
Localizing Firewall Security Policies

Abstract—In complex networks, filters may be applied at
different nodes to control how packets flow. In this paper, we
study how to locate filtering functionality within a network.
We show how to enforce a set of security goals while allowing
maximal service subject to the security constraints. To implement
our results we present a tool that given a network specification
and a set of control rules automatically localizes the filters and
generates configurations for all the firewalls in the network. These
configurations are implemented using an extension of Mignis
— an open source tool to generate firewalls from declarative,
semantically explicit configurations.

Our contributions include a way to specify security goals for
how packets traverse the network; an algorithm to distribute
filtering functionality to different nodes in the network to enforce
a given set of security goals; and a proof that the results are
compatible with a Mignis-based semantics for network behavior.

I. INTRODUCTION

Organizations have big and complicated networks. A univer-
sity may have a network partitioned into dozens of subnets,
separated either physically or as VLANs. Although many of
those subnets are very similar, for instance in requiring similar
protection, others are quite distinct, for instance those that
contain the university’s human resources servers. These require
far tighter protection. As another example, consider a corpo-
ration: Some subnets contain public-facing machines such as
web servers or email servers; others support an engineering
department or a sales department; and yet others contain the
process-control systems that keep a factory operating. Thus,
they should be governed by entirely different policies for what
network flows can reach them, and from where.

Indeed, a network is a graph, in which the packets flow
over the edges, and the nodes may represent routers, end
systems, and so forth. The security goals we would like to
enforce reflect this graph structure. They are essentially about
trajectories, i.e. about where packets travel to get where they
are going. For instance, a packet that reaches the process
control system in the factory should not have originated in the
public internet. After all, some adversary may use it to insert
a destructive command, regardless of how benign its source
address header field looks when it arrives. Similarly, a packet
that originates in the human resources department should not
traverse the public internet en route to the sales department.
It could be inspected while there, compromising information
about salaries within the company. A security goal may also
restrict which packets may take a particular trajectory, for
instance only packet addresses to port 80 or 443 on a web
server.

In this paper, we introduce an expressive way to state
security goals for packet flows. A security goal involves
three network areas B,R,E and a property � over packets

(generally of their header fields). Its semantics concerns the
packet flows that begin at B; end at E; and traverse R. All
packets that successfully complete such a flow must satisfy
the predicate � when it is present at location R. The state of a
packet may change as it traverses the network, so the require-
ment applies to its state when reaching R; network address
translation (NAT) is the main packet-changing operation that
we consider in this paper. However, the IP security protocols
raise similar issues.

We provide an algorithm to determine what filtering to do
at the different routers in the network to enforce a given set
of security goals, while allowing as rich a set of packet flows
as are compatible with the policy. We also provide a rigorous
semantics of network behavior that allows us to prove that
our algorithm is sound. Finally, to implement our results we
present a tool that, given a network specification and a set of
control rules, uses this algorithm to automatically localize the
filters and to generate configurations for all the firewalls in the
network. These configurations are presented using Mignis+,
an extension of Mignis — an open-source tool to generate
firewalls from declarative, semantically explicit configurations.

Related work: Our approach is motivated by some pre-
vious work. We are interested in the defining behavioral
security specifications in a network. In [6] the authors have
studied trajectory-based security goals, developing techniques
to determine whether existing configurations enforce them
correctly. The network graphs and their possible executions
are formalized in the frame model of [7].

Zhang et al. [11] focus more on the possibly conflicts among
policies at different organizational levels, and less on their
consequences given the topology of the network. Our method
is more general and is also designed to apply in the case of
network operation that transform packets as they pass; we have
particularly focused on NAT.

Kurshid et al. [8] demonstrate that it is possible, in a
software defined networking context, to check dynamically if
global, behavioral properties are maintained as invariants, for
instance reachability for certain sorts of packets. We instead
make no claims of real-time, on-line feasibility, but we offer a
more systematic way to solve well-defined security problems
at design time.

From a network programming language point of view some
interesting work on security properties has been proposed. The
first example is the Frenetic project [5], that can deal with
dynamic policies, but does not address network reachability
or cyclicity problems, and it is not clear how new added
constructs can interact with old ones. Another very strong
work, is NetKAT [3], a language is equipped with a sound

Preprint.
The final version is available at https://ieeexplore.ieee.org/document/7536376

and complete equational theory. However, this language is very
general and it is not specifically targeted at firewalls.

Finally, much work has been devoted to firewall analysis,
e.g. Margrave [9], which again lacks the distributed behavior
of the network. Some automatic tools for testing of the firewall
configuration enforcement have been proposed (see, e.g., [2],
[10]). These tools are very powerful in static networks, but
they do neither prevent consistency problems when new rules
are added in the wrong order, nor avoid completeness problems
for some undefined packet rules.

Structure of the paper: In Section II we present a model
of our network as frames and executions, together with the
different types of nodes (i.e., routers, network regions, and
end hosts), and trajectories. In Section III we define the
security goals and the functionality goals. In Section IV we
describe how to assign filtering functionality to routers so as
to enforce a set of region control statements. We first consider
the case without NAT, and we then extend it to the case of
NAT. In Section V we first present Mignis+, an extension
of Mignis, and we then present a tool that given a network
specification and a set of region control rules automatically
localizes the filters and generates Mignis+ configurations for
all the firewalls in the network. We also describe a case study
with a given network and the set of automatically generated
configurations. Finally, we conclude in Section VI.

II. NETWORK MODEL

We model networks as frames and executions [7]. A location

` 2 LO represents a network node and is equipped with a
set of traces traces(`) defining its possible local behaviors.
We will use the words location and node interchangeably. A
channel c 2 CH allows the synchronous transmission of a
message between its endpoints hentry, ci and hexit, ci, and the
set of all endpoints is EP = {entry, exit} ⇥ CH. In order
to simplify notation, we generally write entry(c) and exit(c)
instead of hentry, ci and hexit, ci. Each message also carries
some data v 2 D.

A frame F supplies for each location ` 2 LO, the set of
endpoints ends(`) and the set of traces traces(`). A trace t 2
traces(`) is a sequence of labels for `, i.e., a sequence of pairs
(c, v) 2 chan(`) ⇥ D where chan(`) = {c 2 CH : entry(c) 2
ends(`) or exit(c) 2 ends(`)}. Intuitively, a label for ` is a pair
(c, v) where v is a piece of D and c is a channel connected
to location `. We let T denote the set of traces. We now give
the formal definition of frame:

Definition 1 (Frame [7]). Given domains LO, CH,D, we say
that F = (ends, traces) is a frame iff, for each ` 2 LO:

1) ends(`) ✓ EP is a set of endpoints such that
a) he, ci 2 ends(`) and he, ci 2 ends(`0) implies ` = `0;

and
b) there is an ` such that entry(c) 2 ends(`) iff

there is an `0 such that exit(c) 2 ends(`0);
2) traces(`) is a prefix-closed set such that t 2 traces(`) is

a finite or infinite sequence of labels for `. ///

Intuitively the definition above requires that each channel
has a single entry and exit point, and both are in the frame. In
adition, this definition does not require that the local behaviors
traces(`) should be determined in any particular way. For
readability we write:
sender(c) = ` when entry(c) 2 ends(`) and
rcpt(c) = ` when exit(c) 2 ends(`).
Thus sender(c) is the location that can send messages on c
and rcpt(c) the location that can receive them.

Each F determines directed and undirected graphs.

Definition 2 (Frame graphs [7]). If F is a frame, then the
graph of F , written gr(F), is the directed graph (V,E) whose
vertices V are the locations LO, and such that there is an
edge (`1, `2) 2 E iff, for some c 2 CH, sender(c) = `1 and
rcpt(c) = `2.

The undirected graph ungr(F) has those vertices, and an
undirected edge (`1, `2) whenever either (`1, `2) or (`2, `1) is
in the edges of gr(F). ///

The execution model for frames relies on partially ordered
sets of events. The ordering represents the occurs before

relation, and events at a certain location ` are required to be
totally ordered and included in traces(`). Formally:

Definition 3 (Events and Executions [7]). Let F be a frame,
and let E be a structure hE, chan,msgi. The elements of E
are called events, and let E be equipped with the following
functions:
chan : E ! CH that returns the channel of each event; and
msg : E ! D that returns the message passed in each

event.
We say that B = (B,�) is a system of events, written B 2
ES(E), iff

i) B ✓ E;
ii) � is a partial ordering on B; and

iii) for every e1 2 B, {e0 2 B : e0 � e1} is finite.
Now let B = (B,�) be a system of events and define

proj(B, `) as

{e 2 B : sender(chan(e)) = ` or rcpt(chan(e)) = `}.

