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Rayleigh scattering and disorder-induced mixing of polarizations in amorphous solids
at the nanoscale: 1-octyl-3-methylimidazolium chloride glass
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Acousticlike excitations in topologically disordered media at mesocale/nanoscale present anomalous features
with respect to the Debye’s theory. The so-called Rayleigh scattering manifests in a strong increase of the
attenuation of the acousticlike excitations and a softening of the phase velocity with respect to its continuum
limit value. Mean field models developed in the random media theory framework can successfully predict the
occurrence, at the proper length scale, of Rayleigh scattering. The overall attenuation in the Rayleigh region
is, however, underestimated. In the framework of random media theory we developed an analytical model,
which permits a quantitative description of the acousticlike excitations in topological glasses in the whole first
pseudo-Brillouin zone. The underestimation of the Rayleigh scattering is avoided and, importantly, the model
allows to account also for the polarization properties of the acousticlike excitations. In a three-dimensional
medium an acoustic wave is characterized by its phase velocity, intensity, and polarization. Rayleigh scattering
emphasizes how the topological disorder affects the first two properties. The topological disorder is, however,
expected to influence also the third one. In common with the Rayleigh scattering, hallmarks possibly related
to the mixing of polarizations have been traced in different classes of amorphous solids at nanoscale. The
quantitative theoretical approach developed permits to demonstrate how the mixing of polarizations generates a
distinctive feature in the dynamic structure factor of amorphous solids. The modeling capability of the proposed
mean field theory is tested on glassy 1-octyl-3-methylimidazolium chloride, whose spatial distribution of the
elastic moduli is well assessed and can be experimentally characterized. Contrast between theoretical and
experimental features for the selected glass reveals an excellent agreement. The mean field approach we present
retains a certain degree of generality and can be possibly extended to different stochastic media or different wave
fields.
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The modeling of the acoustic dynamics properties in
amorphous solids at mesoscale/nanoscale is linked to the un-
derstanding of the origin of their macroscopic anomalies, such
as the hump in the specific heat of glasses at ∼10 K [1] and
the excess over the Debye level of the vibrational density of
states (VDOS) at energies of few meV, called boson peak (BP)
[2–7]. Several theoretical models have been proposed, based
on different approaches. The so-called soft potential model
[4,8,9], an extension of the well-known tunneling two-level
systems model, focuses on the presence, among the normal
modes of an amorphous solid, of localized soft vibrations,
correlated to the aforementioned anomalous behavior. Re-
cently, the use of numerical methods based on molecular
dynamics (MD) simulations allowed the observation and exact
characterization of the localized soft modes by an atomistic
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approach [10–18]. A mean field approach is instead exploited
in the models developed in the random media theory (RMT)
framework, e.g., the so-called heterogeneous elasticity theory
[5,19–23]. They are based on the modeling of the amorphous
solid as a random medium with spatial fluctuating local elastic
moduli. Among mean field theories we recall also the theory
of jamming [10,24], where the concept of marginal stability
plays a central role.

In light or inelastic x-ray/neutron scattering experiments
(IXS/INS) a plane wave with (transferred) momentum (q) and
energy (E ), or frequency (ω) being E = h̄ω, is initially excited
in the sample. In crystals these excitations coincide with the
normal modes, thus inelastic scattering experiments allow to
selectively excite a single normal mode. This is not the case
for amorphous solids, where, however, the acousticlike exci-
tations generated by the interaction with the source can yet be
expressed in the normal modes basis as a superposition of nor-
mal modes. IXS and INS techniques allow to experimentally

2469-9950/2020/102(21)/214309(17) 214309-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2762-9533
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.214309&domain=pdf&date_stamp=2020-12-23
https://doi.org/10.1103/PhysRevB.102.214309


M. G. IZZO et al. PHYSICAL REVIEW B 102, 214309 (2020)

access the so-called dynamic structure factor S(q, E ), whose
expression as a superposition of the normal modes of the
amorphous solid is provided, among others, in Refs. [25–27].
The normal modes can be derived by numerically solving the
eigenvalue problem of the so-called dynamical matrix, i.e.,
the Hessian of the Hamiltonian calculated for the inherent
structure obtained by MD simulations [10,12,27]. The class of
localized soft modes between the normal modes of topologi-
cal glasses carries particular relevance because localized soft
modes are responsible for the ω4 trend (Rayleigh scattering) in
the low-ω region of the VDOS [10–18], universally observed
in glasses in contrast with the Debye law holding for crystals.
Localized soft modes are non-Goldstone modes characterized
by a small value of the so-called participation ratio [12],
which establishes their local character, and a low value of their
related eigenfrequency. The presence of localized soft modes
in glasses was formerly emphasized by INS experiments on
vitreous silica by exploiting a comparison with analytical
results obtained for different polymorphic crystalline forms
of SiO2 [28,29].

In place of the atomistic approach described above, mean
field RMT models can be used in order to achieve an an-
alytical representation of S(q, E ) of amorphous solids. At
the expense of an exact assessment of normal modes, mean
field RMTs allow an analytical evaluation of S(q, E ) based
on a restricted number of key quantities. RMT relies on
the observation that disorder on nanoscopic scale generates
an inhomogeneous spatial distribution of the elastic moduli
[3–5,19–23,30]. Modeling the amorphous solid as a random
medium characterized by spatial elastic moduli fluctuations
provides then the basis for the definition of a stochas-
tic Helmholtz equation and of a related Dyson equation
[3,5,19–22,31–34]. A statistical description of the spatial dis-
tribution of the local elastic moduli is obtained by defining the
spatial correlation function of their fluctuations with respect to
the average value on the system’s volume [3,5,19–23,30]. In
the case of randomly distributed spatial fluctuations, the cor-
relation function is an exponential decay with decay constant
a, equal to the average radius of spatial domains where the
local elastic moduli remain roughly constant (so-called inho-
mogeneity or heterogeneity domains) [3,19–21,23,31,32,35].
A random distribution of local elastic moduli has been ob-
served in a Lennard-Jones glass [11]. Long-range correlation
has been also considered [30]. Interesting, MD simulations
of a soft-spheres model [13] show how an amorphization
transition is always accompanied by the simultaneous setting
up of spatial elastic moduli fluctuations and appearance of
localized soft modes among the normal modes. These results
provide a framework for a link between the numerical atom-
istic approach and the mean field RMT. Similarly, in Ref. [36]
it is established a connection between the so-called atomistic
Euclidean random matrix model [37] and the self-consistent
Born approximation (SCBA), a mean field model developed in
the RMT framework, which will be discussed in the following.

Acousticlike excitations in amorphous solids at meso-
cale/nanoscale show an anomalous behavior with respect
to the Debye predictions for crystals [2–5,22,23,30,38–
43]. The so-called Rayleigh scattering generates a soft-
ening of the phase velocity with respect to the macro-
scopic value and a strong increase of the attenua-

tion, which shows the typical fourth-power q depen-
dence. This reflects on the aforementioned ω4 trend ob-
served in the low-ω region of the VDOS. This behav-
ior is almost universally observed in amorphous solids
[5,10–18,22,30,38–43]. The modeling capability of Rayleigh
scattering has been thus considered a valuable testing ground
for theoretical models. Mean field RMTs present in literature
can correctly reproduce the Rayleigh scattering specific trend
with the proper related length scales. The overall strength of
the attenuation induced by Rayleigh scattering is, however, in
most cases underestimated [10,11,38,42–44]. By introducing
an approximate solution of the Dyson equation, the so-called
generalized Born approximation (GBA), we obtained a RMT
model, which, in addition to the aforementioned results of
previous RMTs, allows (i) to obtain a feasible strength of
the attenuation in the Rayleigh scattering regime, avoiding
underestimation; (ii) to account for the mixing of polariza-
tions of acousticlike excitations in the first pseudo-Brillouin
zone. These results represent an advance in both qualita-
tive and quantitative modeling of acousticlike excitations of
amorphous solids in the RMT framework. An acoustic wave
traveling in a three-dimensional medium is characterized by
its phase velocity, amplitude, and polarization. The presence
of topological disorder is thus expected to affect all these
properties. The Rayleigh scattering highlights how disorder
affects the first two. The mixing of polarizations in a local
elastically heterogeneous medium is qualitatively predicted
by the elementary elasticity theory, which states that a purely
polarized wave impinging on an interface between two differ-
ent elastic media shall be transformed in waves with mixed
polarization [45]. Features in S(q, E ) possibly attributable to
acoustic excitations with mixed polarization have been ob-
served by IXS or INS experiments [46–54], as well as by
MD simulations [55–58] in several topologically disordered
systems in the first pseudo-Brillouin zone, with a q onset
typically ∼5 nm−1. Despite this, one meets the lacking of ana-
lytical models addressing the occurrence of disorder-induced
mixing of polarizations, which has, furthermore, never been
related to the Rayleigh scattering in the RMT framework. We
propose to cope with these shortcomings.

Inherent limitations of RMT models arise because, on the
state of art, the Dyson equation can be solved only by re-
course to approximation methods, which hold in a limited q
or E range [5,19–22,31–34,59]. The Rayleigh scattering and
the mixing of polarizations occur in different q regions. The
concomitance of these facts can possibly avoid the attainment
of a unified theory. The Rayleigh scattering appears when q
is much lower than the inverse of a whereas the coupling
between longitudinal and transverse excitations is maximum
when q becomes comparable to a−1 [31]. It can be shown the
validity of the GBA up to q = O(a−1). In several glasses a is
of the order of nm [11,60–63], setting the region of validity
of the GBA approximately coincident with the first pseudo-
Brillouin zone [43,47–49,51,52].

