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Abstract  
In the context of Computed Tomography scanning of logs, accurate detection of knots is key for 
delivering a successful product. Reliable detection of knots in the sapwood is hard with traditional 
computer vision techniques, because of the different density conditions between sapwood and 
heartwood. The advancements provided by deep learning in the field of semantic image segmentation 
kick-started a new way of approaching such problems: deep neural networks can be trained on large 
amounts of labelled data and successfully employed in production environments to improve the 
performances on knot detection. Adapting state-of-the-art network architectures and using more than 
10.000 labelled knots from pine and spruce logs, we were able to develop a new two-step approach for 
identifying knots in CT scans of logs with unprecedented accuracy while at the same time satisfying 
the time constraints that a real-time industrial application needs. The first step runs on the log’s axis, 
while the second runs on each candidate knot’s axis. False positives from the first step are very rare 
(even with dry/dried logs), so no computational power is wasted for non-existing knots. Using this 
approach, we are able to see the internal defects of a log in real time in the production chain without 
having to cut it first, therefore being able to optimize even more the output of the chain on each 
client’s requirements.  
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Introduction 
Computed Tomography (CT) for production optimization in sawmills has been a reality for a few 
years. CT Log (Giudiceandrea et al., 2011) is a CT scanner produced by Microtec able to measure logs 
at up to 180m/min, compute a model of the internal features of each log and optimize the entire 
process based on the characteristics of the raw material and the production requests of the sawmill. 
The steps of bucking, sorting and optimizing the cutting pattern can be improved with the use of the 
internal information provided by computed tomography. Many works demonstrated the economic 
advantage of optimizing the sawing process with the use of CT images (Rais et al 2017) (Berglund et 
al 2013) (Stangle et al 2015). 

The automatic detection of the internal features of a log from CT images has been addressed by many 
works, especially for knots detection (Andreu at al 2003) (Breinig et al., 2012) (Fredriksson et al., 
2017) (Cool et al., 2017) (Longuetaud et al., 2012). Only a few of them (Oja, 2000) (Johansson et al., 



2013) addressed the problem of the detection of the dead knot border. The dead knot border is the 
point that divides the part of knot that is sound from the one where the knot is dead. On the dead part 
of a knot, a thin bark layer divides the knot from the rest of the wood: therefore, the mechanical 
connection with the rest of the wood is lower, sometimes causing the knot to fall off the board. For 
this reason a clear estimation of the point where a knot becomes dead is very important in order to be 
able to optimize the cutting pattern and produce boards with higher quality. In (Oja, 2000) the 
coefficient of determination of the linear regression between the predicted and measured percentage of 
sound knots on each board was measured to be R2=0.72. In (Johansson et al., 2013) the detection was 
accomplished measuring the point where the diameter of each knot stops growing. The RMSE of the 
dead knot border estimation on Pine logs was of 12mm.  

The aim of this work is presenting how Convolutional Neural Networks (CNN) were applied in order 
to improve the detection of knots from CT images. The detection was performed in two steps: the first 
step applies a semantic segmentation on the whole log in order to define the position of each knot. In 
the second step, an area around each knot is analyzed in order to calculate its properties, and in 
particular the measurement of the dead knot border. 

The neural network in charge of the semantic segmentation is a fully convolutional network that 
performs 2D convolutions on volumes of consecutive slices of CT images to produce probability maps 
expressing the likelihood that each pixel is part of a knot. The second network has the purpose of 
classifying volumes of knots as sound or dead and of identifying the right dead knot border position. 

One of the important requirements of using deep learning is that a big number of samples must be 
collected and labelled with accurate information to correctly train the system. The correct labelling 
requires a lot of work from trained people but also a correct procedure. For this reason, a specific 
software was developed for labelling the dataset by visual inspection of CT images. The definition of 
the dead knot border from CT images was a hard task for our graders, therefore we chose to use 
measurements taken directly on the surface of the boards after the logs were sawn, since the status of a 
knot is clearly visible on the surface of a board but not as clearly interpretable from CT images. 

 

 

Figure 1— Visualization of the software for the manual labelling of the knots. Different views of the 
same area are shown in order to help a precise definition of the positions. 



Material and methods 
 

Step 1: Knot identification 

CT Log produces 3D images where each voxel has the dimension of 1x1 mm in transversal direction 
and 10 mm along the axis of the log. In the remainder of this paper we will call x and y the first two 
coordinates of the CT images, transversal to the axis of the log, and z the third coordinate.  

In order to visualize and label in 3D each knot, we developed a software shown in Figure 1 where 
different views of the same part of the log were presented in the same screen in order to label the 
starting point, end point, dead knot border and diameter profile of the knots. It was also possible to 
define any number of intermediate points along the trajectory of the axis of the knot.  

