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Abstract. In this paper, we study a system where the speed of a pro-
cessor depends on the current number of jobs. We propose a queueing
model in which jobs consist of a variable number of tasks, and prior-
ity is given to the job with the fewest remaining tasks. The number of
processor frequency levels determines the dimensionality of the queueing
process. The objective is to evaluate the trade-offs between holding cost
and energy cost when setting the processor frequency. We obtain exact
results for two and three frequency levels, and accurate approximations
that can be further generalized. Numerical and simulation results show
the high accuracy of the approximate solutions that we propose. Our
experiments suggest that a parsimonius model with only two frequency
levels is sufficient, since more elaborate models provide negligible im-
provements when optimizing the system.

1 Introduction

In dynamic speed scaling systems, the speed at which the processor executes
jobs is adjusted dynamically based on the workload experienced by the system.
Modern processors typically support over a dozen discrete operating speeds,
often with a factor of two (or more) between the slowest and the fastest speeds
available.

Multiple tradeoffs exist in such speed scaling systems. The most obvious is the
tradeoff between response time and energy consumption (see. e.g., [17, 4, 13]). To
minimize response time, one would use the highest system speed available, while
to minimize energy consumption, one would use the lowest system speed. For this
reason, most speed scaling research uses a cost function that combines response
time (i.e., job delay, or holding cost) and energy consumption when doing system
optimization as in [16]. Another interesting tradeoff arises from the interaction
between the job scheduling policy and the speed scaling function. In job-count-
based speed scaling, for instance, the CPU speed is set dynamically based on the
current number of jobs in the system. As a result, different scheduling policies
produce different costs, since the average number of jobs in the system varies.
For example, Shortest Remaining Processing Time (SRPT) minimizes system



occupancy, and thus tends to run at lower speeds and for longer times than
other scheduling policies, such as Processor Sharing (PS) [1].

Another consequence of SRPT-based scheduling is extreme unfairness to
large jobs. There are two underlying reasons for this unfairness. First, large
jobs tend to wait much longer to receive service, because of SRPT’s bias to-
ward short jobs. Second, even when they do receive service, large jobs tend to
be served at low(er) speeds, since there are usually very few jobs (perhaps only
one) in the system at that point [14].

Size based scheduling disciplines have been considered of primary importance
in queueing theory (see, e.g., [9, Ch. 3]) and for practical applications in com-
puter networking (see, e.g., [11] and the references therein). Despite the problems
concerning the fairness [3, 1], the optimality of SRPT makes it practically ap-
pealing for the situations where job sizes can be predicted accurately. This is
the case, for example, of TCP flows whose size is known in advance, e.g., in
transferring static resources from a web server as shown in [8].

In this paper, we further investigate performance tradeoffs in dynamic speed
scaling systems. One basic dilemma in these systems is what speed to use when
there is only a single job in the system. Should it run at the highest speed,
to minimize delay, or at the lowest speed, to conserve energy? To answer this
question, we investigate a model in which we can determine the optimal speeds
to use within a finite set of available speeds.

The main contributions in this paper are the following:

1. we propose a novel analytical model for dynamic speed scaling systems that
use the SRPT scheduling policy, with K available speeds;

2. we derive exact analytic results for K = 2 to optimize the system speeds
and minimize the system cost function. The approach can be extended to
deal with the case K = 3;

3. we derive approximate analytic results for K = 2 that can be generalized for
larger K;

4. we conduct numerical and simulation experiments to verify the accuracy of
our analytical models and we provide new insights on the importance of the
available speeds in dynamic speed scaling systems with SRPT scheduling.

The rest of this paper is organized as follows. Section 2 provides a brief summary
of prior related work on dynamic speed scaling systems. Section 3 presents our
system model. Section 4 derives our exact and approximate models for K = 2
which may be extdened to more general cases. Section 5 presents numerical
results to evaluate the models and to quantify the benefits of frequency scaling.
Finally, Section 6 concludes the paper.

2 Related work

SRPT is a preemptive policy that always selects for service the pending job in the
system with the least remaining work. In single-speed systems, SRPT is optimal
for mean response time [12]. Although SRPT minimizes the mean response time,
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it is rarely used in practice, since it can be unfair. In particular, large jobs may
starve if small jobs have precedence.