It is worth to stress that while the GBA proved to seize
significant properties of acousticlike excitations in elastically
heterogeneous media, as outlined in this paper, its cardinal
mathematical structure and the nature of the underlying phys-
ical mechanisms (scattering) addressing the phenomena it
aims to model could allow a useful exploiting of the GBA in
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different fields. On the other hand, mean field approaches in
RMT framework in order to describe wave fields in stochastic
media, such as the coherent potential approximation [64,65],
are not limited to the case of elastically heterogeneous media,
encompassing, among others, randomly dilute magnets [66],
random Kondo lattice [67], disordered strongly correlated
systems [68], and disordered semiconductors with spatially
correlated disorder [69]. The SCBA itself has been formerly
introduced independently in different fields of physics: scat-
tering of electrons in disordered media [70,71], elastic wave
propagation in topologically disordered systems [72], and
electron-phonon interaction [73,74].

The GBA is tested on longitudinal acoustic dynamics of
glassy 1-octyl-3-methylimidazolium chloride, [C8MIM]Cl.
This latter belongs to the class of the so-called room-
temperature ionic liquids (ILs). The wave-vector-resolved
acoustic dynamics features of glassy [C8MIM]Cl have been
probed by IXS. In particular, the acoustic dynamics of a glass
in the wave-vector range where the mixing of polarization
onsets has been characterized in this work with unprecedented
precision. Proper INS measurements yield the corresponding
VDOS. The choice of glassy [C8MIM]Cl in order to test
the GBA has been directed by the two following grounds.
(i) In glassy ILs the elastic heterogeneity is defined by the
alternation of polar (stiffer) and nonpolar (softer) domains
[60,75–81], which remains well defined in ILs with suffi-
ciently long alkyl chains. The (elastic) heterogeneity domains
thus turn out to be clearly bordered. (ii) In ILs there exists a
correlation between elastic heterogeneity and local topology
[60]. The occurrences in points (i) and (ii) make possible the
experimental characterization of the spatial distribution of the
local elastic moduli and, in particular, of the value of a, which
can be thus fix by unrelated measurements instead to be an
adjustable parameter of the theory. The GBA is particularly
sensitive to the value of a because it determines the length
scale where the Rayleigh scattering is toned down and the
mixing of polarizations onsets. To fix the value of a thus can
avoid possible tautology when testing the GBA. The local
elastic moduli can, otherwise, be characterized by MD sim-
ulations [13,61–63]. In Ref. [82] we show the mathematical
coherence of the GBA and discuss its domain of validity in
the kinematic plane. Approximation methods developed in the
RMT framework usually rely upon the so-called perturbative
series, formally representing the so-called self-energy (see the
discussion in Sec. II). Because in most real cases even estab-
lishing the criteria of convergence of the perturbative series
is not possible [33,34], the evaluation of the error associated
to a given approximation can be unwieldy. Usually, necessary
rather than sufficient conditions of validity can be set out, as
it is the case of the Born approximation [33]. The comparison
with experimental characterization of real systems becomes
thus a valuable indication of the appropriateness of the theory.
The comparison between experimental and GBA theoretical
features provided in this work is excellent.

The paper is organized as follows. Section I contains a de-
scription of the experiments, of a phenomenological data anal-
ysis based on damped harmonic oscillator (DHO) functions,
discusses the experimental results and compares them with the
characterization of several other amorphous solids available in
literature. Section II introduces the GBA, discusses its framing

in the RMT, and explains how theoretical results are produced.
Section III shows the general understanding of longitudinal
and transverse acoustic dynamics of amorphous solids on
nanoscopic region provided by GBA, while discussing how
it can quantitatively reproduce experimental results for glassy
[C8MIM]Cl. Concluding remarks are presented in Sec. IV.
Appendix A contains specifics of GBA calculations. Ap-
pendix B discusses the coupling of acousticlike excitations,
modeled by GBA, with pure molecular modes.

I. EXPERIMENTAL CHARACTERIZATION OF THE
VIBRATIONAL DYNAMICS IN A LOCAL ELASTICALLY

HETEROGENEOUS MEDIUM

The local topology at nanoscale of most ILs has been
largely attested and characterized by small-angle x-ray or
neutron scattering measurements and by MD simulations
[75–81]. The static structure factor S(q) of ILs with suf-
ficiently long alkyl chains is characterized by a first sharp
diffraction peak (FSDP) at a characteristic wave vector qFSDP.
Upon definition of the ring centers and anions as polar entities
and the alkyl chains as nonpolar ones, the segregation of the
alkyl chains results in a local structure formed by an alterna-
tion of polar and nonpolar domains [79]. As proved by neutron
and x-ray scattering experiments [75,77,80], the FSDP is re-
lated to the scattering signal coming from those anions that
are on the side of the charged imidazolium ring belonging
to cations that have opposite alkyl tails (see the pictorial
representation in Fig. 5). The characteristic length scale 2ã =
2π/qFSDP gives thus an estimation of the diameter of nonpolar
domains [75]. Since intermolecular forces acting in polar and
nonpolar regions are of different nature, it is possible to as-
sume that to the heterogeneous local structure it corresponds
a heterogeneous spatial distribution of the local elastic con-
stants. This inference is confirmed by the MD simulations
results presented in Ref. [60], which provide a quantitative
measure of local elastic moduli in ILs [C8MIM][NO3] and
[CnMIM][PF6], n = 2, 4, 6, 8. The correlation between the
spatial distribution of the elastic moduli and polar and nonpo-
lar segregation is therein proved. It is thus possible to assume
that the size of nonpolar domains coincides with the one of
elastic heterogeneity domains, i.e., a = ã. Among the large
class of ILs, [C8MIM]Cl has been selected because (1) qFSDP

matches the q region typically probed by IXS thus making
sure that both the q regions where the Rayleigh scattering
and the mixing of polarization respectively occurs will be
probed [81]; (2) the width of the FSDP is sufficiently small
to permit to safely neglect the distribution of the size of the
heterogeneity domains around their average value, i.e., the
value of a is well defined. The presence of the FSDP can give
rise, however, to features in S(q, E ), related to the so-called
diffuse umklapp scattering [25,83–87], which, though having
a different origin, are similar to those related to the mixing of
polarizations. We, however, verify that the umklapp scattering
contribution is negligible in the q region where the GBA
apply, i.e., up to the edge of the first pseudo-Brillouin zone,
and in particular at those q’s where the mixing of polarizations
onsets (see Supplemental Material [88]). These conditions
make the experimental observations on the selected glass a
reliable base for a genuine testing of the theory.
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The distinctive features of the vibrational dynamics of
glassy [C8MIM]Cl are experimentally determined through
IXS and INS. A preliminary data analysis of IXS results,
based on a phenomenological model including one or two
DHO functions, largely exploited in literature, is intro-
duced. This protocol allows to identify distinctive features of
the experimentally determined acoustic dynamics of glassy
[C8MIM]Cl, irrespective of any underlying theoretical model.
Hallmarks of the Rayleigh scattering and of the mixing of
polarization are highlighted. The phenomenological data anal-
ysis further allows the comparison between the characteristics
of the acoustic dynamics of glassy [C8MIM]Cl and of other
classes of glass, available in literature, brought out by ex-
ploiting the same phenomenological model. The comparison
underlines a general qualitative agreement.

A. Inelastic x-ray scattering experiment

The IXS experiment was carried out at the ID28 beamline
of the European Synchrotron Radiation Facility (ESRF). The
data were collected in the q range [1–15] nm−1 with a q
step of about 0.4 nm−1. The experiment was performed at
23.725 keV, using the silicon (12,12,12) reflection, which
provides an overall energy resolution of about 1.4 meV
(FWHM), determined from a plexiglass slab at T = 10 K.
The q resolution was set to 0.18 nm−1 for the first q points
(i.e., 1.0 nm−1, 1.4 nm−1, 1.8 nm−1) and fixed to 0.37 nm−1

for the remaining q’s. The energy spectra were collected in
the −30 to 30 meV range. The sample cell was an Al tube of
5-mm length capped with two oriented monocrystal diamond
windows (0.5 mm thick). The [C8MIM]Cl sample was loaded
in the sample cell in an Ar-filled glove box to avoid water
contamination. A cryostat was used to cool the sample down
to the glassy state. The background contribution from the
sample environment was measured in the same experimental
configuration as the sample and subtracted from the data, thus
obtaining the sample signal I (q, E ). This latter provides a
measure of the dynamic structure factor related to longitudinal
acoustic dynamics SL(q, E ), via the expression

I (q, E ) = A(q)

[
E

n(E ) + 1

kBT
SL(q, E )

]
⊗ R(E ) + c(q), (1)

where E = h̄ω is the exchanged energy between the probe
and the sample, ω is the exchanged frequency, h̄ is the re-
duced Planck constant, n(E ) is the Bose factor, R(E ) is the
experimental energy resolution and ⊗ represents the convolu-
tion operation. The adjustable parameters A(q) and c(q) are,
respectively, an overall intensity factor and a background.