B is an execution, written B 2 Exc(F), iff for every ` 2 LO,
1) proj(B, `) is linearly ordered by �, and
2) proj(B, `) 2 traces(`). ///

A linearly ordered set in which any element has at most
finitely many predecessors is a sequence. Thus, Clause 1
and the finiteness condition (iii) ensure that proj(B, `) is a
sequence. Clause 2 adds the requirement that this sequence is
a trace of `, for each choice of `.

We often write (c, p) for any event e such that chan(e) = c
and msg(e) = p. Since different events may occur at different
times, but involve the same data value p on the same channel
c, this is strictly speaking an abuse of notation.

In this paper, the data values D are packets. We will refer
to the source and destination addresses in a packet p as sa(p)

and da(p). Packets have other familiar properties such as a
protocol and—if the protocol is tcp or udp—a source port
and a destination port.

A. Node behaviour

Nodes in a network can be of three types: (i) routers, (ii)

network regions, and (iii) end hosts. Routers are connected
to network regions (one or more), whereas end hosts are
connected to a single network region, or possibly more than
one network region when the device has multiple interfaces.

End hosts can be of two kinds: promiscuous or chaste. A
promiscuous host will accept any packet sent to it, and may
transmit any packet. A chaste host h has a set of IP addresses
IP(h), and only accepts packets with destination address i 2
IP(h), and only transmits packets with source address i 2
IP(h).

Given a network, one can easily construct a frame: the
locations of the frame are the network nodes; for each (undi-
rected) edge of the network, there is a pair of arcs, one in each
direction.

We provide traces(`) for each network region, end host, and
router.
Network region: A network region can only forward previ-

ously received packets. Formally: (c1, p1), . . . , (ck, pk) 2
traces(`) iff, 8i 2 [1, k], if sender(ci) = `, then there
exists j < i : rcpt(cj) = `, pi = pj . Notice that a network
region does not guarantee to deliver every packet, nor to
deliver it at most once.

End host: We have no constraint on traces for promiscuous
hosts. For chaste ones, we require that source or desti-
nation address matches host’s address for any packet it
sends or receives: (c1, p1), . . . , (ck, pk) 2 traces(h) iff
8i 2 [1, k] : sender(ci) = h implies sa(pi) = h and
rcpt(ci) = h implies da(pi) = h.

Router: When r is a router, then its behavior is determined by
a firewall FW : T ⇥CH⇥CH⇥P ! P(P). Intuitively,
FW takes a trace t 2 T , representing the history, an
input and an output channel c and c0 and a packet p and
returns a (possibly empty) set of translations of p. Given
history t, these translations p0 represent all the possible
ways in which p is accepted by the firewall when p is
received from c and p0 is delivered to c0. Given a firewall
FW and a routing function ⇢, the behaviour of the router
is determined as follows:

p0 2 FW(t, c, c0, p) ⇢(p0) = c0

ht,�i;ht.(c, p),� [(c0, p0)i
[filterin]

ht,�] {(c, p)}i;ht.(c, p),�i [routeout]

Router configuration is a pair ht,�i where trace t repre-
sents the history and � is a buffer containing pairs (c, p)
representing a packet p to be delivered over channel c.
Intuitively, rule filterin accepts packet p from channel c,
adding it to t, only if there exits p0 2 FW(t, c, c0, p)
that will be delivered over channel c0. If this is the case,

(c0, p0) is buffered in �. Rule routeout takes a pair (c, p)
from the buffer and delivers packet p over channel c.
We let t 2 traces(r) iff h;, ;i; . . .;ht,�i.

B. Trajectories

A trajectory is a path that a packet may take as it traverses
the network. Since the packet itself may change as it passes
through a router with Network Address Translation, we need
to define which events may belong together, i.e. when the
packet in a second event is the result of a NAT operation on
the packet in the first event.

Definition 4. Two events e, e0 are associated if
rcpt(chan(e)) = sender(chan(e0)) = ` and either

1) ` is a network region and msg(e) = msg(e0); or
2) ` is a router that allows a trace (c0, p0), . . . , (ck, pk) and

9i, j : i < j such that (ci, pi) = e ^ (cj , pj) = e0,
pj 2 FW(ti�1, ci, cj , pi) and ⇢(pj) = cj where ti�1 =
(c0, p0), . . . , (ci�1, pi�1). ///

The next result shows that packet association corresponds
to the causal relation between inputs and outputs.

Proposition 5. Let ` 2 LO. Then
1) If e = (c, p), e0 = (c0, p0) are associated at ` then there

exists a trace (c1, p1), . . . , (ck, pk) 2 traces(`) such that
(ci, pi) = (c, p) ^ (cj , pj) = (c0, p0) ^ i < j;

2) 8(c1, p1), . . . , (ck, pk) 2 traces(`), if sender(cj) = ` then
9i < j : rcpt(ci) = ` and (ci, pi), (cj , pj) are associated
at `.

Proof. For item 1) Assume ` is a network region. Then
msg(e) = p = p0 = msg(e0). By the behaviour of network
regions (cf. section II-A) we get that (c, p), (c0, p0) 2 traces(`)
which gives the thesis. If ` is a router, thesis is a direct
consequence of definition 4, item 2.

Item 2) can be trivially derived by the definition of traces
for network region and routers given in section II-A.

A trajectory is a path that a packet may take from the point
it originates through network regions and routers, possibly
reaching an end host at which it is received. A trajectory is
successful if it originates with an end host whose IP addresses
include its (claimed) source address, and terminates with an
end host whose IP addresses include its destination address.
Thus, at the beginning it is not spoofed, and at the end it is
not promiscuously received.

Definition 6. Let B 2 Exc(F) be an execution and let ~e =
he0, . . . eki be a sequence of events in B. We say that ~e is a
trajectory in B iff

i) 0  i < j  k implies ei � ej ;
ii) either sender(chan(e0)) is promiscuous,

or sa(msg(e0)) 2 IP(sender(chan(e0)));
iii) either rcpt(chan(ek)) is promiscuous,

or da(msg(ek)) 2 IP(rcpt(chan(ek)));
iv) if i < k, then rcpt(chan(ei)) is a network region or

router, not an end host;

v) for all i such that 0  i < k, ei, ei+1 are associated.
The trajectory ~e is successful iff

sa(msg(e0)) 2 IP(sender(chan(e0)))

da(msg(ek)) 2 IP(rcpt(chan(ek))) ///

The purpose of course of a network is to allow trajectories
to succeed whenever that is compatible with the security goals
of the network administrator.

When a packet p will be unchanged throughout a trajectory,
for instance because the frame involves no network address
translation, we often regard a trajectory as a pair consisting of
the packet p together with a path ⇡, where a path is a sequence
of adjacent locations.

III. GOALS FOR SECURITY AND FUNCTIONALITY

A. Security Goals

We focus on three-region policy statements as security
goals. We refer to them as region control statements. These
take the following form, in which the region variables B,E,R
each refer to end hosts and network regions, and B , E , and
� refer to sets of packets, determined by the header fields of
the packet at that step in the trajectory:
Region control B@B ! �@R ! E@E: For every tra-

jectory ⌧ ,
if ⌧ starts at location B with a packet that satisfies B ,
and ⌧ ends at location E with a packet that satisfies E ,
then if location R is traversed in ⌧ , the packet satisfies
� while at R.

In these region control statements, the sets B , E restrict the
applicability of the security goal: They constrain a trajectory
only if they are satisfied at the beginning and end respectively.
By contrast, � is imposing a requirement, since the network
must ensure it is satisfied when the trajectory reaches R.

We can express many useful properties by suitable choices
of �. For instance, we may want to ensure that a packet passing
from B to E undergoes network address translation properly,
so that its source address at the time it traverses R is a routable

address rather than a private address. We may want to assure
that packets from public regions B to a protected corporate
region E have been properly filtered by the time they reach the
corporate entry network R; thus, they should be tcp packets
whose destinations are the publicly accessible web and email
servers, and whose destination ports are the corresponding
well-known ports. These provide examples of region control
statements.