Prior literature on speed scaling systems appears in both the theory and
systems communities. The theoretical work typically focuses on formal mathe-
matical proofs of the properties of speed scaling systems, such as optimality and
fairness. Systems research typically focuses on robust solutions, rather than op-
timal ones. In this literature review, we focus primarily on the theoretical work,
as relevant background context for our paper.

In speed scaling systems, there are many tradeoffs between service rate, re-
sponse time, energy consumption, and fairness. Yao et al. [17] conducted one of
the first analytical studies of dynamic speed scaling systems in which jobs have
explicit deadlines, and the service rate is unbounded. Bansal et al. [4] considered
an alternative approach that minimizes system response time, within a fixed en-
ergy budget. Other work has focused on finding the optimal fixed rate at which
to serve jobs in a system with dynamically-settable speeds [7, 15, 16].

Energy-proportional speed scaling is a prevalent approach, which is nearly
optimal [1, 2]. In this model, the power consumption P (s) of the system depends
on the speed s, which in turn depends on the number of jobs in the system.
Bansal, Chan, and Pruhs [2] showed that SRPT with the speed scaling function
P−1(n+ 1) is 3-competitive for an arbitrary power function P . Andrew et al. [1]
showed that the optimal policy is SRPT with a job-count-based speed scaling
function of the form s = P−1(nβ).

Fairness in dynamic speed scaling systems is also an important consideration.
In particular, speed scaling systems face inherent tradeoffs between fairness,
robustness, and optimality [1]. Processor Sharing (PS) is always fair, even under
speed scaling. However, the unfairness of SRPT is magnified under speed scaling,
since large jobs tend to run at lower speeds (i.e., when the system is mostly
empty). Although PS is fair, it is suboptimal for response time and energy [1].

In this paper, we focus on SRPT scheduling with job-count-based speed scal-
ing. Our model builds upon ideas from Andrew et al. [1], as well as recent work
by Elahi et al. on the autoscaling properties of dynamic speed scaling systems [6].
We derive exact and approximate models to facilitate optimization of the system
cost, by determining the optimal service rates to use.

3 Description of the model

In this section we introduce the queueing model that we consider in this paper
together with the associated notation (a summary is given in Table 1). Jobs
arrive into the system in a Poisson stream with rate λ, and are served by a
single server. Each job consists of a random non-empty batch of i.i.d. service
phases which will be referred to as tasks. The duration of each task, if served at
speed 1 instruction per second, is distributed exponentially with mean 1. The
number of tasks in a job’s batch will be referred to as the size of the job. Those
sizes are i.i.d. random variables with an arbitrary distribution: a job has size
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λ Intensity of the arrival process
qi Prob. distribution of the number of tasks in a job
Q Finite average job size
K Number of frequency levels
µk Service rate at frequency level k
uk Stationary probability that frequency level k is operating
L Expected number of tasks in the system
n = (n1, . . . , nK) State of the system
pk(n) Stationary probability of observing n tasks at level (queue) k
wk(z) Generating function of pk(n)
a(z) Generating function of qi
ri Probability of a job size strictly larger than i
b(z) Generating function of ri
πk(n) Marginal stationary probability of observing n tasks in queue k
π(n1, . . . , nK) Stationary probability of state (n1, . . . , nK)

Table 1: Summary of the notation used in the paper.

i with probability qi (i = 1, 2, . . .). The average job size, Q, is assumed to be
finite.

This job composition means that the possible distributions of job lengths (i.e.
the sums of their constituent tasks), belong to a large sub-class of the Coxian
distributions (see [5]), which are known to be quite general for practical purposes.

The job scheduling policy is a version of SRPT based on remaining sizes,
rather than lengths. That is, at any moment, the job with the smallest number
of remaining tasks is served. That policy is combined with a control mechanism
whereby the frequency of the processor, i.e. the speed at which it works, is scaled
according to the current load. There are K possible frequency levels. If there is
only 1 job present, it is served at rate µ1 tasks per unit time; if there are 2
jobs, then the one with fewer remaining tasks is served at rate µ2 tasks per
unit time, with µ2 > µ1; . . .; if there are K or more jobs present, then the one
with the fewest remaining tasks is served at rate µK tasks per unit time, with
µK > µK−1.

