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Abstract This study investigates whether long-term changes in observed series of high flows can be
attributed to changes in land use via nonstationary flood-frequency analyses. A point process characteriza-
tion of threshold exceedances is used, which allows for direct inclusion of covariates in the model; as well
as a nonstationary model for block maxima series. In particular, changes in annual, winter, and summer
block maxima and peaks over threshold extracted from gauged instantaneous flows records in two hydro-
logically similar catchments located in proximity to one another in northern England are investigated. The
study catchment is characterized by large increases in urbanization levels in recent decades, while the
paired control catchment has remained undeveloped during the study period (1970–2010). To avoid the
potential confounding effect of natural variability, a covariate which summarizes key climatological proper-
ties is included in the flood-frequency model. A significant effect of the increasing urbanization levels on
high flows is detected, in particular in the summer season. Point process models appear to be superior to
block maxima models in their ability to detect the effect of the increase in urbanization levels on high flows.

1. Introduction

Frequency analysis of extreme flood events is routinely being conducted assuming that the events can be
adequately represented by a stationary modeling framework. Hydrologists have nevertheless always been
aware that this assumption of stationarity is, at best, a convenient approximation given the constant anthro-
pogenic and natural changes observed in catchments [Lins and Cohn, 2011; Stedinger and Griffis, 2011]. Tra-
ditionally, nonstationarity in flood estimation was either ignored or sometimes acknowledged through the
simple use of multiplication factors. For example, design rainfall and flood estimates are routinely increased
by a factor between 20% and 30% to account for future impacts of climate change [Madsen et al., 2014],
similarly urbanization is often accounted for by first deriving flood statistics as if a catchment is rural and
then postadjusting the as-rural estimates according to the level of urbanization in a given catchment [Kjeld-
sen, 2010; Madsen et al., 2014].

As Montanari and Koutsoyiannis [2014] point out, before switching to a fully nonstationary modeling para-
digm, one should provide scientific evidence that changes in the generation of extreme events can be
detected. If trends in the extreme processes are detected, the causes of such changes should be investi-
gated, to rule out, as far as possible, the influence of spurious information contained in short and highly
variable flood series. Therefore, as Merz et al. [2012] point out, next to the detection of trend, rigorous attri-
bution is needed, i.e., an understanding of the drivers of the detected change.

Many investigations have been carried out to detect and potentially attribute changes in high-flow regimes.
A number of studies focus on the changes in time of block maxima, although the effect of other covariate
on the properties of the distribution of hydrological extremes has also been explored. See, among others,
Delgado et al. [2010], Vogel et al. [2011], and Sun et al. [2014].

The impacts of urbanization on catchment flood characteristics have, at least conceptually, been accepted
for several decades [Leopold, 1968; Bailey et al., 1989; Packman, 1980; Shuster et al., 2005]. Various studies
have investigated whether an increase in the magnitude of observed flow records can effectively be linked
to changes in the urbanization levels [e.g., Beighley and Moglen, 2002; Konrad and Booth, 2002; Villarini et al.,
2009; Vogel et al., 2011]. In a study of AMAX series from 200 urbanized catchments in the UK, Kjeldsen [2010]
found that L-CV decreased and L-SKEW increased with increasing urbanization, though none of these
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effects were particularly strong. The increase of the magnitude of peak flows in urbanizing catchments is
due to a number of factors and the interplay between them. A reduction in the natural infiltration can be
expected due to the introduction of impervious surfaces, leading to an increase in the volume of storm run-
off. At the same time, the replacement of natural water courses with more efficient man-made drains
reduces the lag-time of the runoff response (see discussions in, e.g., Kjeldsen et al. [2013] and Miller et al.
[2014]). Next, the connectivity to drainage, termed effective impervious area (EIA) or directly connected
impervious area (DCIA), would also play a role in the catchment response to rainfall events [Shuster et al.,
2005]. The impact of urbanization could then be different according to the perviousness of the catchment
before the large increases in urbanization levels, or the design of the new impervious cover. Finally, urban-
ization is likely to affect the magnitude of smaller, more frequent, floods rather than the really large and
rare events [Hollis, 1975]. As we consider larger storms, the relative effect of the impervious area decreases
as the high intensity and volume of rainfall exceeds infiltration capacity of pervious surfaces, causing the
nonurban parts to behave more like an impervious surface.