We will always assume that B 6= E, but there are many
useful cases in which the intermediate region R equals one of
the endpoints, i.e. B = R or R = E. We refer to these as
two-region statements, since they just restrict the packets that
can travel from B to E. When R = E, the statement says
that whenever a packet travels from B to R, it must satisfy
�. Generally speaking, when the purpose of the statement is
to protect R from potentially harmful packets from B, this
form of the statement is useful; the property � specifies which
packets are safe. The two-region formulas may also be used

with R = B to protect B against disclosure of certain packets
to E. In this case, the property � specifies which packets are
non-sensitive.

Consider another type of security goal involving three
regions:
Traversal control B@B ⇣ R ⇣ E@E: For every trajec-

tory ⌧ ,
if ⌧ starts at location B with a packet that satisfies B ,
and ⌧ ends at location E with a packet that satisfies E ,
then location R is traversed in ⌧ .

As an example of a traversal control statement, consider a
corporate network that has packet inspection in a particular
region R. Then we may want to ensure that packets from
public sources B to internal destinations E traverse R. The
reverse is also important in most cases, i.e. that packets from
internal sources to public destinations should traverse R.

Given a particular network, i.e. the graph underlying a
frame, one strategy to enforce a traversal control statement is
using region control statements. We may select a suitable cut
set C of nodes between B and E where R 2 C. We can then
implement the traversal control statement by stipulating the
region control statements that for trajectories from B to E, if
the packets traverse any member of C \{R}, then they satisfy
the always-false header property false. That is, we have the
family of statements, one for each R0 6= R in C:

 B@B ! false@R0 ! E@E.

Given this, we will focus our attention on region control
statements B@B ! �@R ! E@E.

A trajectory violates a region control statement if it has the
correct beginning and end points, but violates the property �
while at R.

Definition 7. A trajectory ~e = he0, . . . eki is a counterexample
to the region control statement B@B ! �@R ! E@E iff

1) sender(chan(e0)) = B and B(msg(e0));
2) rcpt(chan(ek)) = E and E(msg(ek)); and
3) for some i such that 0  i  k, ¬�(msg(ei)) and either

sender(chan(ei)) = R or rcpt(chan(ei)) = R.
When ~e is not a counterexample we say that ~e satisfies the
region control statement B@B ! �@R ! E@E. A frame
F enforces B@B ! �@R ! E@E iff, whenever B 2
Exc(F) is an execution of F and ~e is a trajectory in B, then
~e satisfies B@B ! �@R ! E@E. ///

B. Functionality Goals

Unlike security goals, which are mandatory, functionality
may be a matter of degree. We choose to measure functionality
by the set of packets that have a successful trajectory (Def. 6).
A successful trajectory is one in which a packet travels from
a non-spoofing producer to a consumer actually located at
the destination address of the packet. We focus on successful
trajectories because we regard spoofing originators as intrin-
sically hostile, which is also the case for promiscuous hosts
that consume packets not addressed to them. We do not care

whether exactly the same paths are available for successful
trajectories, but only that a successful trajectory shoddily exist
for as many packets as possible. Thus, we define:

Definition 8. Let F1 and F2 be two frames with the same
underlying graph.

F2 is at least as successful functionally as F1 iff, for all
locations ` and packets p, if p has a successful trajectory
starting at ` in F1, then it also has a successful trajectory
starting at ` in F2. ///

Given an underlying network topology, formalized as a
graph, and a set of security goals, the acceptable frames are
those that allow no counterexamples to the security goals.
Among those, one would like to construct a frame that is
maximal in the ordering of successful functionality.

C. Forms of Goals

In the remainder of this paper, we will make an assumption
about the sets of security goals we will consider. It is mere
bookkeeping, since any set of goals can be rewritten as a
somewhat larger set of goals satisfying this assumption.

Assumption 9. In any set of security goals to be enforced,
for any of those goals B@B ! �@R ! E@E, one of the
following three cases holds:

1) for all packets p 2 B , sa(p) 2 IP(B), and
for all packets p 2 E , da(p) 2 IP(E);

2) for all packets p 2 B , sa(p) 62 IP(B); or
3) for all packets p 2 E , da(p) 62 IP(E).

We refer to these goals as (1) success goals, (2) spoofing goals,
and (3) promiscuous delivery goals respectively. We will call
goals of the second and third kind jointly promiscuity goals.

Success goals concern only successful trajectories in which
the packet is not spoofed when created nor delivered promiscu-
ously when consumed. Spoofing goals consider only trajecto-
ries with spoofing at creation; promiscuous delivery goals, tra-
jectories with promiscuous delivery. The spoofing and promis-
cuous delivery goals overlap. Any B@B ! �@R ! E@E
splits into at most three goals, each of which applies in only
one of these cases:
(B ^ sa(p) 2 IP(B))@B! �@R !(E ^ da(p) 2 IP(E))@E
(B ^ sa(p) 62 IP(B))@B! �@R ! E@E

 B@B! �@R !(E ^ da(p) 62 IP(E))@E

This decomposition is useful, because when we treat goals
of the first kind, we must be careful to enforce them tightly.
When preventing all counterexamples, we want to ensure that
any non-counterexample that satisfies the assumptions remains
possible. These are successful trajectories, and a network that
filters them unnecessarily is less successful functionally than
it could be.

On the other hand, promiscuity goals, i.e. goals of the
second and third kind, may be enforced cavalierly. A trajectory
that satisfies the assumptions but is not a counterexample may
be filtered out, since it would not be a successful trajectory.
Thus, no functionality is sacrificed if it is discarded.

For this reason, in this paper we will focus on identifying
how to enforce the success goals precisely.

IV. LOCALIZING SECURITY POLICIES

In this section, we describe how to assign filtering func-
tionality to routers so as to enforce a set of region control
statements. For this, we will develop our method based on
a well-known matrix-based algorithm. To explain it, we will
start from the traditional version, which is applicable in the
special case where the network has no nodes that perform
NAT. If there are NAT nodes, we need represent the effect of
the various NAT nodes traversed along a path as a relation
that composes their individual effects. In case there are NATs,
we will identify some assumptions on their network position
and behavior.

A. Without Network Address Translation

When the network has no nodes configured to do network
address translation, then every trajectory has the same packet
throughout. Thus, only the position of the packet changes
as it progresses; its headers remain the same. This leads to
two simplifications. First, it is easy to compare a property of
headers at one location with the effects it has at other locations;
for instance, when packets not satisfying � are discarded at
some point of a path, the consequence is that packets reaching
some subsequent point along that path satisfy �. Second, non-
simple paths, which may revisit the same node more than once,
never create any new behavior. Since the only effect of a router
may be to discard packets, the set of packets that can traverse
a path is a subset of the packets that can traverse any of its
subpaths. Hence if any traversal provides a counterexample to
a security goal, then we may assume that it is the result of
appending two simple paths, one from the beginning region
B to the intermediate region R, and another from region R
to the end region E. In subsequent sections we will lift these
simplifications, but the backbone of our analysis will be clearer
in an exposition that can rely on them.

1) Specifying which packets to keep: We focus on the
success goals. Fix a particular pair of endpoints B,E. Thus,
we have a collection of statements of the form B@B !
�0@R ! E@E; because these are success goals, B , E

ensure that packets contain suitable addresses:

 B(p)) sa(p) 2 IP(B) and E(p)) da(p) 2 IP(E).

Different goals in this collection may have different choices of
 B and E . Since trajectories do not alter packet properties
in the no-NAT case, we can equivalently rewrite them to use
uniform guards by replacing them this with the equivalent
form:

[sa(p)2IP(B)]@B! [B ^ E) �0]@R ! [da(p)2IP(E)]@E

Thus, we have essentially moved the variability in B , E

from the endpoints to R, creating a new formula �1 at R. Thus,
we will now assume that all B,E goals have the same guard
formulas at B and E, namely sa(p) 2 IP(B) and da(p) 2
IP(E). We will however keep writing � for the generic form

of a formula required at the intermediate location R, even if
it has been rewritten as shown above.

Fix a choice of B,E. We will write PB,E for the set of
packets with sa(p) 2 IP(B) and da(p) 2 IP(E).