B. Inelastic neutron scattering experiment

The INS experiment was performed with the MARI spec-
trometer at the ISIS spallation neutron source in Rutherford
Appleton Laboratory. The sample was loaded in an Al made
cylindrical annular can with a thickness corresponding to
a sample transmission T = 0.9. The incident neutron en-
ergy was 15 meV. The temperature of the sample was
tuned by a cryostat. The empty cell scattering IEC(q, E )
was measured under the same sample experimental condi-
tions. The sample signal I (q, E ) is obtained from the total
signal It (q, E ), through the relationship I (q, E ) = It (q, E ) −
T IEC(q, E ). Multiple scattering and self-absorption are as-

FIG. 1. (a)–(d) IXS spectra of glassy [C8MIM]Cl at T = 176 K
for selected q values (black circles with error bars), best-fit curves
obtained by 1-DHO fitting model (gray lines) and inelastic compo-
nents of the best-fit curves, i.e., DHO function convoluted with the
experimental resolution (black lines).

sumed to be negligible for the given sample geometry and
transmission coefficient. For [C8MIM]Cl the incoherent neu-
tron scattering cross section σincoh is much larger than the
coherent one σcoh, being σcoh

σincoh
= 0.07. The measured data

are integrated over q in the largest range available from
the experimental configuration, i.e., 20 < q < 40 nm−1. It is
thus obtained the averaged VDOS, neutron weighted over the
atomic species. The reduced VDOS, g(E )

E2 , is obtained from
the integrated signal I (E ) through the relationship g(E )

E2 =
A I (E )

E [n(E )+1] , where A is an intensity factor.
Experimental characterization of longitudinal acoustic dy-

namics and VDOS of [C8MIM]Cl at T = 176 K (Tg = 214 K)
was achieved, respectively, by IXS and INS. Figure 1 shows
IXS spectra for selected q values. High-quality data were
obtained at all wave vectors. An inelastic contribution is de-
tectable in all the spectra, except for those corresponding to
q close to qFSDP, where the spectrum is dominated by the
strong elastic signal. In the phenomenological data analysis
discussed in this section, SL(q, E ) is modeled by a linear
combination of DHO functions, i.e.,

SL(q, E ) =
∑

n

ĨL(n)(q)�L(n)(q)�2
L(n)(q)[

�2
L(n)(q) − E2

]2 + E2�2
L(n)(q)

, (2)

where n = 1 for the 1-DHO fitting model and n = 1, 2 for the
2-DHO fitting model. ĨL(n) = IL(n)/IL(1) is the relative intensity
of the nth DHO function with respect to the first. A zero-
centered delta function I0(q)δ(E ) is added to SL(q, E ) in order
to account for the elastic scattering signal observed in the
experimental spectra. I0(q), Ĩn(q), �L(n)(q), �L(n)(q) are ad-
justable parameters. At first, a fit of all the spectra acquired is
performed by using a single DHO function as model function
(1-DHO fitting model). Such a protocol provides a measure of
the characteristic energy and broadening (attenuation) of the
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FIG. 2. Detail of a representative IXS spectrum (black circles
with error bars) in the high-q region. Best-fit curves (gray lines)
and inelastic components (black lines) obtained for 1-DHO fitting
model (right panel) and 2-DHO fitting model (left panel) are shown.
Corresponding fit residuals are shown in the bottom panels.

longitudinal acoustic excitation for each q, respectively �L(q)
and �L(q). The values of �L(q) and �L(q) with the corre-
sponding error bars obtained by exploiting the 1-DHO fitting
model are displayed in Figs. 3(a) and 3(c) by open circles.
The high quality of the IXS data acquired permits to assign a
value to �L and �L even at small values of q, in the interval
1–2 nm−1. In the high-q region (q > 5 nm−1) an additional
feature in the inelastic wings of the IXS spectrum is observed,
in agreement with experimental observation in several other
classes of glass [46–58]. Similar features are commonly re-
lated to “projection” of transverse into longitudinal dynamics.
To empirically account for the presence of this extra feature,
the inelastic part of the spectrum can be fitted with a model
function that includes two DHO functions (2-DHO fitting
model). Figure 2 shows a magnification of the inelastic com-
ponent of an IXS spectrum acquired at q > 5 nm−1. Best-fit
curves and fit residuals corresponding to 1-DHO and 2-DHO
fitting models are included for comparison. Inspection of fit
residuals corresponding to 1-DHO fitting model shows the
presence of structured features revealing indeed inadequacy
in the choice of this fitting model function. Figures 3(a) and
3(c) show the best-fit values of �L and �L corresponding to
each one of the two DHO functions composing the fitting
model function for q > 5 nm−1, displayed respectively by
blue and green full circles. We will consider both best-fit
results obtained by fitting with the 1-DHO fitting model in the
whole measured q region and with the 2-DHO fitting model in
the only high-q region. The trend of �L(q) and �L(q) obtained
by the 1-DHO fitting model presents at q ∼ a−1 features that
can be related to the mixing of polarizations, described in
points (ii) and (iii) in the following and examined in Sec. III.
As emphasized in Sec. III the IXS spectra in the whole ex-
perimentally accessed q range can be fully reproduced by
GBA-based calculations. This makes the fitting with 1-DHO

FIG. 3. (a) Broadening (�L) as a function of q derived from the
fitting of the IXS data with 1-DHO fitting model (open circle) and
2-DHO fitting model (blue and green circles). Full black line shows
the q4 trend reproducing the �L dispersion in the low-q region. Blue
and dashed black lines are guides to eye displaying the q2 trend of
the broadenings in the high-q region. (b) Reduced VDOS, g(E )/E 2,
obtained by INS measurements. (c) Characteristic energy (�L) of the
inelastic excitations as a function of q, obtained with 1-DHO fitting
model (open circle) and 2-DHO fitting model in the high-q region
(blue and green circles). The dashed, blue, and black lines reproduce
the dispersion curves of �L’s. They are obtained by the sinusoidal
function c q0

π
sin( qπ

q0
) [98], where c and q0 are adjustable parameters.

The x-ray-weighted static structure factor is shown (stars).

or 2-DHO model functions an experimentally convenient, yet
theoretically unnecessary, phenomenological expedient.

Figure 3 shows g(E )/E2 [Fig. 3(b)] and S(q) [Fig. 3(c)],
measured by x-ray scattering. The reduced VDOS presents
(1) a peak around 2 meV, referred to as the boson peak (BP)
[89,90]; (2) a broad peaklike feature at higher energies, in
the region between 7 and 12 meV, related to pure molecu-
lar modes, identified in Ref. [89] with the librational modes
of the imidazolium ring, referred hereafter as intermolecular
vibrational modes (IVMs). The static structure factor shows
a FSDP at qFSDP = 2.8 nm−1, which is related to nanoscale
segregation of the cations’ alkyl chains [75,78]. This corre-
sponds to a value of a equal to 1.1 nm. It has been shown that
the short-range structure of glasses preserves a residual order
that characterizes the long-range structure of crystals [6,54]
with the consequent occurrence of a pseudo-Brillouin zone
and of a related bending of the dispersion of the characteristic
energies of acousticlike excitations. Observation of Fig. 3(c)
clearly points out the presence of the bending in the dispersion
of the characteristic energies, allowing the identification of the
pseudo-Brillouin zone. From the experimental results the edge
of the first pseudo-Brillouin zone, where the maximum of the
dispersion is observed, can be fixed at ∼9 nm−1, about half
the value of the characteristic q of the main peak in S(q).
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Inspection of Fig. 3 permits to identify the following char-
acteristics of the acoustic dynamics of glassy [C8MIM]Cl
in the first pseudo-Brillouin zone: (i) in the low-q region
[gray-shaded region in Figs. 3(a) and 3(c)] features compat-
ible with the Rayleigh scattering are observed. The increase
of the acoustic attenuation following the q4 trend is clearly
observable. The softening of the phase velocity is better
highlighted in Fig. 7, but it can be perceived, even if with
lower clarity, also in the q trend of �L’s displayed in Fig. 3.
(ii) It exists a crossover in the wave-vector dispersion of
�L at qc = 4.8 nm−1 from a q4 to a q2 trend. We observe
that qc ∼ 2qFSDP ∼ 2π/a, i.e., the crossover appears at wave
vectors related to the typical size of elastic heterogeneity
domains. (iii) There is a kink at qc in the �L dispersion.
(iv) For q > qc the inelastic wings of SL(q, E ) are composed
by two features. Similar characteristics of the ones described
in points (i)–(iv) are observed in literature in several other
amorphous solids by IXS/INS experiments and MD simu-
lations [5,11,22,38–43,46–49,51,55]. Among them, we point
vitreous silica, which is usually promoted to a prototype of
topological glasses. In order to clarify the origin of the low-E
feature observed in SL(q, E ) for q > qc [see point (iv) above],
we calculated the so-called diffuse umklapp scattering con-
tribution to SL(q, E ) by applying the protocols described in
Refs. [25,86] to glassy [C8MIM]Cl. Specifics are reported in
the Supplemental Material [88]. The intensity of the diffuse
umklapp scattering has local maxima around the peaks of
S(q). The presence of the FSDP requires thus the need to
check if the umklapp scattering can contribute to the SL(q, E )
for q > qc, thus generating the observed extra feature. The re-
sults described in the Supplemental Material [88] emphasize,
however, that the umklapp scattering contribution is negligible
in the first pseudo-Brillouin zone and, in particular, such it
is at q ∼ qc, where the regime specified in point (iv) onsets.
This allows to exclude that in the first pseudo-Brillouin zone
the extra feature is related to the diffuse umklapp scattering.
Features in SL(q, E ) similar to the ones described in point (iv)
have been observed, at a q onset close to qc, in several classes
of glass, among which, vitreous silica [46,48], glassy GeO2

[51], glassy glycerol [47], glassy SiSe2 [49]. The S(q) of these
glasses shows any FSDP in S(q) and the umklapp scattering is
furthermore negligible in the q region where the extra feature
in SL(q, E ) is observed [86]. Such an extra feature in SL(q, E )
is in all these cases qualitatively attributed to the mixing of
polarizations. For q’s outside the first pseudo-Brillouin zone,
i.e., for the largest q’s accessed in the present IXS experiment,
it must be, however, considered that the diffuse umklapp
scattering contribution is not negligible (see Supplemental
Material [88]). The GBA does not include the contribution
of the diffuse umklapp scattering and, on the other hand, its
validity is not attested for q much larger than a−1. This shall
be taken into account when comparing GBA and experimental
outcomes at q � 11 nm−1. For these q values the use of the
GBA to model the experimental data can actually be not
well established. For q values well outside the first pseudo-
Brillouin zone, the use of the incoherent approximation allows
a reliable theoretical description of the experimentally deter-
mined SL(q, E ) [48,86,91]. In the case of vitreous silica [48],
e.g., it has been shown that the secondary peaklike feature
observed in SL(q, E ), in the first pseudo-Brillouin zone related

to the mixing of polarizations, in the high-q region, where
the incoherent approximation can be applied, merges into an
opticlike branch with frequency close to the one of the BP and
related to the vibrational modes of SiO4 tetrahedra [28,29].
The modeling of SL(q, E ) in this high-q region [92] is beyond
the scope of this paper.