As discussed in Prosdocimi et al. [2014] and later in this work, the record length available for annual max-
ima series (typically around 35 years in the UK) is not large enough to allow for an unequivocal detection
and attribution of trends via statistical testing, and the analysis of such block maxima can be highly influ-
enced by anomalies in the data series. Beside block maxima, peaks-over-the threshold series (POT), also
known as a Partial Duration Series (PDS), are frequently used to assess the behavior of extreme events
[see Madsen et al., 1997; Lang et al., 1999]. It can be shown that a connection exists between the models
typically used to estimate flood frequency using either block maxima or the POT series, and both meth-
ods would asymptotically lead to equivalent inference. The performance of different estimation methods
applied to block maxima and POT series are discussed in Madsen et al. [1997]. The analysis of threshold
exceedances would potentially be a better tool to detect and attribute the effect of different variables
on the high-flow properties as this would ensure that a larger number of data points (all characterizing
the extremal part of the distribution) are used to investigate the effects of the variables on high flows.
Threshold exceedances series would also potentially be less sensitive to outliers and leverage points
present in the data. In particular, the point process characterization for threshold exceedances is advo-
cated as this characterization allows for a simpler approach to nonstationarity modeling and can be
shown to be equivalent to the classical peaks-over-threshold modeling frequently used in hydrology
[Coles, 2001].

In this work, we present methods for attributing flood change that are in line with the suggestions by Merz
et al. [2012] within a case-control framework, by comparing high-flow series of two very similar catchments
in North England, which differ mainly with regard to the spatiotemporal development of urbanization. The
case catchment went through significant urbanization over the study period (1976–2010), while the paired
land use in the control catchment remained largely unchanged from the 1970s till present times. It is
assumed that the behavior of the two nearby catchments is broadly similar (a realistic assumption, as shown
by Andr�eassian et al. [2012]), so that changes in the peak flow behavior would reflect the changes in the
catchment properties. Further, the potential effects of other important drivers are accounted for in the mod-
els, which can explain a large part of the variability observed in the data. Assuming that the drivers included
in the models can explain a large part of the natural variability of flow peaks, the detected change in the
urbanizing catchment can be attributable solely to the increasing urban cover, in particular when compared
to the unchanged patterns in the high flows of the rural paired catchment. Paired catchments have been
widely employed in the assessment of the effects of changes in the catchment vegetation on river flow, in
particular in forest hydrology [Brown et al., 2005; Alila et al., 2009]. In this study, the effects of the changes in
land use on peak flows are investigated by assessing if any changes can be identified in the observed peak
flows of the paired catchments. A possible different approach would be to compare the observed peak
flows and the peak flows which one could expect from an hydrological model simulated under a different
land use scenario, as in, among others, Brath et al. [2006] and Harrigan et al. [2014]. Furthermore, in this
study a variable which actually describes the dynamic evolution of the catchment land use is used rather
than relying on time as a surrogate covariate. This allows for a stronger and more process-based attribution,
so that the attributed impact can be more easily extrapolated for increasing levels of urban cover. Also,
rather than relating the increase in the urban extent to the peak flow values only, the estimation focuses on
the net effect of urbanization after the climate variability is taken into account, in line with L�opez and
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Franc�es [2013]. In order to have a better assessment of the potential effects of urbanization on high flows,
both annual and seasonal data are analyzed in this work. This allows for a better understanding of the type
of changes in floods which might be expected with increasing urbanization levels.

2. Case Study Description

To identify the effects of urbanization on catchment flood response, it was necessary to identify a catch-
ment with increasing levels of urban land use and a nearby hydrologically similar rural catchment which
experienced no significant change in land use. If, after accounting for natural variability, any significant
trends can be detected in the high-flow data observed in the urbanizing catchment (the case catchment)
but not in the data from the rural catchment (the control catchment), these changes could be attributed to
the increasing urbanization with a greater degree of confidence.

Using the catchment similarity measure developed for regional frequency analysis in British catchments
[Environment Agency, 2008], the urbanized catchment of Lostock at Littlewood Bridge (gauging station
70005) was selected as a case study, while the nearby Conder at Galgate (gauging station 72014) was taken
as a control catchment. The two catchments are located in the North West of England (see Figure 1) and
have fairly long high-quality instantaneous flow records.