Definition 10. Suppose given a non-empty collection G
of success goals rewritten if necessary to produce uniform
 B , E . We define PrmtB,E(`) to be:

PrmtB,E(`) = PB,E \
\

�`

�`,

taking the intersection over all of the �` such that a formula
 B@B ! �`@` ! E@E appears in G. We may write
Prmt(`) whenever B,E are clear from the context. ///

Thus, PrmtB,E(`) always includes the packets which are
permitted to appear in `, as part of a successful trajectory
from B to E. A packet is worth keeping at a location if it can
use that location to get from B to E while traversing only
locations at which it is permitted:

Definition 11 (Keep). Packet p 2 PB,E is worth keeping along

path ⇡ from B to E iff, for every ` along ⇡, p 2 PrmtB,E(`).
Packet p 2 PB,E is worth keeping from B to E at ` iff there

exists some ⇡ such that ⇡ leads from B to E and traverses `,
and p is worth keeping along path ⇡.

We write KEEPB,E(`) for the set of p 2 PB,E worth
keeping from B to E at `. We write KEEP(`) whenever B
and E are clear form the context. ///

If a packet is permitted at all locations along some path from
B to E that passes through `, then it is certainly permitted at
location `:

Lemma 12. If p 2 KEEPB,E(`), then p 2 PrmtB,E(`).

Notice that a packet going from B to E is permitted at
a given location ` only if it does not contradict any of the
possible region control rules. So, for a packet to be worth
keeping from B to E, it is enough if there is a single path ⇡
in which p is allowed to traverse all locations of ⇡.

By the second of the simplifications mentioned at the be-
ginning of Section IV-A, this definition is unchanged whether
we consider all ⇡ or only the paths ⇡ in which the part before
` is simple, and the part after is too.

The direct way of computing KEEP(`) would thus be to
examine every simple path ⇡1 from B to `, and every path ⇡2
from ` to E, taking an intersection of the p 2 PB,E permitted
at every step of ⇡_

1 ⇡2, and combining the results via a union
over all choices of ⇡1 and ⇡2. We present a simpler way using
matrix multiplication in Section IV-A3.

2) Combining the keep sets for different endpoints: When
we define KEEPB,E , we work only with packets p 2 PB,E .
We will now assume:

Assumption 13. For all locations `, `0, if ` 6= `0, then IP(`)\
IP(`0) = ;.

Hence these packets are disjoint from the packets of interest
when computing any other KEEPB0,E0 . Thus, we may simply

repeat the computation for each distinct pair B,E, accumu-
lating the union of the KEEP sets for each `.

The resulting union consists of all packets that may traverse
` along a successful trajectory from the stated source to the
stated destination without encountering a location at which it
is not permitted. Thus, we may define, for a given set of goal
statements G:

KEEP⇤(`) =
[

B,E

KEEPB,E(`) (1)

We would like now to filter packets as they are passing from
one location to another location at which they should not be
kept, i.e., we should discard the complement of KEEP⇤(`0)
along any edge a : `! `0. We summarize this idea in filters for
the arcs a : ` ! `0. Since below we use the complement, the
set of packets that should be accepted along a, we formalize
that as the accept filter af.

Definition 14. The acceptance filter af is the function from
arcs to sets of packets defined af(a) = KEEP⇤(`0), when a :
`! `0 is an arc from ` to `0. We also write af(`, `0) for af(a).

We define the redundant filter of an arc a : ` ! `0 from `
to `0 as rf`,`0 = KEEP⇤(`) \ KEEP⇤(`0). ///

Intuitively, the difference between af and rf is that the
former assumes that all firewalls cooperate while the latter re-
enforce filtering at each firewalls in a redundant way, which
would make it more robust in case some of the firewalls are
compromised.

As mentioned before, we always require that B 6= E in any
goal statement.

Theorem 15. Let G be a non-empty collection of success
goals, for a NAT-free frame. Let ~e = he0, . . . eki be a
success trajectory such that sender(chan(e0)) = B and
rcpt(chan(ek)) = E.

• Suppose that, if for all 0  i  k and locations `, `0,
if sender(chan(ei)) = ` and rcpt(chan(ei)) = `0, then
msg(ei) 2 af(`, `0). Then ~e satisfies all of the success
goals B@B ! �@R ! E@E in G.

• Suppose that, if for all 0  i  k and locations `, `0,
if sender(chan(ei)) = ` and rcpt(chan(ei)) = `0, then
msg(ei) 2 rf(`, `0). Then ~e satisfies all of the success
goals B@B ! �@R ! E@E in G.

Proof. First, since we are assuming that there are no NATs,
we have a p such that, for all i, msg(ei) = p. Since ~e is a
success trajectory, sa(p) 2 IP(B) and da(p) 2 IP(E).

1. First suppose that R 6= B. If ~e never traverses R, then the
success goal is vacuously satisfied. So let ei be the earliest
event such that rcpt(chan(ei)) = R. By the definition of af,
p 2 KEEP(R). By Lemma 12, p 2 Prmt(R). So p satisfies �.

If R = B, then we use the fact that B 6= E. Thus,
p traverses at least one edge to rcpt(chan(e0)). Hence,
p = msg(e0) 2 af(B, rcpt(chan(e0))). By the definition,
p 2 KEEP(rcpt(chan(e0))). Hence, there is at least one path
⇡ that traverses rcpt(chan(e0)) such that p 2 Prmt(`) for

every ` along ⇡. But B appears at the beginning of every path
(including ⇡) from B to E. Thus, p 2 Prmt(B), so p satisfies
�.

2. The preceding argument applies a fortiori, since rf(a) ✓
af(a) for every a.

Moreover, af is maximally successful among all such. That
is, any assignment of filters that permits additional successful
trajectories allows counterexamples to some goal. Indeed,
we prevent a successful trajectory only if that trajectory is
incompatible with the security goals.

Lemma 16. Suppose that f is a function from arcs to sets of
packets, and for all a : `! `0, either
Case (a) af(a) ✓ f(a), or else
Case (b) rf(a) ✓ f(a).
Suppose that ⌧ is a successful trajectory compatible with
f but not with the selected filters af or rf. Then ⌧ is a
counterexample to some success goal.

Proof. Assuming case (a): Since ⌧ is incompatible with af,
it traverses some edge a : `! `0 such that, letting the packet
of ⌧ be p, p 2 KEEP⇤(`) but p 62 KEEP⇤(`0). Therefore there
is no path ⇡ from the start of ⌧ to its endpoint that traverses
`0 such that p 2 Prmt(`1) for all `1 along ⇡.

Assuming case (b): Since ⌧ is incompatible with rf, it
traverses some edge a : `! `0 such that, letting the packet of
⌧ be p, p 62 KEEP⇤(`) or p 62 KEEP⇤(`0). Therefore, letting
`00 be either ` or `0, there is no path ⇡ from the start of ⌧ to
its endpoint that traverses `00 such that p 2 Prmt(`1) for all
`1 along ⇡.

Hence, in either case (a) or case (b), the sequence of locations
traversed in ⌧ is not such a path. Thus, ⌧ is a counterexample
to some goal between these endpoints.

3) Computing the sets to keep: Observe that sets of packets
form a boolean algebra, and therefore surely a ring where
\ is the multiplication and [is the addition. In particular,
\ distributes over [. Thus, we can form matrices of sets,
and matrix multiplication accumulates the [of the \s of
corresponding elements. I.e. if we define the inner product
~a ·~b to be: [

i

(a[i] \ b[i]),

then the matrix multiplication AB yields C, where Cij =
~ai ·~bj using the ith row vector of A and the jth column vector
of B. Let:
A be the adjacency matrix for the graph, where if there is an

edge from node i to node j, then the entry Aij is the top
element, i.e. the set of all packets. Aij = ; if i, j are not
adjacent.

K be the diagonal matrix with entries Ki,i = Prmt(i).
We want to compute the matrices Rchm such that each entry
Rchmi,j is the set of p 2 PB,E that can reach node j from

node i along a path of length  m while traversing only
locations n such that p 2 Prmt(n).

We claim:
Rch0 = K, since paths of length 0 lead only from i to i, and

Ki,i is the set of packets permitted there.
Rch1 = K + (KAK). A path of length  1 is either empty

or else it takes one step from i to an adjacent location
j; moreover, the packet should satisfy Prmt(i) before the
step and Prmt(j) after it.

Rch(2m) = (Rchm Rchm), since the paths of length  2m are
just the paths that divide into two paths of length  m,
respectively ending and beginning at the same node k.