One is faced with the question of how best to choose the frequency levels.
Clearly there are trade-offs between the costs of increasing the processor speed
and the costs of holding tasks in the system. We address that question by in-
troducing a cost function which has two components: a cost proportional to the
average number of tasks remaining across jobs present, L, and a cost proportional
to the average square (see, e.g., [16]) of the service rate:

C = c1L+ c2

K∑
k=1

ukµ
2
k , (1)

where c1 and c2 are given coefficients, and uk is the probability that frequency
level k is in operation. We assume that when the system is empty, its power
consumption is that corresponding to the lowest operating speed µ1.
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The purpose of the subsequent analysis is to provide algorithms for comput-
ing L and uk, and hence evaluate the cost function for a given set of parameters.
The optimal values of µk can then be found by applying an appropriate numer-
ical search.

The operation of the scheduling policy can be modeled by using K task
queues, numbered 1, 2, . . ., K. Sort the jobs present in the system in decreasing
order of the numbers of their remaining tasks. Then queue 1 contains the remain-
ing tasks of job 1 (the largest in the system), queue 2 contains the remaining
tasks of job 2, if any, . . ., queue K−1 contains the remaining tasks of job K−1,
if any, and queue K contains the remaining tasks of all other jobs, if any, whose
sizes are smaller than that in queue K−1. Queue K is the only one where there
may be tasks from more than one job. Moreover, the number of tasks in queue
i is always larger or equal to those in queue j if i < j and 1 ≤ i, j ≤ K − 1,
while queue K can contain an arbitrary number of tasks. At any epoch, only the
tasks from the non-empty queue with the largest index are served with the speed
associated with that queue. Therefore, the operating frequency of the processor
depends on the number of jobs in the system and corresponds to speed µi when
there are i jobs in the system, for i = 1, . . . ,K − 1 and is µK if there are K or
more jobs, as required.

The state of the system at a given moment in time is a vector (n1,n2,. . .,nK),
specifying the contents of the K queues. That vector satisfies (n1 ≥ n2 ≥ · · · ≥
nK−1), but it is possible that nK > nK−1. The server always serves the non-
empty queue with the largest index, and if that index is i, it works at the rate
of µi tasks per unit time.

An incoming job of size s tasks which finds the system in state (n1,n2,. . .,nK)
may cause a reassignment of tasks to queues in order to preserve the shortest-
remaining order. If s ≤ nK−1, then no such reassignment is necessary and the
resulting state is (n1, . . . , nK−1, nK + s) . Otherwise, the incoming s tasks re-
place the content of queue i, where i is the lowest index such that s > ni.
Queue K receives the tasks from queue (K − 1), so that the new state is
(n1, . . . , ni−1, s, ni, . . . , nK + nK−1) . If s > n1, then the part of the vector
preceding s is empty.

Consider now the steady-state probability, pk(n), that the total number of
tasks in queues 1, 2, . . ., k is n, while queues k + 1, . . . ,K are empty (k =
1, 2, . . . ,K). For every k, pk(0) is the probability of an empty system, so we may
sometimes omit the index and just write p(0). The difference pk(n) − pk−1(n),
for k = 1, 2, . . . ,K and n > 0, with p0(n) = 0 by definition, is the probability
that there are n tasks present and the non-empty queue with the highest index
is queue k. In other words, that is the probability that there are n tasks present
and the service rate is µk. These probabilities are 0 when n < k.

Let wk(z) be the generating function of pk(n):

wk(z) =

∞∑
n=0

znpk(n) ; k = 1, . . . ,K .
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The last of these functions, wK(z), corresponds to the distribution of the total
number of tasks in the system. It satisfies the normalizing condition wK(1) = 1.

The marginal probabilities, uk, that the server works at rate µk (they appear
in the cost function (1)), are given by

u1 = w1(1) ; uk = wk(1)− wk−1(1) ; k = 2, . . . ,K .

Let a(z) be the generating function of the job size distribution:

a(z) =

∞∑
n=1

znqn .

We shall also need the excess probabilities, rn, that the size of a job is strictly
greater than n, for n = 0, 1, . . . (r0 = 1). The generating function of rn, b(z), is
given by

b(z) =

∞∑
n=0

znrn = 1 +

∞∑
n=1

zn[1−
n∑

j=1

qj ] .

The following relation exists between b(z) and a(z):

b(z) =
1− a(z)

1− z
. (2)

This is established by expanding b(z)−zb(z) and performing cancellations. Note
that the value of b(z) at z = 1 is the average job size: b(1) = a′(1) = Q.

We have the following result.