Key catchment descriptors of the two catchments, taken from Institute of Hydrology [1999], are also shown
in Figure 1: BFIHOST is a Base Flow Index representative of catchment responsiveness; FARL is an index of
Flood Attenuation by Reservoirs and Lakes; SAAR is the Standard period Average Annual Rainfall (1961–
1990); QMED is the median annual maximum flow, and URBEXT2000 is an index of urban extent in the year
2000. Beside the URBEXT2000 values, the other characteristics of the two catchments are quite similar,
although the area upstream of Lostock is larger. The Conder at Galgate catchment is a predominantly rural
catchment, which has seen very little change in land use, as testified by its inclusion in the undisturbed
benchmark catchments used by Hannaford and Marsh [2008]. In contrast, the Lostock at Littlewood Bridge
catchment experienced a significant increase in urban extent. Urban extent is calculated as a weighted
mean of the Urban and Suburban land use classes defined in the Land Cover Map 2000 data set (LCM2000)
[Fuller et al., 2002].

Additionally, in catchment 70005 the land use classes and associated URBEXT value were derived for each
decade using the method for mapping historical change in urban land use and impervious cover developed
by Miller and Grebby [2014]. This involved the processing of digitized historical maps produced by the UK
Ordnance Survey to produce mapping of urban land use and has been demonstrated to provide robust
estimates of urbanization. However, the values are only point estimates of urban extent for a single decade
and cannot provide detailed information on a finer time scale. The urban catchment 70005 (Figure 2)
changed from a predominantly rural catchment in 1970 (URBEXT 5 6.3%) to one having large areas of urban
development in 2010 (URBEXT 5 16.4%): a 260% increase in URBEXT.

URBEXT is a relatively simple measure developed in response to the need for a standard method to quantify
the artificially impervious cover of a catchment across the whole UK. It is a proxy for the hydrological and
hydraulic alteration of a catchment associated with urban development and makes no direct account for
the specific physical changes that will have occurred such as increased drainage network density or installa-
tion of attenuating features. It is nevertheless a valid indicator of changes in the catchment properties and
has the great advantage of being relatively easy to implement for any given catchment across the country.

3. Hydrometric and Land Use Data

Instantaneous peak flow data recorded at 15 minute intervals for the stations 70005 and 72014 were
acquired from the Environment Agency. A water-year in the UK runs from 1 October to 30 September:
throughout the rest of the paper, all the references to annual and yearly quantities should be interpreted as
referring to water-years, rather than calendar years. The data were checked against the annual maxima pub-
lished by Hi-Flows UK (http://www.ceh.ac.uk/data/nrfa/peakflow_overview.html) and against the monthly
maxima available at CEH Wallingford, to ensure that the identified peaks corresponded to genuine high
flows. Water-years in which less than 90% of the flow data were recorded were discarded from the analysis,
to ensure that no potentially large event would be missing from the analyzed data sets.
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Catchment averaged daily rainfall series for both catchments were extracted from a national grid of daily
rainfall totals at a 1 km resolution obtained by interpolating the observed values of a dense gauging net-
work [Keller et al., 2005]. In the years for which the peak flow data were available for the catchments under

Figure 1. Location of the two study catchments upstream of gauging station 70005 (urbanized catchment) and station 72014 (rural catchment). Key catchment descriptors [from Institute
of Hydrology, 1999] are also displayed.

Figure 2. Evolution of the urban extent in the Lostock at Littlewood Bridge catchment (station 70005). The year to which the image refers to is in indicated, with the corresponding
URBEXT value in parentheses.
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study, the national network had approximately between 3000 and 5000 functioning gauges. To give a rep-
resentation of the potential for high rainfall in each year and season the 99th percentile of the daily rainfall
series for each year and season were used for each catchment. In a national scale study, Prosdocimi et al.
[2014] had found that the 99th percentile of the annual catchment averaged daily rainfall series was signifi-
cantly correlated to block maxima values for most catchments in the UK.

Finally, for the Lostock at Littlewood Bridge catchment, yearly URBEXT values are constructed by interpolat-
ing between the decadal URBEXT point estimates.

