantly, among
database entries that possibly represent the same real-world network we

select only one (or at most, a few) entry, and consistently, we do the same
for temporal networks (when there is only one snapshot, we ignore the time
stamp of links).

In practice, in KONECT we select only the Wikipedia-related networks in
English language. For ICON, the implications are more profound. We ignore
interactomes of the same species extracted from different experiments,
the (almost 100) fungal growth networks, the (more than 100) Norwegian
boards of directors graphs, the (more than 100) Center for Applied Internet
Data Analysis snapshots denoting autonomous system relationships on the
internet, networks of software function for Callgraphs, and digital circuits
ITC99 and ISCAS89. We consider only one instance of Gnutella peer-to-peer
file sharing network, as well as a few instances of the (more than 50) within-
college Facebook social networks and of the (about 50) US states road
networks. Among the (more than 100) Kyoto Encyclopedia of Genes and
Genomes metabolic networks, we select 17 species trying to balance the
different taxonomies.

Thus, in our analysis, we do employ the same data source used by
Broido and Clauset (19), but we avoid overrepresented network instances.
As explained in the text, this procedure removes the clustering of similar
networks as shown in the SI Appendix and leads to less biased conclusions
on the scale-free nature of networks belonging to different categories.

Data Availability. All raw network data are available from ICON and
KONECT, while results are in Dataset S1.
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