Lemma 1. The generating functions w1(z), w2(z), . . ., wK(z) satisfy the rela-
tion

wK(z)[µK − λzb(z))] = µ1p(0) +

K−1∑
k=1

(µk+1 − µk)wk(z) . (3)

Setting z = 1 in (3) yields the normalization condition:

wK(1) =
µ1p(0) +

∑K−1
i=1 (µi+1 − µi)wi(1)

µK − λQ
= 1 . (4)

The following proposition gives the necessary and sufficient conditions for
the stability of the system.

Proposition 1. The queueing system is stable if and only if

λQ < µK . (5)
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The proof uses the Pakes’ lemma [10] which gives sufficient conditions for sta-
bility of Markov chains.

The steady-state average number of tasks in the system, L, is given by w′K(1).
First, by differentiating (2) and applying De L’Hôpital’s rule at z = 1, we find
that b′(1) = −a′′(1)/2. Now, taking the derivative of (3) at z = 1 and rearranging
terms, we obtain

L =

∑K−1
i=1 (µi+1 − µi)w

′
i(1) + λ(Q+ 1

2a
′′(1))

µK − λQ
. (6)

Thus the quantities that are needed in order to evaluate the cost function (1)
are expressed in terms of the functions wi(z) for i = 1, 2, . . . ,K−1, i.e. in terms
of the probabilities of all states in which queue K is empty. In the following
sections we provide exact and approximate solutions for those probabilities, in
the cases K = 2 and K = 3. The methodology employed can be extended to
deal with higher values of K, at the price of increased complexity.

The following general result will be useful. Denote by π1(i) the marginal
probability that there are i tasks in queue 1 (and any numbers in the other
queues). Then

λrn

n∑
i=0

π1(i) = µ1π(n+ 1, 0, . . . , 0) , (7)

where π(n+ 1, 0, . . . , 0) is the probability that queue 1 contains n+ 1 tasks and
all other queues are empty. This equation is obtained by balancing the flows
across a cut that separates the set of states with no more than n tasks in queue
1, from all other states.

The probabilities π1(i) can also provide an expression for the expected resi-
dence time, T1, of a job in queue 1. Indeed, if the system is in state (i, ·), then
jobs arrive into queue 1 at rate λri. On the other hand, the average number of
jobs in queue 1 (not tasks!) is equal to the probability that queue 1 is not empty,
i.e., 1− p(0). Therefore, according to Little’s result:

T1 =
1− p(0)

λ
∑∞

i=0 riπ1(i)
. (8)

4 The model with K = 2 frequency levels

In this section we consider our model with two frequency levels, i.e., the server
works at speed µ1 when there is only one job in the system, and µ2 when there
are at least two jobs, with µ1 < µ2. In Section 4.1 we provide the exact solution
of the model, whereas in Section 4.2 we give an approximate, yet a more effi-
cient approach to the computation of the stationary performance indices. The
accuracy of the approximation will be assessed in Section 5 and will be shown
to be very high.
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4.1 Exact analysis

The detailed system state is now a pair (i, j), where i is the number of tasks in
queue 1 and j is the number of tasks in queue 2. A service completion causes a
transition from state (i, 0) to state (i − 1, 0) at rate µ1 (i > 0), and from state
(i, j) to state (i, j − 1) at rate µ2 (j > 0). An arrival of a job of size k causes
a transition from state (i, j) to state (i, j + k) if k ≤ i, and to state (k, j + i) if
k > i. The states (0, j), for j > 0, are unreachable and their probabilities are 0.

Denote the probability of state (i, j) by π(i, j). These probabilities satisfy
the following global balance equations:

λπ(0, 0) = µ1π(1, 0) . (9)

(λ+ µ1)π(i, 0) = λqiπ(0, 0) + µ1π(i+ 1, 0) + µ2π(i, 1) . (10)

(λ+ µ2)π(i, j) = λ

m∑
k=1

qkπ(i, j − k) + λqi

m1∑
k=1

π(k, j − k) + µ2π(i, j + 1) ,(11)

where m = min(i, j) and m1 = min(i− 1, j).
Since all solutions of these equations are proportional to each other, it is

enough to find one solution. The values π(i, j) can then be normalized by dividing
each of them by their sum.

Start by setting π(0, 0) = 1. Equation (9) then gives π(1, 0) = ρ1, where
ρ1 = λ/µ1. Note that this quantity does not represent offered load, since λ is
the arrival rate of jobs, while µ1 is a service rate of tasks.