4. Methods

Identifying the effect of urbanization on extreme events using block maxima and point process models
requires the extraction of two different data sets. The complete record of instantaneous flow recorded in a
period of M years at a gauging station consists of n* flow measurements recorded every 15 minutes,
r5ðr1; . . . ; rn� Þ. The corresponding annual maxima (AMAX) series is denoted as q5ðq1; . . . ; qMÞ and is
formed by selecting the single maximum value recorded in each water-year. Also, seasonal maxima series
can be extracted by considering the maximum flow recorded in the summer (April–September) and winter
(October–March) months. Conversely, peaks-over-threshold (POT) data consist of a series of independent
events extracted from the original r record by selecting only independent events exceeding a certain high
threshold value, denoted u. If a total of n threshold exceedances are extracted from r, the corresponding
POT series is denoted y5ðy1; . . . ; ynÞ. In this study, the procedures presented by Bayliss and Jones [1993]
were used to ensure independence between the extracted threshold exceedances. Rather than the classical
POT model, this study uses the more general point process characterization for POT data [Smith, 1989; Katz
et al., 2002], which allows for a more direct modeling of covariate effects on both the frequency and the
magnitude of threshold exceedances simultaneously.

The selection of the threshold to be used when building a POT series is a nontrivial task, and a number of
tools exist to select sensible threshold values [Coles, 2001; Lang et al., 1999]. This selection is even more
complicated when it is unsure whether the underlying series is nonstationary: the nonstationarity in the
flow series could be reflected in the use of a threshold changing with the covariates influencing the original
flow series, as discussed in Kysel�y et al. [2010]. In order to facilitate the comparison of results across the two
different catchments and across the annual or seasonal divisions the threshold u was selected to be the
value for which an average of four events per year (annual series) or two events per season (winter and
summer series) are recorded. The final POT annual series are also largely comparable to the series obtained
following the standard practice in the UK of choosing a threshold such that an average of five independent
events per year are kept in a POT series [Bayliss and Jones, 1993]. The chosen threshold levels have a return
period of about 1.2 years, and identify relatively high peak flows.

Different modeling strategies will be deployed to investigate the effect of urbanization and climate variabili-
ty on the magnitude of extreme events. Nonstationary GEV models (section 4.1) are used for the annual
and seasonal maxima series, and point processes (section 4.2) are used for the annual and seasonal thresh-
old exceedances.

4.1 Nonstationary Block Maxima
Block maxima are typically assumed to come from some heavy-tailed distribution, such as the Generalized
Extreme Value (GEV) distribution, which can be shown to be the limiting distribution of maxima [Coles,
2001]. Assuming that Q, the random variable describing flow maxima, follows a GEV distribution, the pdf
and cdf of Q are defined as [Hosking and Wallis, 1997]:

fqðqÞ5r21e2ð12nÞt2e2t
; > t5

2n21ln ð12nðq2lÞ=rÞ; when n 6¼ 0

ðq2lÞ=r; when n50
;

(
(1)

FqðqÞ5exp f2e2tg; (2)

where l, r, and n are the location, scale, and shape parameters, respectively. The set of flow values q
in which the function is defined is determined by the shape parameter n as: 21 < q � l1r=n if
n> 0; –1< q<1 if n 5 0; l1r=n < q <1 if n< 0.
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In the stationary case, the sample of block maxima q is assumed to come from a GEV distribution
Q � GEVðl;r; nÞ, with all the parameters constant. In the nonstationary case, one or more of the parameters
can be assumed to be changing as a function of one or more covariates. A simple way to include such
dependence in the model structure is, for example, to allow the location parameter to depend linearly on

some covariates (X1, . . ., Xp) so that lðX1; . . . ; XpÞ5b01
Xp

j51

bj Xj , where the bi values are the (p 1 1) regres-

sion model parameters. The location of the distribution would then have a different value for each observa-
tion i according to the corresponding value of the observed covariates sample x i5ðx1i; . . . ; xpiÞ.

The relatively short records which are typically available can undermine the capability of an analysis of
AMAX data to detect relevant changes in flood patterns. The use of POT series ensures that larger samples
are used in change detection. In particular, as discussed in section 5.3, the analysis of AMAX data can be
influenced by specific characteristics of some years.

4.2. Threshold Exceedances: A Point Process Characterization
POT series contain information on two different processes: (i) the frequency at which a certain high thresh-
old is exceeded and (ii) the magnitude of the peak flows. Typically, the number of events recorded in each
year is assumed to be Poisson distributed, while the magnitude of the exceedances above the threshold u
is assumed to be distributed according to a Generalized Pareto (GP) distribution [Lang et al., 1999]. It can be
shown [e.g., Coles, 2001] that the annual maxima Q of a flow record in which the threshold exceeding pro-
cess follows the standard Poisson-GP assumption for POT data, are asymptotically GEV distributed:
Q � GEVðl;r; nÞ.