Since every (simple) path visits each node at most once, it
is no longer than |N |, the cardinality of the set of nodes. As
remarked above, non-simple paths allow no additional packets,
since they subject the packets to additional constraints. Thus,
the sequence stabilizes by Rchb where b = 21+log2 |N |, and
we define:
Rch = Rchb is the fixed point of Rchm.
Observe that this computation requires O(log2 |N |) matrix
multiplications to reach its fixed point, and is thus tractable
for large |N |, assuming that the underlying ring operations on
sets are tractable.

Lemma 17. For a configuration without NAT or other packet
transformations, KEEP(i) = RchB,i \ Rchi,E .

Proof. Set RchB,i \ Rchi,E contains all packets p 2 PB,E

that can reach i from B and then E from i while traversing
only locations n such that p 2 PrmtB,E(n). Thus, p belongs
to RchB,i \ Rchi,E if and only if p 2 PB,E and there exists
some ⇡ such that ⇡ leads from B to E and traverses i, and
for every ` along ⇡, p 2 PrmtB,E(`). By Definition 11 we
directly obtain RchB,i \ Rchi,E = KEEP(i).

4) Tightening given filters: Suppose we want to calculate
the success filters relative to some given filters f(e, d), where
e is an edge, d is a direction (inbound vs. outbound), and the
resulting value f(e, d) is the set of packets we will permit to
travel along edge e in direction d. We would like to derive
maximally permissive filters that tighten the given ones and
enforce the goal statements. To do so, instead of starting with
the adjacency matrix A, we define Af to have the entry f(e, d)
in position Af

i,j if edge e leads from location i to location j
when traversed in direction d. Like A, it contains the empty
set whenever i and j are not adjacent. The successive matrices
Rch0,Rch1, . . . ,Rchm are now computed as before, starting
with matrix Af .

For instance, we might like to use this idea to protect ter-
minal networks—meaning a network segment ` with just one
connection to the remainder of the network—from inappro-
priate packets. Suppose that a ` contains IP addresses IP(`).
Thus, the remainder of the network has the complementary set
of IP addresses IP(`).

Then we would like to permit packets p outbound only if
sa(p) 2 IP(`) and da(p) 2 IP(`). We would like to permit
packets p inbound only if da(p) 2 IP(`) and sa(p) 2 IP(`).
Edges that do not connect a terminal network retain their

original specification of allowing all packets. This leads to
a useful policy Af to start from in computing the sets Rch.

5) Firewall Configuration: We now define firewall be-
haviour FW based on the KEEP⇤ sets. We consider the case of
nodes connected to at least one firewall or, in other words, we
assume that any edge in the network has filtering capabilities.

Definition 18. For each firewall `f , consider any input and
output channels ci and co such that rcpt(ci) = `f and
sender(co) = `f . Let `i and `o be the two locations connected
to ci and co, i.e., `i = sender(ci), rcpt(co) = `o. Then we
define a firewall as:

FWa(t, ci, co, p) ,
⇢

{p} if p 2 af`i,`f \ af`f ,`o
{} otherwise

and, similarly, a redundant firewall as:

FWr(t, ci, co, p) ,
⇢

{p} if p 2 rf`i,`f \ rf`f ,`o
{} otherwise ///

Intuitively, a firewall without network address translation
accepts a packet p whenever p is accepted on both the input
and the output channels, i.e., whenever p belongs to af`i,`f \
af`f ,`o , or to rf`i,`f \ rf`f ,`o for the redundant firewall.

Theorem 19. Let G be a non-empty collection of success
goals. If each channel is connected to at least one router and
the behaviour of all routers is determined by FWa(t, ci, co, p)
or FWr(t, ci, co, p), then frame F enforces G.

Proof. Suppose that, in order to get a contradiction, the
firewalls are defined as above but frame F does not enforce

some goal of G. This means that there is a goal B@B !
�@R ! E@E, an execution B of F , and a trajectory
~e = he0, . . . eki in B such that ~e is a counterexample for
this goal. By Theorem 15, there exists 0  i  k such that
msg(ei) 62 af(`, `0) and msg(ei) 62 rf(`, `0)

Recall that B and E are required to be end hosts and
cannot be routers. By hypothesis we have that any edge
of F has at least one firewall so, if the firewall is lo-
cated at ` we consider the incoming event ei�1 (from `i
to `) and we obtain FWa(t, chan(ei�1), chan(ei), p) = {},
FWr(t, chan(ei�1), chan(ei), p) = {} as p /2 af(`i, `) \
af(`, `0), p /2 rf(`i, `) \ rf(`, `0); if the firewall is located
at `0 we consider the outgoing event ei+1 (from `0 to
`o) and again FWa(t, chan(ei), chan(ei + 1), p) = {} and
FWr(t, chan(ei), chan(ei + 1), p) = {} , as p /2 af(`, `0) \
af(`0, `o), p /2 rf(`, `0) \ rf(`0, `o).

In both cases, the router behaviour defined in Section II
enforces that the p is blocked hence we get a contradiction on
the existence of the counterexample trajectory.

B. Localizing with NATs

In the more general case, we use the same ideas, although
with a different ring. In this case, instead of the ring of sets of
packets under [and \, we use a ring of relations on packets.

The addition-like operator is again [, but the multiplication-
like operator is now the relative product R ./ S of binary
relations:

(R ./ S)(x, z) iff 9y .R(x, y) ^ S(y, z)

We will next verify that these operations do form a ring.
After that, we face two additional hurdles. First, we cannot

hope to enforce goals in an exact way if different regions
behind the same NAT are subjected to different security
policies. By the time that packets emerge through the NAT, we
cannot tell in which region they originated, and thus cannot
differentiate their filtering according to their origins. Second,
we need an analogue to Assumption 13, which ensured that
we could compute the KEEP sets for different endpoints B,E
separately, and combine the results by taking disjoint unions.
Instead, we will assume that the external IP addresses of any
distinct NAT devices accessible to any location R are disjoint.

1) Union and relative product form a ring: We will check
that this does form a ring, although it is not a commutative
ring. This suffices to allow us to use the methods we have just
described. We will also point out below that—for the NAT-
based packet transformations that interest us—there are simple
and efficient ways to represent the relations that arise in our
computations.

1) [is associative, commutative, and has unit ;.
2) ./ is associative, (R ./ S) ./ T = R ./ (S ./ T); and it

has unit the identity relation Id, meaning R ./ Id = R.
The former is the equivalence:

(9z . (9y .R(x, y) ^ S(y, z)) ^ T (z, w)) ⌘
(9y . R(x, y) ^ (9z . S(y, z) ^ T (z, w)))

while the latter says that

9y .R(x, y) ^ y = z ⌘ R(x, z).

3) ./ distributes over [:

R ./ (S [T) = (R ./ S) [(R ./ T) and
(S [T) ./ R = (S ./ R) [(T ./ R).

We check the former, via the definitions, distributing ^
over _:
(R ./ (S [T))(x, z) ⌘

⌘ 9y .R(x, y) ^ (S(y, z) _ T (y, z))
⌘ 9y . (R(x, y) ^ S(y, z)) _ (R(x, y) ^ T (y, z))
⌘ (9y .R(x, y) ^ S(y, z)) _ (9y .R(x, y) ^ T (y, z))
⌘ ((R ./ S) [(R ./ T))(x, z)

To check the latter, we use almost the same argument,
but inverting the arguments; the commutativity of ^ and
_ justifies the way we write this:

((S [T) ./ R)(z, x) ⌘
⌘ 9y .R(y, x) ^ (S(z, y) _ T (z, y))
⌘ 9y . (R(y, x) ^ S(z, y)) _ (R(y, x) ^ T (z, y))
⌘ (9y .R(y, x) ^ S(z, y)) _ (9y .R(y, x) ^ T (z, y))
⌘ ((R ./ S) [(R ./ T))(z, x)

We may also regard each set of packets �(p) as “lifting” to
the binary relation �(p) ^ p = p0, i.e. the lifted version of �
is the intersection " � = Id \ (�⇥ �).

2) Agreeing on goals across NATs: Consider the network:

B1 C

N E

B2 D

where we are interested in the packets that are permitted to
travel from either B1 or B2 through the NAT device N to
E. However, they must satisfy different properties depending
on which intermediate node C,D they traverse. In particular,
successful trajectories from B1 to E that traverse C must have
property �, while successful trajectories from B2 to E that
traverse C must have property . On the other hand, successful
trajectories from B1 to E that traverse D must have property
 , while successful trajectories from B2 to E that traverse D
must have property �.