Consider the probabilities π(1, j), for j = 0, 1, . . ., and define the generating
function

g1(z) =

∞∑
j=0

π(1, j)zj . (12)

When i = 1 and j = 0, equation (10) can be rewritten as

(λ+ µ2)π(1, 0) = λq1π(0, 0) + (µ2 − µ1)π(1, 0) + µ1π(2, 0) + µ2π(1, 1) .

For i = 1 and j ≥ 1, equations (11) are

(λ+ µ2)π(1, j) = λq1π(1, j − 1) + µ2π(1, j + 1) .

Multiplying the above by zj and summing, we get after a little manipulation
(and remembering that π(0, 0) = 1),

d1(z)g1(z) = λq1z − [µ1z + µ2(1− z)]π(1, 0) + µ1zπ(2, 0) , (13)

where

d1(z) = λz(1− q1z) + µ2(z − 1) .

This expression for g1(z) contains an unknown constant, π(2, 0). However, note
that the coefficient d1(z) is negative for z = 0 and positive for z = 1. Therefore,
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there is a value, z1, such that d1(z1) = 0. Since g1(z) is finite on the whole
interval z ∈ [0, 1], the right-hand side of (13) must vanish at z = z1. This gives

µ1z1π(2, 0) = [µ1z1 + µ2(1− z1)]π(1, 0)− λq1z1π(0, 0) .

The next step is to consider the probabilities π2,j , for j ≥ 0, and their
corresponding generating function

g2(z) =

∞∑
j=0

π(2, j)zj .

Repeating the manipulations that led to (13), we obtain

d2(z)g2(z) = λq2z − [µ1z + µ2(1− z)]π(2, 0) + µ1zπ(3, 0) + λq2z
2g1(z) , (14)

where

d2(z) = λz(1− q1z − q2z2) + µ2(z − 1) .

Again, the coefficient of g2(z) is negative at z = 0 and positive at z = 1.
Therefore, there is a value z2 in the interval (0,1), such that d2(z2) = 0. Equating
the right-hand side of (14) to 0 at z = z2, determines the single unknown constant
in that equation, π(3, 0):

µ1z2π(3, 0) = [µ1z2 + µ2(1− z2)]π(2, 0)− λq2z2π(0, 0)− λq2z22g1(z2) .

The i’th step in this process evaluates the generating function of the prob-
abilities π(i, j), gi(z), in terms of the already known functions g1(z), g2(z), . . .,
gi−1(z), and constants π(1, 0), π(2, 0), . . ., π(i, 0):

di(z)gi(z) = λqiz − [µ1z + µ2(1− z)]π(i, 0) + µ1zπ(i+ 1, 0) + λqiz

i−1∑
k=1

zkgk(z) ,

(15)
where

di(z) = λz(1−
i∑

k=1

qkz
k) + µ2(z − 1)

The coefficient of di(z) has a zero, zi, in the interval (0,1), which determines the
new unknown constant π(i+ 1, 0).

These iterations continue until gi(1) < ε, for some sufficiently small ε, or until
the largest possible value of i, if the job sizes are bounded. Eventual termination
is guaranteed if the queuing process is stable. At that point, all (unnormalized)
probabilities π(i, 0), and hence the function w1(z), have been determined.

The normalization constant, G, is given by (4):

G =
µ1π(0, 0) + (µ2 − µ1)w1(1)

µ2 − λQ
. (16)
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Dividing all π(i, j) values, and hence w1(1), by G, completes the computation
of the joint probability distribution of the states (i, j). Lemma 1 now provides
w2(z).

The total average number of tasks in the system, L, is given by (6), which
now has the form

L =
(µ2 − µ1)w′1(1) + λ[Q+ 1

2a
′′(1)]

µ2 − λQ
.

The probabilities that the processor speed is µ1, and µ2, are w1(1) and 1−w1(1),
respectively.

4.2 Approximate solution

In order to derive the approximation, consider the marginal probabilities, π(i, ·) =
gi(1), that there are i tasks in queue 1, with π(0, ·) = π(0, 0). These probabilities
appear in the left-hand side of (7).