Exceedances above the threshold can be considered as a random process in which information on the fact
that an exceedance occurred (and therefore the total number of exceedances) and the magnitude of the
exceedance itself are of interest. Rather than using two separate processes to describe the threshold
exceedance rate and the magnitude of the exceedance itself, it would be advantageous to characterize the
different aspects of threshold crossing simultaneously. For example, for a fixed threshold u, a threshold
exceeding process with a heavier tail is expected to result in more exceedances of the threshold, i.e., the
threshold exceedance rate should be related to the threshold value u and to the properties of the tail of the
flow distribution. The point process characterization of threshold exceedance allows such relationship to be
explicitly modeled, thus allowing for a simpler and more elegant model. See Coles [2001] and Katz et al.
[2002] for a discussion of point processes and their use in the analysis of hydrological extremes.

In the theoretical development, the flow observations ri in the complete record r are assumed to be independ-
ent from each other, and to have an equal probability p5PrfR > ug of exceeding the threshold. Even if the
independence of all the ri observations does not hold, the results which follow can be shown to be valid once
independent peaks are extracted from the original sample. In particular, for a fixed threshold u, the probability
of exceeding the threshold, p, can be derived from reworking equation (2) as (see Appendix A):

p5Pr R > uf g � 1
n�

12n
ðu2lÞ

r

� �1=n

: (3)

The total number of threshold exceedances can then be described by a Binomial process Binðn�; pÞ, with
mean k 5 pn*, which can be approximated by a Poisson distribution PoisðkÞ. For a threshold u, a subset of n
independent peaks would be larger than u. A point process Pn, which records the fact that an exceedance
of the threshold u was observed and the value of the exceedance itself Yi, is defined as

Pn5fði=ðn11Þ; YiÞ : i51; . . . ; ng;

where the first component is a counter for the number of threshold exceedances and is standardized to the
[0, 1] scale as (i/(n 1 1)) to simplify the notation later on. For a given threshold u, the Pn process contains
information on the number of data points above u observed on the whole [0, 1] interval and the magni-
tudes of the threshold exceedances, which have values within [u,1).

A point process P(A) in a subset of the plane A5ðt1; t2Þ3½u;1Þ (with ðt1; t2Þ � ½0; 1�), which spans the space
between the two time points (t1, t2) in the abscissa and the space between [u,1) in the ordinate, would
record the number and magnitude of events above the threshold observed in the region A. Threshold
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exceedances are assumed to be independent from each other and equally probable in each part of the [0,
1] time line, so that the number of threshold exceedances recorded in A should be dependent on the value
of the threshold u and on the properties of the threshold exceeding process, and should be proportional to
the width of the interval (t2– t1). The number of events recorded in the region A5ðt1; t2Þ3½u;1Þ is thus dis-
tributed as a Poisson with mean KðAÞ:

KðAÞ5Kððt1; t2Þ3½u;1ÞÞ5ðt22t1Þ 12n
ðu2lÞ

r

� �1=n

: (4)

The point processes characterization of threshold exceedances thus allows for a unified modeling frame-
work for both the number of exceedances above the threshold and the magnitude of such exceedances.
The magnitude and number of exceedances are strictly connected: for a fixed threshold u, a process charac-
terized by fatter tails (i.e., larger exceedances magnitudes) would result in a more frequent crossing of the
threshold. Point processes make the modeling of such connection straightforward, since the average num-
ber of exceedances in a year, which is proportional to the equation shown in (4), is described by the param-
eters of a GEV distribution: l, r, and n.

This is a particularly useful feature when investigating nonstationarity series, as the exceedance rate can
change as a function of relevant covariates in a pattern similar to the one which is observed in the exceed-
ance magnitude. One can then model one or more of the parameters as function of some covariates (X1,
. . ., Xp). For example, the effect of some covariates (X1, . . ., Xp) on the l parameter can be investigated by fit-

ting a model such as lðX1; . . . ; XpÞ5b01
Xp

j51

bj Xj , so that the impact of (X1, . . ., Xp) on both the size and fre-

quency of flood events can be assessed simultaneously.

In this work point, processes are employed to model the annual and seasonal peaks-over-threshold (POT)
data, and to investigate the potential changes in both the frequency and the magnitude of above the
threshold events. As a matter of comparison, nonstationary block maxima models as described in section
4.1 are also investigated.