We show in Sec. III how the behavior described in points
(i)–(iv) can be quantitatively described by the proposed
stochastic approach derived in the framework of the RMT,
which accounts for the elastic heterogeneity of the disordered
system. In particular, the features observed at q of the order of
or larger than qc in the GBA framework can be related to the
mixing of polarizations.

It shall be noticed that the value of �L(qc) (∼8 meV)
belongs to the energy range of the VDOS where it is ob-
served the broad feature related to IVMs. Their characteristic
energy is much larger than the one of the BP and they are
not to be rated as localized soft modes introduced above.
They are rather similar to pure molecular modes observed
in molecular crystals. They can, however, possibly couple
to the acousticlike excitations. We set in the following the
polarization-dependent coupling parameter to zero. For sake
of completeness, we consider in Appendix B a model where
the coupling factor is different from zero. We, however,
stress that by setting the coupling parameter to zero, the
GBA allows, nevertheless, to achieve an exhaustive analyti-
cal modeling of the longitudinal acoustic dynamics of glassy
[C8MIM]Cl. Furthermore, since the effect of the coupling
with IVM mostly affects the acousticlike excitations with
characteristic energy matching the one of the IVM, exploit-
ing approximation different from the GBA, such as the Born
approximation or the SCBA, with a coupling parameter dif-
ferent from zero does not permit to obtain a comprehensive
modeling of the longitudinal acoustic dynamics in the whole
first pseudo-Brillouin zone (see Supplemental Material [88]).

II. GENERALIZED BORN APPROXIMATION IN THE
RANDOM MEDIA THEORY

A. Random media theory and generalized Born approximation

Purpose of the RMT is to describe the space (r) and
time (t) evolution of the ensemble-averaged response of a
spatial heterogeneous medium after the application of an
external input in the space point r′. The system’s response
is formally expressed by the second-rank averaged Green’s
dyadic 〈G(r, r′, t )〉, solution of the corresponding Dyson
equation. The brackets 〈. . .〉 denote ensemble average. The
bold font style displays a tensor. By virtue of the fluctuation-
dissipation theorem, the dynamic structure factors related to
both longitudinal and transverse dynamics can be expressed
as a function of the corresponding averaged Green’s func-
tions 〈GL(T )(q, ω)〉, i.e., SL(T )(q, ω) = 1

π

q2

ω
Im{〈GL(q, ω)〉}.

The wave vectors q and ω are the conjugate Fourier variables
of r and t , respectively. The spatial distribution of fluctuating
quantities is statistically described by their space-correlation
function. We let the only elastic tensor C(r) to fluctuate in
space. A formal statement of the Dyson equation provides for
the introduction of a self-energy or mass operator �(q, ω),
which embeds all the information related to the system’s
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inhomogeneity,

〈G(q, ω)〉 = [G0(q, ω)−1 − �(q, ω)]−1, (3)

where G0(q, ω) is the bare Green’s dyadic describing the
“bare” system in the absence of spatial fluctuations (see
Appendix A). The self-energy can be formally cast by
a perturbative Neuman-Liouville series expansion [33,34].
Through the introduction of the Feynman diagram technique
it is possible to establish a correspondence between the terms
composing the perturbative series expansion and the scatter-
ing events of the elastic perturbation in the medium [33].
Under the hypothesis of statistical homogeneity, truncation of
the perturbative series expansion to the lowest nonzero order
(first order) leads to the so-called Bourret or Born approxima-
tion [20,31–34,59]

�1
kα (q, ω) = L̂1kαi jG

0
i j (q, ω)

∫
d3s qβql sδsγ R̃γα jlβkiδ

× (q − s)G0
i j (s, ω). (4)

Summation over repeated indices is assumed. The integral
is extended to R3. The function R̃γα jlβkiδ (q) is the Fourier
transform of the correlation of the elastic tensor fluctua-
tions Rγα jlβkiδ (r = r1 − r2) = 〈δCγα jl (r1)δCβkiδ (r2)〉, where
δC states for a fluctuation of the elastic tensor with respect
to its average value C. The self-energy in the Fourier space
can thus be written as a convolution between the bare Green’s
dyadic and the Fourier transform of the space correlation of
the elastic tensor fluctuations. Despite simplicity, the Born
approximation imposes rather strong restrictions both on the
intensity of the elastic moduli fluctuations per density ε2 and
on the value of ω and q, which need to be small with respect
to a−1 [33]. Most of the phenomenology observed in real
systems, including the Rayleigh scattering, can be qualita-
tively grasped even by the Born approximation [31]. In a
vectorial framework it can even account for some features of
acousticlike excitations related to the coupling between lon-
gitudinal and transverse dynamics [31]. However, to rely on
this approximation did not permit us neither to quantitatively
characterize the overall strength of the Rayleigh scattering nor
to unravel the presence of a well-defined shoulder in SL(q, ω)
related to the coupling of longitudinal with transverse acoustic
dynamics [82], as instead attested by experimental and MD
simulations’ observation. The limited range of validity in the q
space of the Born approximation, which furthermore shifts to
lower values of q for larger value of ε2, what it is expected in
the case of glasses, can affect its outcomes in particular when
q ∼ a−1. In light of these observations, we choose to take into
account the next order of approximation in the perturbative
series expansion [33], thus obtaining the following expression
for the self-energy:

�kα (q, ω) = L̂1kαi j〈Gi j (q, ω)〉1, (5)

where 〈G(q, ω)〉1 is the ensemble-averaged Green dyadic cal-
culated in the Born approximation. On a physics ground the
inclusion of second-order terms permits to describe multiple
scattering events not covered by the Born approximation [82].
Second-order terms of the perturbative series are in the present
approach accounted in an approximate form. Details are re-
ported in the next paragraph. We thus introduce a method to

derive an approximate expression for �(q, ω), which states
corrective terms to the Born approximation in the framework
of the perturbative series expansion. We refer to it as to a
generalized Born approximation [82]. The mathematical co-
herence of the GBA and its validity at wave vectors of the
order of a−1 is discussed in Ref. [82]. Generalizations of the
Born approximation have attracted interest in different fields
[93–96]. In particular, depolarization effects in the scattering
of electromagnetic waves by an isotropic random medium has
been predicted by exploiting a second-order representation
(with respect to terms of a Neumann iteration series) for the
scattered intensity [95]. The results we obtained through the
GBA, enforced by the above cited study, suggest that in order
to properly describe the polarization properties, including the
mixing of polarizations, of wave fields in isotropic random
media, without necessarily restricting to the case of elastically
heterogeneous media, second-order terms of the perturbative
series expansion should be taken into account.

Before giving the details of the expression of the self-
energy stated by the GBA, we observe that a largely exploited
model to characterize the Rayleigh scattering in glasses is
the so-called self-consistent Born approximation (SCBA)
[3,5,19,21,22]. Instead of looking to a suitable expression for
the mass operator by truncating the Neumann-Liouville series,
the stochastic equation describing the disordered system is
replaced by an effective nonlinear deterministic equation. The
SCBA or Kraichnan model [72] reads as

�kα (q, ω) = L̂1kαi j〈Gi j (q, ω)〉. (6)

Equation (6) together with Eq. (3) corresponds to successive
self-consistent approximations of �(q, ω) and 〈G(q, ω)〉. At
the zeroth step it is 〈G(q, ω)〉 = G0(q, ω). The first step of
the iteration procedure thus corresponds to the Born approx-
imation, whereas Eq. (5) corresponds to the second step.
The SCBA is usually used in the Rayleigh region by ne-
glecting the q dependence of the self-energy, thus achieving
an analytical expression [5,11,19,22,42]. Information about
the polarization properties of the acousticlike excitations in
topologically disordered systems carried from the SCBA can
be hidden by the unfeasibility to achieve analytical results at
q ∼ a−1, where the q dependence of the self-energy cannot be
ignored and where the mixing of polarizations is expected.
Furthermore, the SCBA has an inherent limit value for ε2,
defined by the threshold value beyond which the theory be-
comes unstable. The value of such an edge can be, however,
lower than the one corresponding to the actual degree of
elastic heterogeneity, e.g., observed by MD simulations in a
Lennard-Jones glass [11]. The SCBA can successfully catch
the trend and length scales related to the Rayleigh scattering
[5,11,19,22,42]. The overall strength of the attenuation can be,
however, underestimated [10,11,38,42,43]. Outcomes from
this procedure are discussed in the Supplemental Material
[88]. In terms of the perturbative series expansion, the SCBA
includes some terms not accounted by the Born approximation
or the GBA. We, however, observe that since the convergence
properties of the perturbative series expansion are unknown
to consider a larger number of terms, they do not necessarily
improve the approximation.