Unfortunately, we cannot enforce this requirement before
traversing the NAT N , because we do not know whether the
packets will traverse the route through C or through D. And
we cannot enforce this requirement after traversing the NAT
N , because we do not know whether the packets originated at
B1 or B2. N has rewritten their source addresses to its own
external address.

Thus, these goals, which differentiate the packets by their
source behind the NAT, cannot be enforced. Instead, all origins
beyond a NAT must be subject to the same policy. Indeed, a
purpose of the NAT is to make those packets indistinguishable.

In particular, consider triples of locations B1, R,E and
B2, R,E, where R is separated from B1, B2 by at least one
NAT. Then for every goal for B1, R,E, there should be a goal
for B2, R,E that is at least as restrictive, and conversely. In
this case, we can say that B1, B2 are region of origin equi-

goals for R,E. A similar notion of destination equi-goals

applies to E1, E2. A policy will be enforceable only when
it ensures regions of origin and destination equi-goals across
NATs.

3) Computing the matrices Rchm: We regard source NAT
operations as occurring outbound on an edge e, and as defined
by the relation Re(p, p0). Here, typically, this holds if p has
a local source address; p0 has the NAT device’s address as its
source address; and p0 agrees with p for destination port and
address. The translation for returning packets flowing inbound
on the edge is dual.

We now construct Af as containing these relations in entries
that reflect NAT processing. If an entry reflects a filter retaining
packets satisfying �, then its entry is " �. The matrix K is
the diagonal matrix such that Ki,i =" Prmt(i).

We now use the same scheme as before to compute the
matrices Rchm.

C. Extending to NATs

As said before, whenever we are dealing with NATs we no
longer have constant packets throughout a trajectory. However,

extending our plain model to NATs boils down to book-
keeping these translations and evaluating the packets at each
node with their current header. Luckily, the transformations
we apply to packets can be described as the relative product

operator described in the previous section.
One needs thus to adapt our notions of permitted and keep

packets. For the permitted packets, we no longer require them
to have their original source and detination addresses, so one
defines PrmtB,E(`) =

T
�`
�`. For the definition of KEEP,

we change it so that a packet is worth keeping at `i if it is
worth keeping with the state that it reached `i. This definition
is similar to Definition 11 replacing the occurrences of packet
p and path ⇡ by msg(ei) and trajectory ~e.

Allowing the existence of NATs requires us to assume that
there are two relations DD` and SS` for each node `, that are
respectively the DNAT and SNAT relations at node `, and the
translation at node ` is defined by the relation N` , DD` ./
SS`. For non-filtering nodes N` is just the identity relation.

Similarly to the plain case, in the case of NATs we also
define the acceptance filter of an arc and adapt it to the
fact that the packets change overtime: instead of requiring
the packet to be accepted at the next location, we require the
acceptance of the potential translation of the packet. With this
extensions, Theorem 15 can be lifted to the NAT case.

And finally, as in the plain case, we define the firewall
behaviour FW based on the KEEP⇤ sets and combining
the potential translations. If sender(ci) = `i, rcpt(ci) =
sender(co) = `f , and rcpt(co) = `o, then FW(t, ci, co, p)
is defined as N`f (p) if (i) N`f (p) ✓ KEEP⇤(`f) (that is,
the message is accepted by `f after the NATs) and (ii)
N`f ./ N`o(p) ✓ KEEP⇤(`o) (that is, the next node is also
going to accept this translated messge), and empty otherwise.

V. SEMANTIC BASED IMPLEMENTATION

The theory developed so far considers a very general notion
of firewall FW whose behaviour depends on the firewall
history and on the actual input and output channels. We now
show how this general notion can be implemented using an
extension of Mignis [1], a semantic based tool for firewall
configuration in Linux systems. Mignis has a formal semantics
that permits to formally prove correctness with respect to our
frame semantics and, at the same time, is provided with an
open-source compiler,1 that will allow us to produce working
Linux firewalls, as illustrated in Section V-B. Notice that
Mignis is a general firewall language and is not tailored only
to Linux systems so, in principle, it is possible to generate
configurations also for other firewall systems.

A. Mignis and its Semantics

Mignis [1] is a declarative specification language in which
the order of rules does not matter. This makes the specification
of a firewall very close to its semantics: a packet goes through
(possibly translated) only if it matches a positive rule and is
not explicitly denied. This allows administrators to write and

1https://github.com/secgroup/Mignis

inspect rules independently of the order in which they are
specified. Moreover, the declarative approach makes it easy
to detect possible conflicts and redundancies and to query for
a subset of the specification involving specific hosts. Mignis
supports Network Address Translation (NAT), i.e., it allows the
translation of the source and destination addresses of a packet
while it crosses the firewall, and it applies the translation
consistently to all packets belonging to the same connection.

Mignis rules are defined in terms of address ranges n. An
address range n is a pair consisting of a set of IP addresses
and a set of ports, denoted IP(n):port(n). Given an address
addr, we write addr 2 n to denote port(addr) 2 port(n), if
port(addr) is defined, and IP(addr) 2 IP(n). Notice that if
addr does not specify a port (for example in ICMP packets)
we only check if the IP address is in the range. We will use the
wildcard ⇤ to denote any possible address or port or address
range, and ✏ to denote a special range consisting of a special
address ✏addr used to note void translations.

Syntax: We present a version of Mignis (that we call
Mignis+) that extends the original one in various respects: (i)
rules are localized on channels CH in order to allow for packet
filtering that depends on the network topology; (ii) packets
on established connections are not accepted by default; (iii)
rules are all positive. Mignis+ is slightly more complex to use
but strictly more expressive than the original one. Since we
will generate Mignis+ configurations automatically we do not
consider the increased complexity as a problem. The Mignis+
syntax follows:

r ::= ns [nts] @ cs > nd [ntd] @ cd : �

where � is a predicate that is checkable over a packet and
the firewall state represented in terms of a trace, as defined in
section II-A. Intuitively, this rule accepts a packet p from ns
to nd that is received from channel cs and is routed to channel
cd whenever �(p, t) holds. Packet p’s source and destination
addresses are translated into different ones belonging to nts
and ntd in order to support NAT. When nts and ntd are ✏ the
rule leaves the addresses unchanged. When, instead, nts and
ntd are different from ✏, they respectively correspond to source
and destination NATs, and if both source and destination NATs
are specified they are combined together.2 A sequence of these
firewall rules is called a configuration, C ::= r;C | hi

Semantics: Mignis implements NAT by keeping track of
the established connections and the relative address transla-
tions. In this paper we represent Mignis+ state as a trace
representing previous sent and received packets with the
respective channels, as defined in section II-A. Let PK =
[(CH ⇥ D)⇤ ! CH ! CH ! P ! P(P)] be the domain
of packet transformers. We define [[·]] : C ! PK, i.e., a
function mapping a Mignis+ configuration C into a packet
transformer, representing all the accepted packets with the
corresponding translations. [[·]] t ci co p is defined inductively in
Table I, where �ns,nd(p, t) , sa(p) 2 ns^da(p) = nd^�(p, t)

2Notice that square brackets are used consistently to note the translated
addresses. This differs from the original Mignis notation for destination NATs
which encloses in square brackets the address before translation, i.e., nd.

and p[sa 7! ats, da 7! atd] denotes packet p where sa(p),
respectively da(p), is replaced by ats, respectively atd, if it
is different from the void address ✏addr, and left unchanged
otherwise.

Intuitively, the empty configuration hi corresponds to the
empty set. For a configuration ns [nts] @ ci > nd [ntd] @ co :
� ; C we take all the packets that are received on ci, routed
on co and satisfy �ns,nd(p, t), whose addresses are translated
along non-✏ NATs nts, n

t
d, together with the packets returned

by the remaining rules in C. By taking this union with the
remaining rules in C we are indeed considering that there is
no ordering in the rules of a Mignis+ configuration.

Definition 20 (Mignis+ firewall). Given a Mignis+ config-
uration C, we let FW(t, c, c0, p) , [[C]] t c c0 p.