4.3 Summary of Models Used in the Study
Two types of data were extracted from the continuous flow record at both annual and seasonal scale for
both the urban and the rural catchment:

1. The block maxima values, i.e., annual and seasonal maxima. The random variable describing these values
is denoted by Q.

2. The values across the whole record and across the seasonal records which exceed a fixed threshold u,
with u chosen differently for each of the annual and seasonal series. The threshold exceedances are
extracted from the raw ðri; . . . ; rn� Þ data set as independent peaks. The random variable describing these
values is denoted by Y.

For each catchment, a set of covariates (X1, . . ., Xp) is available, providing quantitative representations of
potential drivers of change and variability in the flood records. These include (i) the 99th percentile of the
daily rainfall of each season or year (rain), (ii) the water-year in which any event was recorded (time), and (iii)
for catchment 70005, the URBEXT value in each year (urbext). The covariates available in this work are at
best a rough approximation of all the different aspects which underlie the flood generation process, but
they can still be useful to understand the contribution of different elements on high flows.

To assess the potential drivers of change in high flows, different models are constructed, in which the
effects of the covariates on the parameters describing the flood process are quantified. Further, the esti-
mated impact of each covariate is compared between the urban and rural catchments to verify if the effect
is different in the catchment with increasing urbanization. The estimated models investigate the effect of
the covariates on the location parameter l, and only linear effects are considered: a visual check of the rela-
tionship between the different covariates against the response variables Q and Y does not show any striking
nonlinear relationship. Models to take into account the effect of covariates on the scale or shape parameter
could be evaluated within both the annual maxima and the point process modeling framework. Initial
attempts to have the scale parameter changing as a function of the covariates indicated that this yields to
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much less significant improvements in the likelihood than considering change only in the location. Conse-
quently, this work will only consider change in the location parameter, and the associated challenges of
incorporating covariates into block maxima and point process models. Nevertheless, the modeling frame-
works presented in this work could potentially be employed to investigate changes in all parameters of the
distribution.

Both annual and seasonal data are analyzed to investigate if the potential changes appear to be more pro-
nounced in any of the seasons. Since the seasonal data are a subset of the annual data, the interpretation
of results for the seasonal analyses should take the results for the annual series into account.

A summary of the models used in this study is given below and in shown schematically in Table 1.

4.3.1. Block Maxima Models
The following models are fitted to the block maxima (Q), assuming a Generalized Extreme Value
distribution:

1. Model BM0: Q � GEVðl; r; nÞ with all parameters estimated as constants—this is the stationary case.

2. Model BM1r: Q � GEVðlðrainÞ; r; nÞ with the location modeled as a function of the 99th percentile of the
daily rainfall, lðrainÞ5b01b1rain. This model assesses the effect of the potential for high rainfall on the
high flows recorded in each year.

3. Model BM1t: Q � GEVðlðtimeÞ; r; nÞ with the location modeled as a function of the water-year in which
each event is recorded, lðtimeÞ5b01b2time. This model corresponds to the more standard models fitted
in many trend studies, and estimates the effect of time on high flows.

4. Model BM2rt: Q � GEVðlðrain; timeÞ;r; nÞ with the location modeled as a function of both rainfall and
time lðrain; timeÞ5b01b1rain1b2time. This model estimates the effect of each one of the two covariates
given that the other covariate is also taken into account. The value of b2 represents the residual effect of
time after the potential for high rainfall in each year is included in the model.

The following models are also fitted to the data from the urbanizing catchment:

1. Model BM1u: Q � GEVðlðurbextÞ; r; nÞ with the location modeled as a function of the urban extent
lðurbextÞ5b01b3urbext. This model evaluates the impact of the increasing urbanization on high flows.

2. Model BM2ru: Q � GEVðlðrain; urbextÞ;r; nÞ with the location modeled as lðrain; urbextÞ5b01b1rain
1b3urbext. Similar to Model BM2rt, this model assesses the effect of both covariates together.

The models BM1u and BM2ru are an improvement compared to the standard trend analysis in the sense that
URBEXT, a variable which relates to key properties of the catchment, rather than time, is employed as cova-
riate. Although URBEXT and time are correlated, and, for this catchment, no decrease in URBEXT is recorded
in time, using URBEXT rather than time would deliver a better inference in terms of the ability to quantify
the effect of changes in the catchment on the high-flow process.