We adopt the hypothesis of local isotropy and intro-
duce the orthonormal basis defined by the direction of wave
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propagation (longitudinal) and the two orthogonal (trans-
verse) ones [32]. On this basis, the “bare,” the averaged
Green’s dyadic, and the self-energy are diagonal. The final
expression exploited to describe the diagonal element of the
mass operator in the GBA is

�kk (q, ω) = L̂1kkii lim
η→0+

1

c̃i
2

{
1

q̃2
0i,η − q2

+ 1[
q̃2

0i,η − q2
]2

ε2

c̃2
i

q2��̃1
ii(0, ωη )

}
, (7)

where q̃0i,η = ωη

c̃i
, ωη = ω + iη, η is a positive real vari-

able, ��̃1
ii(q, ω) = (ε2q2)−1[�1

ii j j (q, ω) − �1
ii j j (0, 0)], c̃i =

[(c0
i )2 + ε2�̃1

ii(0, 0)]1/2, c0
i is the phase velocity of the “bare”

medium for polarization i = L, T . In the next paragraph we
describe the passages leading from Eq. (5) to its approximate
expression (7). Specifics of �kk (q, ω) computations are out-
lined in Appendix A. The repeated indices kk, ii, j j = L, T
with L and T labeling longitudinal and transverse directions,
respectively. It becomes clear that the longitudinal and trans-
verse self-energies are both composed by two terms, each
one accounting, respectively, for the coupling with longitudi-
nal and transverse dynamics, i.e., �L(T ) = �LL(T T ) + �LT (T L).
We consider only spatial fluctuations of shear modulus in
agreement with previous literature studies [5,19,20]. The in-
troduction of fluctuations of the Lamé parameter [22,31,32] is
discussed in Supplemental Material [88]. Under the hypoth-
esis of local isotropy, R̃(q) can be factorized in the product
of a scalar correlation function r̃(q) and a tensor, which de-
pends only on the angle between the versors q̂ and ŝ [32].
We consider the simplest form of the shear modulus fluctua-
tions’ scalar correlation function, in real space an exponential
decay with correlation length a, corresponding to randomly
distributed spatial fluctuations. This function satisfies proper
consistency requirements [35]. In the vectorial Fourier space
it corresponds to the Lorentz function

r̃(q) = ε2 1

π2

q2a−1

(q2 + a−2)2
. (8)

The integrations over the wave vector and the angular coordi-
nates in Eq. (7) are performed analytically and numerically,
respectively. The input parameters of the GBA are a, ε2,
and c0

L(T ).
Beyond disorder, local anisotropy in amorphous solids can

promote or enforce the mixing of polarizations. It is possible,
in the frame of RMT, to account for both local and statistical
anisotropy [97]. We, however, neglected such effects here
because our aim is to point out how, even in an isotropic
medium, the disorder generates the mixing of polarizations.

B. Developing the generalized Born approximation

The GBA states for an approximate expression of the
mass operator which includes corrective terms to the Born
approximation in the framework of the perturbative series
expansion [82]. The Born approximation corresponds to
truncate the perturbative series expansion to the first or-
der. The next order approximation is stated in Eq. (5),
where the stochastic operator L̂1 acts on 〈Gii(q, ω)〉1 =

limη→0+ 1
c̃2

i
{ 1

q̃2
0i,η−q2−q2 ε2

c̃2
i
��̃1

ii (q,ωη )
}. 〈Gii(q, ω)〉1 can be ex-

panded in the Taylor series limη→0+
∑∞

n=0

[ ε2

c̃2
i

q2��̃1
ii (q,ωη )]n

[q̃2
0i,η−q2]n+1 . The

Taylor series is convergent almost everywhere in a domain
of the (q, ω) plane where the conditions ε2

c̃2
i
|��̃1

ii(q, ω)| < 1

and Im[��̃1
ii(q, ω)] > 0 are fulfilled [82]. In the case that

the scalar correlation function is an exponential decay it is
possible to find for each polarization a bounded region of
the wave-vector-frequency plane �i = (0, ωMax ) × (0, qi

Max ),
where the conditions above are fulfilled and the Taylor series
is thus almost everywhere convergent [82]. It follows that
�kk (q, ω) in Eq. (5) can be approximated for frequencies and
wave vectors inside the smaller of the �i domains by the
convergent series in the following [82]:

�kk (q, ω) ∼ lim
η→0+

1

c̃2
i

∞∑
n=0

L̂1kkii

×
⎧⎨
⎩

[
ε2

c̃2
i
q2��̃1

ii(q, ωη )
]n

[
q̃2

0i,η − q2
]n+1 θ

(
qi

Max − q
)⎫⎬⎭. (9)

The function θ (q) is the Heaviside function. The domain of
the wave-vector-frequency plane where Eq. (9) holds includes
both the Rayleigh region and the wave-vector region aq ∼
1, where the mixing of polarizations is expected [82]. We
truncate the Taylor series in Eq. (9) to the first order. Further-
more, up to wave vectors relevant to our interest, q = O(a−1),
assuming ��̃1(q, ω) ≈ ��̃1(0, ω) and then extending to in-
finity the upper integration boundary does not significatively
enlarge the error related to the given approximation, while
facilitating the analytical calculation [82]. Equation (7) is
thus retrieved. We observe that, while ��̃1

ii(q, ω) depends
on the specific physical character of the wave fields and of
the inhomogeneity domains, Eq. (9) preserves a generality
character and can provide the basis for the implement of the
GBA to fields other than acousticlike excitations in elasti-
cally heterogeneous media. Similarly, in place of a spatial
random distribution of the heterogeneity domains leading to
the exponential decay scalar correlation function, correlated
disorder with the proper correlation function can in principle
be considered.

C. Analysis of theoretical outputs

The experimental observations validate in glassy
[C8MIM]Cl the presence of the bending of the characteristic
energies dispersion (see Fig. 3). We superimpose to the
dynamic structure factors calculated by GBA such a bending
effect (see Fig. 6). This is obtained by a suitable normalization
[98] of the frequency of G0(q, ω) entering in Eq. (3), i.e.,
ω̃ = ω[ q0

qπ
sin( πq

q0
)]−1, where ω̃ states for normalized and

ω for unrenormalized frequency. In order to not overload
the notation in the following the tilde will be omitted.
q0 = 17.9 nm−1 is derived by the experimental dispersion of
the characteristic energy of longitudinal excitations obtained
by 1-DHO fitting model (see Fig. 3). The possible broadening
of the acousticlike excitations due to the existence of a
distribution of nearest-neighbor values is also taken into
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FIG. 4. Comparison between IXS spectra of glassy [C8MIM]Cl
(black circles with error bars) and calculated spectra (red lines)
obtained from GBA-modeled inelastic components (black lines) for
selected values of q.

account, similarly to what is done in Ref. [54]. The detailed
procedure is described in the Supplemental Material [88]. We,
however, emphasize that the bending mostly influences the
longitudinal dynamic structure factors at the edge or outside
the first pseudo-Brillouin zone, leaving almost unchanged
the spectra corresponding to wave vectors inside it (see
Supplemental Material [88]).

The quantities characterizing SL/T (q, ω) calculated by
GBA, i.e., broadening �L/T (q), characteristic energy �L/T (q),
relative intensity ĨL/T (2)(q) can be derived by a so-called
spectral function approach [23,31], i.e., by fitting the dy-
namic structure factors calculated by GBA with a fitting
model composed by one or two DHO functions [Eq. (2)],
as done for the IXS data. As was the case for experimental
data of glassy [C8MIM]Cl, this protocol eases the compar-
ison of GBA outcomes with results available in literature
for different classes of glass, most of which have been ob-
tained by exploiting the same phenomenological fitting model
functions [38,39,41–43,46,47,49–51]. From SL(T )(q, E ) ob-
tained by GBA, g(E )/E2 is derived by a numerical
integration

g(E )

E2
= 2

πq3
D

∫ qD

0
dq[SL(q, E ) + 2ST (q, E )], (10)

where qD is the Debye wave vector. The value of qD is ob-
tained by the relationship qD = (6π2)

1
3

q0

2π
.