Example 21. Consider a destination NAT that translates all tcp
incoming packets from interface eth0 directed to 192.168.0.1
port 80 on interface eth1, into address 192.168.0.100 on the
same port. In Mignis+ this is specified through a configuration
C composed of a single rule:

⇤@eth0 > 192.168.0.1:80@eth1 [192.168.0.100:80] : tcp

where we omit writing the void [✏addr] source NAT, for
readability, and where tcp corresponds to a predicate that holds
if and only if p is a tcp packet. We have:

[[C]] t ci co p = {p[da 7! 192.168.0.100:80]}

if da(p) = 192.168.0.1:80, ci = eth0, co = eth1, tcp(p).
This firewall will accept any tcp packet from eth0 with desti-
nation 192.168.0.1:80 on eth1 and will translate its destina-
tion to 192.168.0.100:80. For example, let p be a tcp packet
with source 1.2.3.4:5656 and destination 192.168.0.1:80.
We have [[C]] t eth0 eth1 p = {p[da 7! 192.168.0.100:80]}.
Notice that the fact packet is tcp is independent of the firewall
history t, so firewall semantics does not depend on t in this
specific example.

B. A Tool for Firewall Localization

We have implemented a tool that given a network specifi-
cation and a set of region control rules automatically localizes
the filters and generates Mignis+ configurations for all the
firewalls in the network. We have also modified the original
Mignis compiler by incorporating the extensions illustrated
in section V-A in order to produce the actual Linux firewall
(Netfilter) configurations. The tool is implemented in Python3.

Network: We consider a network consisting of firewalls and
end hosts, and we assume that each channel has at least one
firewall endpoint. This ensures that all edges can filter packets.

Constraints: Given rule B@B ! �@R ! E@E, we
specify constraints B , E and � as Boolean expressions over
variables representing the following facts:
Source and destination address whenever a packet has

source or destination address of end host h, written sa h
and da h, respectively;

Source and destination port whenever a packet has a source
or destination port n, written sp n and dp n, respectively;

[[hi]] t ci co p , {}

[[ns [nts] @ ci > nd [ntd] @ co : � ; C]] t ci co p , [[C]] t ci co p [

8
><

>:

{p[sa 7! ats, da 7! atd]
| ats 2 nts, a

t
d 2 ntd} if ci = ci, co = co,�ns,nd(p, t)

{} otherwise

TABLE I
Mignis+ SEMANTICS.

Protocol whenever packet protocol is p, written pr p;
Established whenever a packet belongs to an established

connection, written est.
For example, sp 443 & est requires that the source port is
443, and that packets belong to an established connection.
This is a typical example of a response from a SSL web
server. Notice that we use notations &, | and ⇠ to represent
Boolean AND, OR and NOT, respectively. Rules apply only to
non-spoofed, non-promiscuous packets. This is automatically
enforced by requiring B&sa B and E&sa E in place of B

and E .
Localization: We compute localization as described in

section IV. At the moment the prototype only supports the
case without NATs described in section IV-A. We leave the
extension to NATs as a future work. Constraints are repre-
sented as reduced, ordered BDD (ROBDD) [4]. We base our
implementation on the Python EDA library that supports both
Boolean algebra and ROBDDs.3 The advantage of adopting
ROBDD representation is that it is a canonical form and makes
it very efficient to compute equivalence between Boolean
expressions, which is useful to determine when the compu-
tation of Rch stabilizes. Set union and intersection used for
localization in section IV-A naturally become OR and AND
Boolean operators over ROBDDs.

Firewall configuration: Once we obtain FWa(t, ci, co, p)
or FWr(t, ci, co, p) in the form of a Boolean expression
we generate Mignis+ configurations by instantiating the ex-
pression with the source and destination addresses of any
possible end host, and by computing the solutions of the
obtained boolean expression. It is worth noticing that Python
EDA transparently invokes PicoSAT solver 4 to efficiently
solve a Boolean expression. Solutions are then translated into
constraints over ports, protocol and established state.

C. Case study

We consider the case study depicted in Figure 1 composed
of three subnetworks Sensitive, Trusted and Untrusted,
two internal firewalls fw1 and fw2, and two frontier firewalls
fw3 and fw4 connecting to the Internet. This represents a
typical scenario where internal firewalls filter traffic among
subnetworks while frontier firewalls filter traffic from/to the
Internet.

In our example, Sensitive subnetwork contains important
servers and data and is connected to the Internet through the

3http://pyeda.readthedocs.org/
4http://fmv.jku.at/picosat/

Fig. 1. A simple network with two internal and two frontier firewalls.

firewalls fw1 and fw3; Trusted subnetwork is composed of
trusted hosts that, for example, can access services hosted in
the Sensitive subnetwork; Untrusted is a wifi subnetwork
providing a controlled access to the Internet but not to
services hosted in Sensitive. Both Trusted and Untrusted
are connected to the firewall router fw2 which in turn is con-
nected to the other internal firewall fw1, and to the Internet
through the frontier firewall fw4.

Security goals: We now define the security goals for the
example network. As already mentioned, firewalls usually
keep track of established connections so that packets belonging
to the same connections are not filtered. This is particularly
useful to enable bidirectional communication without neces-
sarily opening the firewall bidirectionally to a new connection:
it is enough to open the firewall in one direction and let
established packets come back. We write est to note that a
packet is established (cf. section V-B). While specifying rules,
we proceed pair by pair so to define rules and their established
counterpart (when needed) at the same time.

Hosts in the Sensitive and Trusted subnetworks should
never connect to Untrusted and vice-versa. This is naturally
expressed through two-region statements in which R corre-
sponds to B or E (cf. Section III-A):

Sensitive ! false@Sensitive ! Untrusted
Untrusted ! false@Sensitive ! Sensitive

Trusted ! false@Trusted ! Untrusted
Untrusted ! false@Trusted ! Trusted

Hosts in the Sensitive subnetwork should never connect
to Trusted, while hosts from Trusted network can access
Sensitive via ssh through fw1 without passing through
the Internet as this would unnecessarily expose network
connections to attacks. Notice that we filter packets from
Sensitive to Trusted only if they do not belong to estab-
lished ssh connections:

Trusted ! dp 22@Sensitive ! Sensitive
Sensitive ! (sp 22&est)@Sensitive ! Trusted
Trusted ! false@Internet ! Sensitive

Sensitive ! false@Internet ! Trusted

Sensitive should access the Internet only via https (des-
tination port 443), while Internet hosts should never start
new connections towards Sensitive:

Sensitive ! dp 443@Sensitive ! Internet
Internet ! (sp 443&est)@Sensitive ! Sensitive

Trusted has full access to the Internet and from the
Internet we give access to Trusted only via ssh (port 22).
Notice that full access if granted by do not specifying any
region control statement but we still need to leave established
packets go through:

Internet ! (dp 22|est)@Trusted ! Trusted

Untrusted should access the Internet exclusively through
fw3 on port 80. This is a form of traversal control that can be
compiled into region control rules by taking cut {fw3, fw4}
and forbidding traversal of everything but fw3, i.e., fw4 (cf.
Section III-A). In a real setting, this might be motivated by
the fact fw3 is more powerful than fw4 being able to handle
complex (stateful) protocols and offering logging capabilities
that are useful to check what the untrusted users do. Internet
should never access Untrusted:

Untrusted ! dp 80@fw3 ! Internet
Internet ! (sp 80&est)@fw3 ! Untrusted
Untrusted ! false@fw4 ! Internet
Internet ! false@fw4 ! Untrusted

Localizing filtering: Table II in the Appendix reports the
output of the localization tool that automatically generated
the Mignis+ configuration for the four firewalls according to
FWr(t, ci, co, p). Channels/interfaces are named with prefix
if_ to distinguish them from network end hosts. For example,
the first group of rules for firewall fw1

Sensitive@if_Sensitive:22 > Trusted@if_fw2 | -m ...

Sensitive@if_Sensitive > Internet@if_fw2:443

refer to interfaces if Sensitive and if fw2, i.e., packets
coming from the the channel connecting Sensitive to fw1
and delivered over the channel from fw1 to fw2. Established
requirement is translated into the low level syntax of Linux
firewall:

-m state --state ESTABLISHED,RELATED

We can see that, on these two channels, firewall fw1 only
allows packets from Sensitive to Trusted on established
ssh connections and new https connections from Sensitive
to Internet, as required by the region control rules:

Sensitive ! (sp 22&est)@Sensitive ! Trusted
Sensitive ! dp 443@Sensitive ! Internet

We illustrate in detail how the following rules, permitting
access from Unstrusted to Internet only on port 80
through fw3, are localized in the firewalls:

Untrusted ! dp 80@fw3 ! Internet
Internet ! (sp 80&est)@fw3 ! Untrusted

Untrusted ! false@fw4 ! Internet
Internet ! false@fw4 ! Untrusted

The relevant rules are:

FIREWALL fw1

Untrusted@if_fw2 > Internet@if_fw3:80

Internet@if_fw2:80 > Untrusted@if_fw3 | -m ...