Table 1. Summary of the Models Fitted to the Block Maxima and Peaks-Over-Threshold Data

Model Model Name

Covariates

Location Functionrain time urbext

Block maxima Q � BMðl; r; nÞ BM0
	 	 	 l 5 b0

BMðlðrainÞ; r; nÞ BM1r X 	 	 lðrainÞ5b01b1rain
BMðlðtimeÞ; r; nÞ BM1t

	 X 	 lðtimeÞ5b01b2time
BMðlðrain; timeÞ; r; nÞ BM2rt X X 	 lðrain; timeÞ5b01b1rain1b2time
BMðlðurbextÞ; r; nÞ BM1u

	 	 X lðurbextÞ5b01b3urbext
BMðlðrain; urbextÞ; r; nÞ BM2ru X 	 X lðrain; urbextÞ5b01b1rain1b3urbext

Point process Y � PPðl; r; nÞ PP0
	 	 	 l 5 b0

PPðlðrainÞ; r; nÞ PP1r X 	 	 lðrainÞ5b01b1rain
PPðlðtimeÞ; r; nÞ PP1t

	 X 	 lðtimeÞ5b01b2time
PPðlðrain; timeÞ; r; nÞ PP2rt X X 	 lðrain; timeÞ5b01b1rain1b2time
PPðlðurbextÞ; r; nÞ PP1u

	 	 X lðurbextÞ5b01b3urbext
PPðlðrain; urbextÞ; r; nÞ PP2ru X 	 X lðrain; urbextÞ5b01b1rain1b3urbext
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4.3.2. Threshold Exceedances Models
Next, a set of point process models are defined, which use threshold exceedances to investigate the effect
on extreme flows of the same covariates used for the block maxima models. These same models fitted to
the block maxima are fitted to the threshold exceedances Y:

1. Model PP0: Y � PPðl; r; nÞ.

2. Model PP1r: Y � PPðlðrainÞ;r; nÞ.

3. Model PP1t: Y � PPðlðtimeÞ; r; nÞ.

4. Model PP2rt: Y � PPðlðrain; timeÞ;r; nÞ.

5. Model PP1u: Y � PPðlðurbextÞ; r; nÞ.

6. Model PP2ru: Y � PPðlðrain; urbextÞ;r; nÞ.

When fitting all the models presented in Table 1, the values of rain, time, and urbext are rescaled to (0, 1) to
make the estimated bi parameters comparable.

The parameters of each model are estimated using the maximum likelihood (ML) estimation procedure,
which allows to build confidence intervals based on the approximate normality of ML estimates. The esti-
mated values of the regression coefficients bi and of the scale and shape parameter r and n, with the corre-
sponding 95% confidence intervals, are computed by numerically maximizing the likelihood functions
described in Appendix A.

5. Results

5.1 Block Maxima Regressions
Results for all the six GEV models (one stationary, five nonstationary) fitted to the annual maxima data for the
urban catchment are presented in the top left corner of Figure 3. The difference between each model resides
in the covariates used to model the location parameter, while the scale (r) and shape (n) parameters are
assumed to be constant and not related to the covariate values. ML estimates for r and n and their standard
errors in each model are shown in Table 2. The table also shows the (double negative) log-likelihood and the
Akaike Information Criterion (AIC) values for each model. These values can be used to assess the potential
improvements which adding one or multiple variables can have in the model performance. As discussed in
Coles [2001], Galiatsatou and Prinos [2007], and Madsen et al. [2014], the log likelihood values can be used to
perform likelihood ratio (LR) tests and evaluate if the addition of a covariate in a model corresponds to a
substantial increase in the variance explained by the model. LR tests can be performed only for nested mod-
els, i.e., models for which the model with less parameters can be obtained by constraining some of the
parameters of the model with more parameters. For example, BM1r is nested within BM2rt, since BM1r

corresponds to BM2rt with b2 5 0. A likelihood ratio test at a confidence level a is built by comparing the val-
ues of the difference between the double log likelihood of two nested models against the (1 2 a) quantile of
a v2

k distribution, with k being the difference in the number of parameters between the two models. For
example, for the winter series of the rural catchment the difference of the double likelihoods of the BM1r and
BM0 models is 24.05, while it is 2.16 for a test of BM1t against BM0: the first value is larger than 3.84 (approxi-
mately the 95th quantile of a v2

1), which indicates that adding rain as a covariate significantly increases the
likelihood, while the second LR test indicates that adding time alone as a covariate does not add much to
explanatory power of the model. Similarly, one can test the significance of BM2rt against BM1r and BM1t: the
two LR test have values 2.18 and 24.07, indicating that adding time once rain is included in the model does
not yield a significant increase in the likelihood. In contrast, if only time had been added in the model in the
initial step, the addition of rain would highly increase the explanatory power of the model.