The CT images of 75 Scots Pine logs (Pinus Sylvestris) that were scanned in different sawmills in 
Europe were collected in order to create a database. The knots of those logs were manually marked 
with the software described before and a total of 10.118 knots were collected. 

The parametric labelling was transformed to produce a 3D volume of voxels indicating whether each 
voxel belongs to a knot (voxel value = 1) or is not part of a knot (voxel value = 0). Each slice was 
scaled in order to have consistent slices dimension (128 x 128 pixels) on all logs. Then, as network 
input, groups of images composed of 5 adjacent slices were created.  

    

Figure 2 — The original image scaled at 128x128 pixels (left), the CNN segmentation (right) 

The CNN was then able to produce a 3D image of the same size of the input were each voxel 
expresses the probability of it being part of a knot, as shown in Figure 2. 

In order to identify the position and the bounding box of each knot, a special version of the Hough 
transform (Ballard 1981) was implemented. One strong simplification of the model comes from the 
fact that almost all knots in a log start from the pith, since epicormic knots are very rare in forests. The 
position of the pith along the log can be easily calculated (e.g., (Boukadida et al., 2012)): a set of 
values xPith(z) and yPith(z) is therefore obtained. The axis of a knot can then be parametrized with 3 
parameters:  

 zStart: the z coordinate of the position where the knot starts 
 Orientation: the angle of the direction of the knot in the x,y plane; 
 Slope: the inclination of the direction of the knot in the z direction with respect to x-y plane. 

The algorithm creates a 3D Hough map based on the 3 parameters by looping on a range of possible 
values of slope between -30% and 30% at step of 2%. Given the slope, for every voxel a unique knot 



axis passing through both it and the pith exists. So, it is possible to compute the pith position in which 
the knot starts zStart(x,y,z,slope), where x,y,z are the position of a generic voxel. Then we can 
calculate the orientation of the knot as orientation(x,y,z)=atan2(yPith(zStart),xPith(zStart)). With this 
functions it is possible to calculate for every slope and x,y,z voxel, the correspondent zStart,orientation 
coordinate in the Hough map and add the probability value calculated with the CNN in order to 
compute the probability of a knot with the given parameters. Choosing the best local maxima of the 
map allows to create a list of axes of the knots. An example of two layers of a Hough map is shown in 
Figure 3. 

  

Figure 3—The Hough map of the knots: the orientation in the horizontal axis, zStart in the vertical 
axis. On the left image the plane with slope=0% is shown, on the right the plane with slope=4%. 

Step 2 knot area analysis 

Once the axis of each knot has been identified, a 3D volume of voxels is extracted. We define the 3 
directions of the extracted boxes as: 

 radial direction ( r ): along the orientation of the knot in the x-y plane 
 tangential direction ( t ) orthogonal to r and z directions 
 z direction 

The extracted voxels groups are volumes with fixed dimension of 160 x 80 x 80 in the r, t, z 
directions, respectively. A different scale factor is applied to the three directions in order to optimally 
fit each knot in a volume, depending on the radius of the log, the maximum expected diameter and the 
slope. We obtain volumes as in Figure 4 (top). 

 

Figure 4 — The block of pixels around a knot. Original image (top) and result of CNN for semantic 
segmentation (bottom) 



One possible solution is to perform a new semantic segmentation on these knot blocks. The analysis of 
the dimension and center of the segmented voxels along the r direction allowed to compute the 
direction, dimension and length. The dead knot border is calculated as the point where the dimension 
of the knot stops growing along the r direction. 

In order to improve performances specifically on the detection of the dead knot border and knot 
diameter, a more reliable ground truth, specific to these two metrics, is needed. The only way to 
extract reliable ground truth on those metrics was to check the appearance of the knots on board 
surfaces instead of using CT images. 13 logs of Scots Pine were scanned with a CT Log scanner, sawn 
in thin boards 15mm thick and the knots were manually measured on the surface of the boards. A 
reference was taken on the logs by drilling some holes so that it was possible to compute the position 
of a knot in the CT image given the measured position on the board and vice versa. On the 13 logs, 
2412 knots were measured on the surface of the boards.  

 

Figure 5 — An example of reference taken on a log that is CT-scanned and then sawn in boards (left), 
the manual measurements superimposed on the CT image (right).  

In Figure 5 (right) the original CT images are visible with the position of the boards and the measure 
of the knots taken manually superimposed. In particular, the minimal, maximal diameter, position and 
dead/sound status were annotated. The information related to each knot was reported in the reference 
system of the specific block of voxels extracted in order to train a neural network.  

The problem is that the requested information (dead knot border and diameter profile) would require a 
dense ground truth along the radial direction, while only a few manual measurements are available 
depending on the thickness of the boards and their angle with respect to the knot axis. It was not 
possible to train a network on the whole knot volume when the ground truth was valid only for a few 
points along its length (only 1 or 2 points). 