Untrusted@if_fw3 > Internet@if_fw2:80

Internet@if_fw3:80 > Untrusted@if_fw2 | -m ...

FIREWALL fw2

Untrusted@if_Untrusted > Internet@if_fw1:80

Internet@if_fw1:80 > Untrusted@if_Untrusted | -m ...

FIREWALL fw3

Internet@if_Internet:80 > Untrusted@if_fw1 | -m ...

Untrusted@if_fw1 > Internet@if_Internet:80

Firewall fw1 allows for bidirectional traffic between fw2
and fw3 on the required ports. Notice that packets from
Untrusted to Internet from fw3 to fw2 would necessarily
result in a cyclic routing which would be prevented by the ac-
tual routers. However, allowing this traffic is not contradicting
the security goal. Firewalls fw2 and fw3 enable traffic towards
fw1. Packets from Untrusted to Internet are dropped in
fw4 (which contains no rule between those two end hosts),
and on the link from fw2 to fw4, as required.

VI. CONCLUSIONS

In this paper we have provided a way to specify security
goals for how packets traverse the network together with a
way to distribute filtering functionality to different nodes in
the network. We have proved that the obtained filtering imple-
ments the security constraints while providing maximal service
functionality. We have finally implemented and verified our
results using a tool that automatically localizes the filters and
generates configurations for all the firewalls in the network.

As a future work, from a theoretical point of view we plan
to give an enforcement of the spoofing goals (that consider
only trajectories with spoofing at creation), and promiscuous
delivery goals (i.e., trajectories with promiscuous delivery).
From a practical point of view we plan to extend our tool for
localising the filters also in the case of NATs.

REFERENCES

[1] P. Adao, C. Bozzato, R. Focardi G. Dei Rossi, and F.L. Luccio. Mignis:
A semantic based tool for firewall configuration. In IEEE 27th Computer

Security Foundations Symposium (CSF 2014), Vienna, Austria, pages
351–365. IEEE CS Press, July 2014.

[2] E. Al-Shaer, A. El-Atawy, and T. Samak. Automated Pseudo-Live
Testing of Firewall Configuration Enforcement. IEEE Journal on

selected areas in communication, 27(3):302–314, 2009.
[3] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. In Proc. of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL 2014). ACM, 2014.
[4] Randal E. Bryant. Graph-based algorithms for boolean function manip-

ulation. IEEE Trans. Comput., 35(8):677–691, August 1986.
[5] Frenetic, a family of network programming languages. http://www.

frenetic-lang.org/, 2013.
[6] J.D. Guttman and A.L. Herzog. Rigorous automated network security

management. International Journal for Information Security, 5(1–2):29–
48, 2005.

[7] J.D Guttman and P.D. Rowe. A cut principle for information flow.
In IEEE 28th Computer Security Foundations Symposium (CSF 2015),

Verona, Italy, pages 107–121. IEEE CS Press, July 2015.
[8] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and PB Godfrey.

Veriflow: verifying network-wide invariants in real time. ACM SIG-

COMM Computer Communication Review, 42(4):467–472, 2012.
[9] T. Nelson, C. Barratt, D.J. Dougherty, K. Fisler, and S. Krishnamurthi.

The margrave tool for firewall analysis. In Proceedings of the 24th

International Conference on Large Installation System Administration

(LISA’10), pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.
[10] J. Walsh. Icsa labs firewall testing: An in depth analysis.

http://bandwidthco.com/whitepapers/netforensics/penetration/Firewall%
20Testing.pdf, 2004.

[11] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher. Speci-
fications of a high-level conflict-free firewall policy language for multi-
domain networks. In Proc. of ACM Symposium on Access Control

Models and Technologies (SACMAT 2007). ACM, 2007.

APPENDIX

Table II reports the output of the localization tool that
automatically generated the Mignis+ configuration for the
four firewalls.

FIREWALL fw1

Sensitive@if_Sensitive : 22 > Trusted@if_fw2 | -m state --state ESTABLISHED,RELATED

Sensitive@if_Sensitive > Internet@if_fw2 : 443

Sensitive@if_Sensitive : 22 > Trusted@if_fw3 | -m state --state ESTABLISHED,RELATED

Sensitive@if_Sensitive > Internet@if_fw3 : 443

Trusted@if_fw2 > Sensitive@if_Sensitive : 22

Internet@if_fw2 : 443 > Sensitive@if_Sensitive | -m state --state ESTABLISHED,RELATED

Untrusted@if_fw2 > Internet@if_fw3 : 80

Trusted@if_fw2 > Internet@if_fw3

Internet@if_fw2 : 80 > Untrusted@if_fw3 | -m state --state ESTABLISHED,RELATED

Internet@if_fw2 > Trusted@if_fw3 : 22

Internet@if_fw2 > Trusted@if_fw3 | -m state --state ESTABLISHED,RELATED

Trusted@if_fw3 > Sensitive@if_Sensitive : 22

Internet@if_fw3 : 443 > Sensitive@if_Sensitive | -m state --state ESTABLISHED,RELATED

Untrusted@if_fw3 > Internet@if_fw2 : 80

Trusted@if_fw3 > Internet@if_fw2

Internet@if_fw3 : 80 > Untrusted@if_fw2 | -m state --state ESTABLISHED,RELATED

Internet@if_fw3 > Trusted@if_fw2 : 22

Internet@if_fw3 > Trusted@if_fw2 | -m state --state ESTABLISHED,RELATED

FIREWALL fw2

Trusted@if_Trusted > Sensitive@if_fw1 : 22

Trusted@if_Trusted > Internet@if_fw1

Trusted@if_Trusted > Sensitive@if_fw4 : 22

Trusted@if_Trusted > Internet@if_fw4

Untrusted@if_Untrusted > Internet@if_fw1 : 80

Sensitive@if_fw1 : 22 > Trusted@if_Trusted | -m state --state ESTABLISHED,RELATED

Internet@if_fw1 > Trusted@if_Trusted : 22

Internet@if_fw1 > Trusted@if_Trusted | -m state --state ESTABLISHED,RELATED

Internet@if_fw1 : 80 > Untrusted@if_Untrusted | -m state --state ESTABLISHED,RELATED

Sensitive@if_fw1 > Internet@if_fw4 : 443

Internet@if_fw1 : 443 > Sensitive@if_fw4 | -m state --state ESTABLISHED,RELATED

Sensitive@if_fw4 : 22 > Trusted@if_Trusted | -m state --state ESTABLISHED,RELATED

Internet@if_fw4 > Trusted@if_Trusted : 22

Internet@if_fw4 > Trusted@if_Trusted | -m state --state ESTABLISHED,RELATED

Sensitive@if_fw4 > Internet@if_fw1 : 443

Internet@if_fw4 : 443 > Sensitive@if_fw1 | -m state --state ESTABLISHED,RELATED

FIREWALL fw3

Internet@if_Internet : 443 > Sensitive@if_fw1 | -m state --state ESTABLISHED,RELATED

Internet@if_Internet : 80 > Untrusted@if_fw1 | -m state --state ESTABLISHED,RELATED

Internet@if_Internet > Trusted@if_fw1 : 22

Internet@if_Internet > Trusted@if_fw1 | -m state --state ESTABLISHED,RELATED

Sensitive@if_fw1 > Internet@if_Internet : 443

Untrusted@if_fw1 > Internet@if_Internet : 80

Trusted@if_fw1 > Internet@if_Internet

FIREWALL fw4

Internet@if_Internet : 443 > Sensitive@if_fw2 | -m state --state ESTABLISHED,RELATED

Internet@if_Internet > Trusted@if_fw2 : 22

Internet@if_Internet > Trusted@if_fw2 | -m state --state ESTABLISHED,RELATED

Sensitive@if_fw2 > Internet@if_Internet : 443

Trusted@if_fw2 > Internet@if_Internet

TABLE II
Mignis+ RULES AUTOMATICALLY GENERATED FOR THE FOUR FIREWALLS OF THE EXAMPLE NETWORK.