III. DISCUSSION

The comparison between IXS spectra for selected q val-
ues in the first pseudo-Brillouin zone and calculated spectra
obtained by GBA is shown in Fig. 4. The dynamic struc-
ture factor SL(q, E ) in Eq. (1) is modeled by exploiting the
GBA in place of using the DHO-based model function in
Eq. (2). A zero-centered delta function I0δ(E ) is, also in this

FIG. 5. (a) Measured S(q) (black line) and scalar shear modulus
fluctuation correlation function r̃(q), used in GBA (dashed line).
The correlation length a is set to π

qFSDP
. (b) Pictorial representation

of the spatial configuration of glassy [C8MIM]Cl at nanoscale. The
aggregation of the alkyl chain generates the nonpolar domains whose
average size is 2a ∼ 2π/qFSDP.

case, added to SL(q, E ). The agreement between experimental
and theoretical spectra is very good. On an overall basis,
the adjustable parameters of the GBA are a, ε2, c0

L(T ) (see
Sec. II). In the case of glassy [C8MIM]Cl, however, the input
parameter a of GBA is fixed to π

qFSDP
. Figure 5 shows the

measured S(q) and r̃(q) with the assigned value of a. The
underlying relationship between qFSDP and a is highlighted.
The adjustable parameters of the GBA ε2 and c0

L(T ) have been
set by making the dispersion of �L(q) and �L(q) obtained by
fitting with 1-DHO or 2-DHO model functions the theoretical,
GBA-based, SL(q, E ) (see Sec. II C) overlapping the one
derived from the experimental data with the same DHO-based
fitting model function (Fig. 3). The numerical integration on
the angular coordinate can indeed overly slow down the time
of convergence of a direct fit of the experimental data with a
fitting model function directly obtained by GBA. Remarkably,
conversely to the case of DHO-based model function [Eq. (2)],
the GBA-based model function can fit the experimental spec-
tra in the whole first pseudo-Brillouin zone, without the need
of introducing further adjustable parameters in the high-q
region, i.e., switching from 1-DHO to 2-DHO fitting model
function. We notice, furthermore, that the input parameters
of the GBA and of the Born approximation are the same.
This allows to fully attribute the improvements introduced
by GBA to the approximation scheme used and not to the
introduction of further adjustable parameters. A comparison
between the features of the longitudinal acousticlike excita-
tions derived from GBA and Born approximation for the same
input parameters is presented in the Supplemental Material
[88]. It can be observed in Fig. 4 that for q sufficiently
large the GBA correctly describes the extra feature in the
inelastic component observed in the IXS spectra (see Sec. I).
As detailed below, the comparison with GBA results permits
to unambiguously attribute such a feature to the mixing of
polarizations. The q trend of the extra feature observed in
the GBA-based computation of SL(q, E ) can be furthermore
evaluated by inspection of Fig. 6. The figure shows the pro-
jection on the (q, E ) plane of the dynamic structure factors
and of the current spectra CL(q, E ) ∝ E2

q2 SL(q, E ), obtained by
GBA. Current spectra for two significant q values are further-
more shown. The extra feature in SL(q, E ) appears at q high
enough, while merging in the main peak when q is lowered.
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FIG. 6. (a) Projection on the (q, E ) plane of CL (q, E ), obtained from GBA. The frequency normalization of the “bare” Green dyadic in
Eq. (3) is enforced to account for the bending of the dispersion of the characteristic energies of acousticlike excitations. The maximum of
CL (q, E ) for each q is normalized to one. Black circles show the experimental values of �L obtained with the 1-DHO fitting model, blue
and green triangles the values obtained with the 2-DHO fitting model. (b) Projection on the (q, E ) plane of SL (q, E ). The low-energy feature
related to the mixing of longitudinal and transverse polarizations is here highlighted. (c), (d) Representative CL (q, E ) (black line) and CT (q, E )
(red line) obtained by exploiting the GBA in the low-q and high-q regions. The low-energy shoulder in CL (q, E ), generated by the mixing of
polarizations, is clearly observable. The dashed line shows the best-fit curve of CL (q, E ) obtained with 1-DHO fitting model.

It is closed to the characteristic frequency of the transverse
excitation. The endorsement of the fact that such a secondary
peak originates from the mixing of polarizations stems from
the observation that it disappears when in the longitudinal
self-energy �L = �LL + �LT , the cross term accounting for
the coupling with transverse dynamics �LT (q, ω) is set to
zero [82].

A detailed comparison between the experimentally and
GBA-derived characteristic quantities of the longitudinal
acoustic dynamics of [C8MIM]Cl glass is reported in
Fig. 7. The phase velocity, corrected for the bending of
the characteristic frequency dispersion VL(T )(q), shown in
Fig. 7, is obtained through the relationship VL(T )(q) =
�L(T )(q) π

q0 sin(qπ/q0 ) . In the Rayleigh region (aq � 1) the
dynamic structure factor related to longitudinal acoustic dy-
namics is characterized by a well-defined inelastic excitation
(see Figs. 4 and 6). The anomalous behavior in the Rayleigh
region is properly reproduced: the phase velocity of the acous-
ticlike excitations shows a gradual softening with respect
to its macroscopic (q → 0 limit) value while the attenu-
ation strongly increases, following the typical q4 trend of
the Rayleigh scattering [Figs. 7(a) and 7(c)]. We recall that
Kramers-Kronig relations link the two quantities [5]. At the
boundary of the Rayleigh region (aq � 1) the phase veloc-
ity starts to increase and, consequently, a local minimum is
observed in its trend. Meanwhile, a crossover from q4 to q2

power law is observed in the attenuation trend. Just below
the transition to a q2 trend, we observe a hump in the �

dispersion and a rapid increase of the phase velocity. These
features are related to the coupling between longitudinal and
transverse polarizations since they are also strongly affected
by the removing of the cross term �LT in �L. Similar features
have been reported in a theoretical characterization of elastic
excitations in polycrystalline aggregates drawn by the Born
approximation and ascribed to the coupling of longitudinal
with transverse dynamics [31]. The hump in the � trend can
be viewed as a prolongation of the q4 behavior observed in the
Rayleigh regime. It is stronger the bigger it is ε2 and as smaller
c0

T

c0
L

(see also Supplemental Material [88]). This latter fact em-
phasizes how in the case of longitudinal acoustic dynamics
at the edge of the Rayleigh region (aq � 1), where depo-
larization effects begin to affect the acoustic dynamics, the
coupling of polarizations, though not manifesting in a clear
peaklike feature in the dynamic structure factors, contributes
to the � increase. A scalar model can thus underestimate the
attenuation observed in this q region. In the region aq ∼ 1
the mixing of polarizations shows up, as discussed above.
For aq > 1 the coexistence of two excitations at different
characteristic energies, finally, can be observed [31,33,99].
This feature can be reproduced also by using a scalar Born
approximation [31,33]. In the case of glassy [C8MIM]Cl it
is observable in the transverse dynamics, as discussed in the
following.

The properties of the acoustic dynamics described above,
observed in the experimental characterization of the glassy
[C8MIM]Cl and retrieved by GBA, are typical of sev-
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FIG. 7. (a) Phase velocity (upper graph) and broadening (lower graph) of longitudinal acousticlike excitations obtained by IXS and GBA
as a function of q. Open and black circles show the values obtained from experimental data with the 1-DHO fitting model, respectively,
in the low- and high-q regions. Blue and green circles represent the values obtained with the 2-DHO fitting model. Stars mark the values
derived from GBA. Black stars are obtained by exploiting 1-DHO fitting model, blue and green stars 2-DHO fitting model. (b) Experimental
and theoretical broadening in the low-q region. The presence of Rayleigh scattering is highlighted. Full and dashed lines are guides to eyes
showing, respectively, the q4 and q2 trends. (c) Ratio of intensities of the two DHO functions modeling the inelastic features observed in the
high-q region observed in experimental data (diamonds) and GBA outcomes (crosses). (d) Experimentally derived g(E )/E 2 (black lines) and
acousticlike contribution to g(E )/E 2 obtained from GBA (red stars). Dashed line represents the experimental energy resolution.

eral topologically disordered systems, as confirmed by the
experimental studies reported in literature, mostly achieved by
IXS or INS [22,39,41–43,46,47,49,51]. A quantitative agree-
ment between experimental findings for [C8MIM]Cl glass and
GBA outcomes is obtained in the whole first pseudo-Brillouin
zone, as highlighted in Fig. 7. In particular, the following ex-
perimental features are quantitatively reproduced by the GBA:
(i) the Rayleigh scattering causing the q4 attenuation trend
and the softening of the phase velocity; (ii) the crossover at qc

from q4 to q2 trend in the �L(q) dispersion; (iii) the kink at qc

in the �L(q) dispersion; (iv) the presence of the low-energy
shoulder in SL(q, E ), related to the mixing of longitudinal
and transverse polarization; (v) the relative intensity of the
two inelastic features [Figs. 7(b) and 4]; (vi) the BP in the
reduced VDOS. We stress that the GBA allows modeling only
the acousticlike contribution to the VDOS and not the one
arising from pure molecular modes. An accurate quantitative
agreement is achieved, in particular the underestimation of the
overall strength of attenuation, which affects other mean field
RMTs, is prevented. The input parameters of the theory used
to reproduce the experimental data are c0

L = 2.29 meV/nm−1,
c0

T /c0
L = 0.52, which is a typical value for glasses [100],

ε̃2 = ε2

μ2 = 0.4, where μ is the average shear modulus, and
a = 1.1 nm. The value of a is set by S(q) measurements. The
value of c0

L = 3.48 × 103 m/s is typical for glasses (see, e.g.,
Ref. [39]). There is any available measurements of speed of

sound in glassy [C8MIM]Cl. This value is, however, con-
sistent with the speed of sound value observed in liquid
[C8MIM]Cl in the temperature range T ∈ [280–340] K [101].
The value of ε̃2 can be compared with the one extrapolated
from the numerical results of Ref. [60] for ILs with the same
cation as [C8MIM]Cl. By assuming that an estimation of ε̃2

can be obtained from the square of the ratio between the
FWHM and the center of the Gaussian function describing the
distribution of the values of local shear modulus in Ref. [60],
the agreement is quite good. The Supplemental Material [88]
shows how the features of GBA-based SL(q, E ) transform by
changing one at time the input parameters a, ε̃2, c0

T /c0
L.