To correctly train the network we decided to extract sub-blocks of 11 slices along the r direction 
around positions where the ground truth was available. Two different networks were trained: one to 
compute the dead/sound status, the other for the computation of the diameter of the knot.  

During the training of the sound/dead network it was possible to extend the ground-truth information 
also to other points of the knot. If a knot was marked as sound at a certain coordinate r_alive, for 
obvious biological reasons the knot was alive also at all r<r_alive. For the same reason, if a knot was 
marked as dead at a certain point, all the subsequent slices have to be marked as dead. This allowed to 
create a dataset with a high number of samples. At this point the network is able to classify the single 
slice of a knot to either dead or sound, but it is obviously faster to infer this information by comparing 
the actual distance of a slice from the pith with the dead knot border value of that knot. To find a 



knot’s dead knot boder, for computational time constraints, one slice every six was tested. Once the 
point where the status passes from sound to dead is found, we then refine the detection to pinpoint the 
exact slice. After the calculation of the dead knot border we verified the performance of the system by 
comparing the predicted status with the status of the knots in the sawn boards. 

As ground truth for the computation of the diameter we decided to use as training set only the slices of 
knots where there was a manual measurement. An interpolation of the measured diameter in the slices 
between two consecutive measurements were possible, but it could have reduced the precision of the 
system. As long as we can consider that branches are not elliptical, we use the minimal diameter 
measured on the board as the diameter of the knot in the 3D image.  

Results 
 

Knots segmentation 

To design and train the networks, we used a computer running Windows 10 Pro, Keras 2.2.4 with 
Tensorflow 1.13.1 as backend. The first network, aimed at semantic segmentation, has a total of 
1.962.913 parameters. It follows the U-Net architecture (Ronneberger et al., 2015) with skip 
connections and convolutional blocks consisting of 2 consecutive convolutional layers. The first layer 
interprets the channel axis as a depth axis. Starting from an image size of 128x128 with 5 channels, it 
compresses the image to a size of 8x8 with 256 channels in the center. Then, in the so-called “upward 
path” of U-Net, the image is upscaled to the original resolution with 1 output class as channel (the 
probability of a pixel part of the central slice to be part of a knot). Each convolutional layer applies 
3x3 kernels, and for the optimization the Adam optimizer has been used with a learning rate of 0.0002 
with binary crossentropy as the default loss function. Early stopping and learning rate reduction on 
plateau have been used during the training process. The inference time for the computation of a log 4.2 
m long was 650 ms. All computation times were measured on a computer using an RTX 2080 GPU on 
an Intel Core i7-4770 3.4GHz. 

Dead knot border 

In total the 13 logs presented 634 knots. Each knot intersected one or more boards, the manual 
measurement were taken at those intersections. The 634 knots intersected the boards in 2412 measured 
points. 1835 knot intersections were randomly chosen for training and validation set (75% for training 
and 25% for validation). They generated 34917 knot slices with known dead/sound status and used for 
training and validation of the neural network. 577 knots intersections, belonging to 158 knots, were 
used for the test of the detection of the final algorithm estimating the dead knot border. 

The test of the performance was done comparing the status of the knots manually measured on the 
boards with the expected status based on the estimated dead knot border. The results are presented in 
Table 1. 

Table 1—Confusion matrix of the classification of the sound/dead knot classification 
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The inference of a single slice of the network used for the dead/sound classification required 0.42 ms. 
Every knot required the inference of 23 knot slices, so in total the computation time for the dead knot 
border of a knot was 10 ms.  

Knot diameter 

For the training and validation of the network, 1776 intersections of the knots with boards were used 
(75% for training and 25% for validation), while 564 were used for the test.  

The standard deviation of the difference between the manual measurement and the predicted value of 
the diameter was 3.2 mm, the average -0.1mm. In Figure 6 a comparison of measured and predicted 
diameters is shown. 

 

Figure 6— Comparison of the diameter estimation of the knots  

The inference of a single slice of the network for the diameter estimation required 0.58 ms. In total, 12 
volumes needed to be inferred in order to compute the diameter along each knot, requiring 6.7 ms per 
knot. 

In total, the computation time for a 4.2 m long log with 50 knots was 1450 ms on a single computer 
with one GPU. 

Conclusion and future work 
 

We presented an algorithm that used convolutional neural networks for the automatic detection of the 
parameters of knots from CT images of Scots Pine logs. In particular we proposed a procedure that 
allows to train the network with thousands of samples. In particular allowed to train the system using 
reliable information measured on the surface of boards instead of using CT images. Even if the results 
of the presented work are very positive, we plan to extend the approach using board scanners installed 
in a production line to create the ground truth for the training of new networks. Training neural 
networks on CT images from all logs from a sawmill using as ground truth the scanned data of those 
logs’ sawn boards will create more accurate automatic inspection processes tailored on the specific 
characteristic of the logs and productions. 
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