The fraction of time that the system spends in state (i, ·), such that queue 2
is not empty, consists of the services of all tasks that join queue 2 when queue
1 reaches size i. This can happen when (a) the system is in state (k, ·), for
1 ≤ k < i, and a job of size i arrives (in which case k tasks are transferred to
queue 2), or (b) the system is in state (i, ·) and a job of size k arrives, for k ≤ i;
all of its tasks join queue 2. Hence we can write

π(i, ·)− π(i, 0) = λ

[
qi

i−1∑
k=1

kπ(k, ·) + π(i, ·)
i∑

k=1

kqk

]
1

µ2
; i = 1, 2, . . . . (17)

The first sum in the right-hand side is absent when i = 1.
Introducing the notation

si =

i∑
k=1

kπ(k, ·) ; ai =

i∑
k=1

kqk , (18)

we can rewrite (17) as

π(i, ·) =
π(i, 0) + qiρ2si−1

1− ρ2ai
; i = 1, 2, . . . , (19)

where ρ2 = λ/µ2 and s0 = 0 by definition.
Start with π(0, 0) = 1 and π(1, 0) = ρ1. Compute π(1, ·) from (19), then

π(2, 0) from (7), π(2, ·) from (19), π(3, 0) from (7) and so on, up to the desired
accuracy. Normalize, using (16).

This procedure is more economical and more stable than the exact solution.
It is worth of notice that both the exact and the approximate approach can

be extended to handle K = 3 levels of frequency. However, the complexity of the
analysis and its computational cost increase. The approximate approach, instead,
can easily be further generalized to models with more than three queues.

The accuracy of the approximation will be examined in Section 5
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5 Numerical and simulation results

In this section we describe several experiments aimed at evaluating the accuracy
of the approximate solutions that have been proposed, and also observing the
behaviour of the cost function (1). Systems with two and three frequency levels
are examined. A remarkable observation emerging from these experiments is
that, for the purposes of optimization, the models with K > 2 may be neglected.
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Fig. 1: K = 2: cost against µ1
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Fig. 2: K = 2: Large variance of job sizes

K = 2 frequency levels. We consider the model studied in Section 4. In
Figure 1, the cost function C is computed exactly and approximately, as de-
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Fig. 3: K = 2: Impact of the workload intensity on the optimal frequency
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Fig. 4: K = 3: cost against µ1

scribed in section 4, and is plotted against the queue 1 service rate, µ1. The
two cost coefficients are c1 = 1 and c2 = 2. The job arrival rate and the queue
2 service rate are fixed at λ = 1 and µ2 = 7. A geometric distribution of job
sizes is assumed, with mean 5, truncated at a maximum job size of 50. Thus the
offered load, λQ/µ2 represents about 71% utilization. The value of µ1 is varied
between 1 and 6, in increments of 1. The cost function is convex in µ1. We have
no formal proof of this, but it is invariably observed to be the case. Intuitively,
at low values of µ1 the holding costs dominate, while at large values the service
rate costs dominate. Moreover, if a point is reached such that an increase in µ1

leads to an increase in C, then clearly any further increase in µ1 would make
matters worse. The two plots are very close. The approximate solution underes-
timates C slightly, but the relative errors never exceed 1%. In particular, both
solutions agree that the optimal value of µ1 is 3 (subject to the granularity of
the increments). We next examine the effect of increasing the variance of the job
size distribution. Consider a rather extreme case where jobs have size 1, with
probability 3/4, or size 17, with probability 1/4. The average job size is the same
as in figure 1, Q = 5, but the variance has gone up from 20 to 337. All other pa-
rameters are the same, and again the cost function is plotted against the service
rate µ1. Figure 2 shows that the increase in variance has led to an increase in
costs of between 7% and 10%. The approximate solution is still within less than
1% of the exact one. The optimal value of µ1 has not changed. The effect of the
offered load on the shape of the cost function is illustrated in Figure 3. Three
loading regimes are considered, light, moderate and heavy. These are represented
by the arrival rates λ = 0.3, λ = 0.8 and λ = 1.3; they correspond to utilizations
of about 21%, 57% and 93%, respectively. The other parameters are the same
as in Figure 1. Costs are evaluated exactly and are plotted against the queue 1
service rate, µ1. The figure suggests the following observations, all of which are
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quite intuitive. As the offered load increases, (a) costs increase; (b) the relative
difference between the optimal and the pessimal costs decreases; (c) the optimal
value of µ1 increases.