Figures 8 and 9 finally show the features of the transverse
dynamics obtained for the same input parameters used to
reproduce the experimental results on longitudinal acoustic
dynamics. In the low-q region it is observed a well-defined
inelastic excitation characterized by (i) a crossover from q4 to
q2 trend in the �T dispersion at the q point where the char-
acteristic frequency of the acousticlike excitations matches
the BP energy; (ii) a softening of the phase velocity in the
Rayleigh regime; (iii) the Ioffe-Regel crossover at wave vector
and frequency point where π�T becomes larger than �T ,
occurring near the BP energy. At larger q, a high-energy
shoulder appears in CT (q, ω) (Figs. 6 and 8). This is not
entirely related to the mixing of polarizations. It is indeed
partially preserved when the term �T L is set to zero. These
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FIG. 8. Features of transverse dynamics obtained from GBA.
(a) Phase velocities of the two inelastic excitations observed in
ST (q, ω). (b) Projection on the (q, E ) plane of CT (q, E ).

results are in qualitative agreement with MD results in topo-
logical glasses [2,5,40] or liquids at high wave vectors [56,58].
The characterization of the transverse dynamics that emerges
from this study is further validated by the agreement between
the characteristic energy of the BP predicted through GBA
and observed by INS. The total VDOS is indeed mainly deter-
mined by transverse dynamics [5].

IV. CONCLUSION

Within the framework of the RMT we developed a simple
enough, mathematically tractable approximation allowing a
unified description of the acoustic dynamics at nanoscale in
glasses. The proposed model describes all the anomalies of
acousticlike excitations characterizing an amorphous solid in
the first pseudo-Brillouin zone, i.e., both the Rayleigh scatter-
ing and the mixing of longitudinal and transverse polarization
observed at higher wave vectors in several topologically dis-
ordered systems. The fact that the mixing of polarizations is
obtained as an outcome of an analytical model developed in
the RMT framework for a model glass, i.e., a random medium
with spatial fluctuating elastic moduli, in combination with
the numerous observations in different classes of glass of
features in S(q, E ), which can be traced back to it, outline
how, similarly to the Rayleigh scattering, the mixing of po-
larizations can be treated as a general property of acousticlike
excitations in amorphous solids. The insights which emerge

FIG. 9. Features of transverse dynamics obtained from GBA.
(a) π�T (circles) and �T (stars with line) of the low-frequency
inelastic feature observed in ST (q, ω). Full black and red dashed lines
are guides to eye showing, respectively, the q4 and q2 trends. The red
and black dashed-dotted lines point out, respectively, the broadening
crossover from q4 to q2 trend and the Ioffe-Regel crossover. (b) Re-
duced VDOS, g(E )/E 2.

are in agreement with experimental and MD simulation
observations reported in literature for different classes of
amorphous solid. A quantitative agreement is, furthermore,
observed for glassy [C8MIM]Cl, whose longitudinal acous-
tic dynamics and VDOS characterization, achieved by IXS
and INS, respectively, has been reported in this paper. Sig-
nificantly, the GBA allow a quantitative estimation of the
acousticlike attenuation related to Rayleigh scattering avoid-
ing underestimation, differently from other mean field models
developed in the RMT framework.

The theoretical framework built up can be thought as a
starting point for describing acoustic dynamics in different
kinds of glasses, composites, artificially structured materials,
ceramics, geophysical systems, or propagation of different
kinds of waves in disordered media. An interesting area of
application of the GBA may be the analysis of spin-wave
propagation in heterogeneous antiferromagnetic or ferrimag-
netic media. Although the polarization degrees of freedom are
frozen in ferromagnets, they are fully unlocked in antiferro-
magnets or ferrimagnets [102]. Since recent developments of
spintronics point to the design of magnetic logic gate based on
polarized spin waves [103], a prospective application of GBA
to heterogeneous magnetic media can have relevance even in
the design of magnon devices. Under suitable modification
of the scalar correlation function it is possible, furthermore,
to include also systems characterized by correlated disorder,
as well as quasiperiodically ordered metacrystals or phononic
crystals [104]. It should be, however, emphasized that in all
those cases where the size of the correlation length overlaps
with the size of the pseudo-Brillouin zone, the proper bare
Green dyadic, taking into account of the average periodic-
ity and symmetry of the medium, has to be considered in
order to calculate the self-energy, possibly involving the in-
troduction of lattice Green’s function formalism [70]. Another
interesting case would be the study of acoustic properties
in relaxor ferroelectrics, which are assumed to support polar
regions of nanometric scale below their Burns temperature.
The randomly distributed orientations of dipole moments may
result in a heterogeneous spatial distribution of the elastic-
ity tensor [105–107] and may thus be sensible to a study
combining IXS and GBA. Finally, specific developments of
this study can point toward a GBA solution of the Dyson
equation related to a stochastic Navier-Stokes equation for
a heterogeneous viscoelastic medium. This model is, e.g.,
introduced and discussed within the SCBA framework in
Ref. [108]. A space- and frequency-dependent shear modu-
lus is defined, encompassing a viscosity and high-frequency
shear modulus varying in space, generalizing the Maxwellian
space-independent viscoelastic coefficient. The exploiting of
the GBA in this framework can be relevant because fea-
tures in the dynamic structure factor possibly related to the
mixing of polarizations have been observed experimentally
[50,54,109,110] and by MD simulations [55,56,58] in several
liquids. Similar developments could also support the under-
standing of the origin of the two-peak structure observed in
the transverse current spectra of liquids in the high-frequency
region, as attested by recent MD studies [57,111,112].

This study emphasizes also how the large tunability of
the local structure of ionic liquids, which can be directed by
controlling chemical and geometrical molecular structure, as
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well as the fact that their mesoscale local topology has been
largely attested and analyzed in literature, can be exploited to
test theoretical models.
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APPENDIX A: SPECIFICS OF �L(T )(q, ω) IN THE
GENERALIZED BORN APPROXIMATION

In the orthonormal basis defined by the direction of wave
propagation q̂ (longitudinal direction) and the two orthogonal

ones (transverse directions) the averaged Green dyadic states

〈G(q, ω)〉 = 〈gL(q, ω)〉q̂q̂ + 〈gT (q, ω)〉(I − q̂q̂).

Similar expressions can be retrieved for G0
L(T )(q, ω) and

�L(T )(q, ω). As it follows from the properties of the inverse
tensor, it is

〈gL(T )(q, ω)〉 = 1

g0
L(T )(q, ω)−1 − �L(T )(q, ω)

.

The bare Green’s functions are

g0
L(T )(q, ω) = limη→0+

1(
c0

L(T )

)2

1(
ω+iη
c0

L(T )

)2 − q2
.

In the GBA each partial term of the self-energy, �kkii(q, ω), is
composed by two terms [see Eq. (7)], i.e.,

�kkii(q, ω) = �
(0)
kkii(q, ω) + �

(1)
kkii(q, ω)

with

�
(0)
kkii(q, ω) = L̂1kkii limη→0+

1

c̃i
2

1

q̃2
0i,η − q2

,

�
(1)
kkii(q, ω) = L̂1kkii limη→0+

1

c̃i
2

ε2

c̃2
i
q2��̃1

ii(0, ωη )[
q̃2

0i,η − q2
]2 .

We define q̃0i = ω
c̃i

, redefine for sake of simplicity η

c̃i
= η, and use the explicit expression of the operator L̂1 stated in Eq. (2).

Under the local isotropy hypothesis, in the orthonormal basis defined above, it is [32]

�
(0)
LL (q, ω) = lim

η→0+

∫
q̂q̂ŝŝ d3s r̃(q − s)

1

c̃2
L

1

(q̃0L + iη)2 − q2
,

�
(1)
LL (q, ω) = lim

η→0+

∫
q̂q̂ŝŝ d3s r̃(q − s)

1

c̃2
L

ε2

c̃2
L
s2��̃1

L(0, ω + iη)

[(q̃0L + iη)2 − q2]2
, (A1)

�
(0)
LT (q, ω) = lim

η→0+

∫
q̂q̂(I − ŝŝ) d3s r̃(q − s)

1

c̃2
T

1

(q̃0T + iη)2 − q2
,

�
(1)
LT (q, ω) = lim

η→0+

∫
q̂q̂(I − ŝŝ) d3s r̃(q − s)

1

c̃2
T

ε2

c̃2
T

s2��̃1
T (0, ω + iη)

[(q̃0T + iη)2 − q2]2
, (A2)

�
(0)
T T (q, ω) = 1

2
lim

η→0+

∫
(I − q̂q̂)(I − ŝŝ) d3s r̃(q − s)

1

c̃2
T

1

(q̃0T + iη)2 − q2
,

�
(1)
T T (q, ω) = 1

2
lim

η→0+

∫
(I − q̂q̂)(I − ŝŝ) d3s r̃(q − s)

1

c̃2
T

ε2

c̃2
T

s2��̃1
T (0, ω + iη)

[(q̃0T + iη)2 − q2]2
, (A3)

�
(0)
T L (q, ω) = 1

2
lim

η→0+

∫
(I − q̂q̂)ŝŝ d3s r̃(q − s)

1

c̃2
L

1

(q̃0L + iη)2 − q2
,

�
(1)
T L (q, ω) = 1

2
lim

η→0+

∫
(I − q̂q̂)ŝŝ d3s r̃(q − s)

1

c̃2
L

ε2

c̃2
L
s2��̃1

L(0, ω + iη)

[(q̃0L + iη)2 − q2]2
. (A4)

We perform the tensor products in spherical coordinates in Eqs. (A1)–(A4). The tensor product results are the same of the ones
reported in Refs. [31,32]. Therein, however, the arguments of the |s| integrals are different. We obtain

�
(0)
LL(LT )(q, ω) = ε2q2

∫ +1

−1
dx Lμμ

LL(LT )(x)
1

c̃2
L(T )

2

π
a−1I (0)