K = 3 frequency levels. The next example evaluates the accuracy of the
approximation for a system with three frequency levels. This time µ2 and µ3

are fixed at 6 and 7 tasks per second respectively, while µ1 is varied between 1
and 6, at increments of 1. The job size distribution is geometric with mean 5,
and the other parameters are the same as before. Rather than implementing the
exact solution, Figure 4 compares the approximated costs with simulated ones.
Each simulated point represents a run where 500, 000 jobs arrive into the system
(i.e., an average of 2.5 million tasks are served). The approximation is again very
accurate, with relative errors not exceeding 1%. Moreover, the two plots agree
on the optimal point of µ1 = 3 (subject to the granularity of the increments).
However, the difference in costs between µ1 = 3 µ1 = 4 is very slight.

The benefits of optimization. The last experiment attempts to quantify
the benefits of optimization, in the context of a 3-queue system under different
loading conditions. Three policies are compared. The ‘default’ policy, or policy
0, does not optimize; it serves all three queues at rate µ3. Under policy 0, the
system is equivalent to a single queue with batch arrivals. Policy 1 serves queues
2 and 3 at rate µ3, but uses the optimal value for µ1 (found by a one-dimensional
search). This amounts to an optimized K = 2 system. Policy 2 serves queue 3 at
rate µ3, but uses the optimal values for µ1 and µ2 (found by a two-dimensional
search).

For consistency, all costs in this experiment were evaluated by applying the
3-queue approximation. We have relied on the established accuracy of that ap-
proximation. A feasible alternative would have been to evaluate policy 0 and
policy 1 exactly (using the exact solutions for the cases K = 1 and K = 2), and
resort to approximation only for policy 2.

In Figure 5, the costs incurred by the above three policies are plotted against
the job arrival rate λ. It varies between 0.2 and 1.2, while the top service rate
remains fixed at µ3 = 7. Job sizes are distributed geometrically with mean 5,
which means that the system loading varies between 14% and 86%. The cost
coefficients are c1 = 1 and c2 = 2. When searching for the best µ1 and µ2 values,
the latter were incremented in steps of 0.5.

The results displayed in Figure 5 are quite instructive. First, we observe that
there is less to be gained by optimizing a heavily loaded system, than a lightly
loaded one. Of course this was to be expected, since the holding costs become
dominant under heavy loads, and minimizing those costs requires large service
rates.

The second observation is not so predictable: it seems that the big gains
are obtained by optimizing just with respect to µ1 (policy 1). The additional
improvement achieved by optimizing with respect to µ2 as well (policy 2), is
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quite minor. It is even debatable whether the expense of searching for policy 2
is justified by the benefits that it brings.

This last observation has practical importance. It suggests that the 2-queue
model, rather than being just the simplest special case, is in fact a really signifi-
cant model from the point of view of control and optimization. One may restrict
the search for an optimal policy to the case K = 2, and be reasonably confident
that the resulting policy would not be bettered by much.

To check whether the above conclusion remains valid under different cost
structures, we have repeated the last experiment with several pairs of coefficients
c1 and c2. Figure 6 shows one such example, where c1 = 2 and c2 = 1 (i.e.,
holding tasks in the system incurs higher penalties than speeding up the server).
The other parameters remain unchanged, and the costs of policies 0, 1 and 2
are plotted against the arrival rate, λ. The conclusion that the most important
model is K = 2, is confirmed.
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Fig. 5: The benefits of optimization for c1 = 1 and c2 = 2

6 Conclusion

In this paper we studied systems employing the Shortest Remaining Processing
Time scheduling discipline with frequency scaling. We have devised a model in
which jobs consist of tasks whose service time are exponentially distributed. The
distribution of the number of tasks in a job is arbitrary and this allows for a
great flexibility in modelling the jobs’ service time distribution and the accuracy
of its estimation done by the system. The operating frequency is decided on
the basis of the number of jobs in the system. The model characteristics allow
us to study some important performance indices such as the expected number
of tasks in the system, the probability of observing the system operating at a
certain frequency level, the expected time that a job remains the largest job in
the system and its expected size. We have introduced a cost function that takes
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Fig. 6: The benefits of optimization for c1 = 2 and c2 = 1

into account the system’s power consumption and the expected number of tasks
in the system (and hence the expected response time). We focused the attention
on the systems with 2 and 3 frequency levels and showed that the gain in the
cost function of the latter with respect to the former is very small, whereas it
is high between the system with 2 frequency levels and the one that does not
apply any frequency scaling. This suggests that a simple system with 2 frequency
levels, opportunely parametrised, can approximately give the benefits in terms
of energy saving and quality of service of more complex systems.
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