L(T )(q, ω, x),

�
(1)
LL(LT )(q, ω) = ε2q2

∫ +1

−1
dx Lμμ

LL(LT )(x)
1

c̃2
L(T )

2

π
a−1I (1)

L(T )(q, ω, x)
ε2

c̃2
L(T )

��̃1
L(T )(0, ω), (A5)
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�
(0)
T T (T L)(q, ω) = ε2q2 1

2

∫ +1

−1
dx Lμμ

T T (T L)(x)
1

c̃2
T (L)

2

π
a−1I (0)

T (L)(q, ω, x),

�
(1)
T T (T L)(q, ω) = ε2q2 1

2

∫ +1

−1
dx Lμμ

T T (T L)(x)
1

c̃2
T (L)

2

π
a−1I (1)

T (L)(q, ω, x)
ε2

c̃2
T (L)

��̃1
T (L)(0, ω), (A6)

where x = cos(q̂s), being q̂s the angle between the two versors q̂ and ŝ, and Lμμ
LL (x) = 4x4, Lμμ

LT (T L) = 4(1 − x2)x2, Lμμ
T T =

1 − 3x2 + 4x4. The transverse degeneracy is, furthermore, taken into account. The functions I (n)
k (q, ω, x) with k = L, T and

n = 0, 1, appearing in Eqs. (A5) and (A6), are defined by the following integrals:

I (n)
k (q, ω, x) = lim

η→0+

∫ ∞

0
ds s2 s2

[a−2 + q2 + s2 − 2qsx]2

[s2]n

[(q̃0k + iη)2 − s2]n+1
. (A7)

The integrals in Eq. (A7) can be calculated by exploiting a generalization of the Sokhotski-Plemelj theorem due to Fox [113,114].
The Sokhotski-Plemelj-Fox theorem states that

lim
η→0±

∫ b

a
dr

f (r)

[r − (r0 ∓ iη)]n+1
= #

∫ b

a
dr

f (r)

[r − r0]n+1
± iπ

n!

dn

dzn
f (z)|z=r0 , (A8)

where a, b, r0, and r are real variables: a < r0 < b, f (r) is a function which admits a complex extension f (z), which is
analytical in a region of the complex plane containing the interval [a, b] but not r0. The symbol # states for the Hadamard
finite part integral, equal to the Cauchy principal value when n = 0. We recognize in the second term of the second side of
Eq. (A8) the residue of order n of the integrand around the pole r0, Resn(r0) = 1

n!
dn

dzn f (z)|z=r0 . Relying on Eq. (A8) simple
passages lead to

I (n)
k (q, ω, x) = lim

η→0+

∫ ∞

0
ds s2 s2

[a−2 + q2 + s2 − 2qsx]2

[s2]n

[(q̃0k + iη)2 − s2]n+1
= #

∫ ∞

0
ds s2 s2

[a−2 + q2 + s2 − 2qsx]2

× [s2]n

[q̃2
0k − s2]n+1

+ (−1)n+1 iπ

n!

dn

dzn

{
z2 z2

[a−2 + q2 + z2 − 2qzx]2

[z2]n

[q̃0k + z]n+1

}
|z=q̃0k . (A9)

The second term in the second side of Eq. (A9) can be immediately calculated. Considering the first term, we notice that by
using integration by parts the Hadamard finite part integral can be traced back to a Cauchy principal value:

#
∫ ∞

0
ds s2 s2

[a−2 + q2 + s2 − 2qsx]2

[s2]n[
q̃2

0 − s2
]n+1

= P.V.
∫ ∞

0
ds

1

n!
(−1)n+1 1

(q̃0 − s)

dn

dsn

{
s2 s2

[a−2 + q2 + s2 − 2qsx]2

[s2]n

[q̃0 + s]n+1

}
. (A10)

The Hadamard finite part integral thus exists because it exists the Cauchy principal value of the integral in the second side
of Eq. (A10) since the integrand satisfies the Lipschitz property. The Cauchy principal value of the integral in Eq. (A10) can
be calculated by exploiting the residue theorem because in the path of the complex plane where the Cauchy principal value is
defined, which excludes the pole in q̃0, the integrand has only nonessential singularities. In order to achieve a complete evaluation
of the integrals in Eqs. (A1)–(A6), the quantities ��̃1

L(T )(0, ω) need yet to be characterized. ��̃1
L(T )(q, ω) = �̃1

L(T )(q, ω) −
�̃1

L(T )(0, 0), where �̃L(T ) is related to the first-step self-energy obtained through the Born approximation �1
L(T )(q, ω) being

�1
L(q, ω) = ε2q2�̃1

L(q, ω) = ε2q2
[
�̃1

LL(q, ω) + �̃1
LT (q, ω)

] =
∫

q̂q̂ r̃(q − s)
[
g0

L(s, ω)ŝŝ + g0
T (s, ω)(I − ŝŝ)

]
d3s, (A11)

�1
T (q, ω) = ε2q2�̃1

T (q, ω) = ε2q2
[
�̃1

T T (q, ω) + �̃1
T L(q, ω)

] = 1

2

∫
(I − q̂q̂)r̃(q − s)

[
g0

L(s, ω)ŝŝ + g0
T (s, ω)(I − ŝŝ)

]
d3s.

(A12)

By comparing Eqs. (A11) and (A12) with Eqs. (A1)–(A4) it is immediate to verify that �1
L(T ) is equivalent to �

(0)
L(T ) under the

substitution c̃L(T ) → c0
L(T ).

APPENDIX B: COUPLING OF ACOUSTICLIKE
EXCITATIONS WITH INTERMOLECULAR

VIBRATIONAL MODES

The reduced VDOS of [C8MIM]Cl glass in the energy re-
gion [7, 14] meV is characterized by a broad peaklike feature,

related to the presence of IVMs, which have characteristic
frequencies inside this energy interval as attested by Raman
spectroscopy [89]. An IVM can couple to acousticlike excita-
tions, affecting their effective phase velocity and attenuation
when its characteristic frequency matches the one of the
acousticlike excitations [115,116].

214309-14



RAYLEIGH SCATTERING AND DISORDER-INDUCED … PHYSICAL REVIEW B 102, 214309 (2020)

FIG. 10. (a) Phase velocity (upper graph) and broadening (lower
graph) as a function of q of the longitudinal acousticlike excita-
tions obtained by IXS data (circles) and GBA-derived acousticlike
excitations coupled to IVMs (stars). Open and black circles show
experimental outcomes obtained with the 1-DHO fitting model, re-
spectively, in the low- and high-q regions, blue and green circles
display the values obtained with the 2-DHO fitting model. Stars mark
the values derived from theoretical outcomes, black stars show the
results obtained with the 1-DHO fitting model, blue and green stars
with the 2-DHO fitting model. (b) Ratio of intensities of the DHO
functions related to the two inelastic features in the high-q region.
(c) Experimental (black lines) and theoretical (red stars) reduced
VDOS, g(E )/E 2. Red and dotted-dashed lines show, respectively, the
components of the reduced VDOS related to acoustic dynamics and
IVMs. Dashed line shows the experimental INS resolution.

To account for the coupling between acousticlike exci-
tations, described in the GBA framework, and IVMs we
introduce an additional term �IVM

L(T ) to the self-energy cal-
culated by GBA, �L(T ). The coupling of the IVM with
acousticlike excitations is treated to lowest order [3]. It

is thus �IVM
L(T ) = q2As

L(T )

ω2−ω2
0+iω�s

, where ω0 is the characteristic
frequency of the IVM, �s the broadening, and As

L(T ) is a
polarization-dependent coupling factor. The total self-energy
�t

L(T ) = �L(T ) + ∑
n[�IVMn

L(T ) ] enters into the expression of
〈GL,T (q, ω)〉 through Eq. (1) in the text. n indexes IVMs. We
furthermore introduce the IVM’s dynamic structure factor and
define the corresponding IVM’s contribution to the reduced

FIG. 11. (a) �T , multiplied by π (circles) and �T (stars with
line), of the low-frequency inelastic feature observed in ST (q, ω).
(b) Phase velocity of the two features of the inelastic components
observed in ST (q, ω).

VDOS:

SIVM(q, ω) = 1

π

q2

ω
Im

{[
ω2 − ω2

0 + iω�s + q2
(
As

L

×〈gL(q, ω)〉 + 2As
T 〈gT (q, ω)〉)]−1}

,

gIVM(E )

E2
= 2

πq3
D

∫ qD

0
dq SIVM(q, ω).

The contribution of IVMs to the reduced VDOS,
∑

n
gIVMn (E )

E2 ,
is added to that related to the acoustic dynamics to obtain
g(E )
E2 . To cope with literature data [89] we introduce two IVMs

with, respectively, characteristic frequency and attenuation
ω

(1)
0 = 7.2 meV, �(1)

s = 7.5 meV and ω
(2)
0 = 11 meV, �(2)

s =
6.5 meV. The value of the parameters As(1,2)

L(T ) has been set in
order to reproduce the measured VDOS. Outcomes from this
modeling are shown in Fig. 10 for the longitudinal dynamics.
They are contrasted against the corresponding experimental
features. The input parameters of the GBA are the same when
the coupling parameter is set to zero, but c0

T /c0
L is moved from

0.52 to 0.54. Figure 11 shows the outcomes for the transverse
dynamics. The presence of IVMs can influence the broadening
of SL(T )(q, ω) at frequencies higher than the BP frequency, as
well as slightly shifting the position of the BP in the reduced
VDOS. It does not account for the mixing of polarization of
acousticlike excitations, which can be instead described only
by GBA.
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