Comparing the log likelihoods of nested models via LR tests allows for a formal testing procedure, although
this is only valid for nested models. To compare models which are not nested, and rank models fitted to the
same data set the Akaike Information Criterion (AIC) [Akaike, 1973] can be used. The AIC is a measure that is
also based on the log likelihood value attained by each model. Higher values of likelihood are obtained
when adding more parameters in a model, so the AIC is constructed by subtracting to the log likelihood a
penalty component equal to the number of parameters used in each model. For a model parametrized by p
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parameters, a log likelihood value log-likðM̂Þ is computed and the AIC is typically defined as
AIC522ðlog-likðM̂Þ2pÞ. Models which fit the data very well but have a large number of parameters are
penalized over models which might yield a similar log likelihood value using a smaller number of parame-
ters. Models with lower AIC should be preferred to models with higher AIC, but unlike the LR test, no cutoff
value is given to determine whether the difference between two AIC values is large enough to dismiss one
model. To allow for a full comparison between all models, both the log likelihood and the AIC values are
reported in Table 2, while detailed information on the estimation of the location functions are presented in
Figure 3.

In Figure 3, estimates for the regression parameters bi in the location models are indicated by the col-
ored symbols, with each color and symbol identifying a specific covariate. The colored bars represent
the 95% confidence intervals for the parameters. The first location model, the stationary case BM0, has a
constant location b0, and its estimate is shown as a black downward triangle (�) and is located in the
top left of the plot. The second model (BM1r) includes the 99th annual rainfall quantile as a covariate
and the estimated b1 value and confidence interval are shown as a blue square (�) and line. The sym-
bols and lines in this second model indicate the estimated values and 95% confidence intervals for both
b0 and b1 in model BM1r, respectively. Similarly, estimates of b0 and b2 for the model with time as the
only covariate (model BM1t) are shown in the third block of the plot as a black downward triangle and
a green upward triangle (�). The same symbol and color scheme applies for the estimates of models in
which both the 99th rainfall quantile and time are used to model the location (BM2rt). Finally, estimates
for the urbanization parameter (b3 in model BM1u and BM2ru) are shown as purple dots (•). The horizon-
tal dashed line which indicates the 0 value is drawn and if a confidence bar crosses the dashed line,
the parameter cannot be considered significantly different from 0 at a 95% confidence level and is
shown as a hollow symbol.

Figure 3. Results for the block maxima models: results for (left) the urbanized catchment and (right) the rural catchment; results for (top) the annual series, (middle) the winter series,
and (bottom) the summer series.
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Overall, Figure 3 summarizes the results for all six GEV regression models fitted to the block maxima of all
seasons for both the urbanized and the rural catchment. For each plot, the symbol and color scheme dis-
cussed above was used, except that results for the rural catchment (right plots) never include urban extent
as a covariate. Noticeably, time appears to have a significant effect in the annual and summer series of the
rural catchment when time only is included in the model (BM1t), but falls just short of being significant if
rainfall is also included in the model (BM2rt) for the summer series. The effect of rainfall in the summer series
of the urban catchment is not significant when only rainfall is included in the model (BM1r) and is less mark-
edly significant than in the other seasons when time or urbanization enter the model. This is partially due
to the influence of a particular high-flow event recorded in 1983, as discussed in section 5.3. The effect of
urbanization appears to be markedly significant for the annual and the summer series, while in the winter
series it is almost nonsignificant; see section 5.3 for further discussion. The likelihood ratio tests which can
be built using the information in Table 2 can also be used to understand the impact of including each cova-
riate in the regression model. For the annual series of the urban catchment, for example, a LR test of BM2rt

against BM1r has a value of 3.68 and falls very short of being significant, while when the urban extent is
included in the model (BM2ru) the LR test against BM1r with a value of 3.93 is just about significant at a 95%
confidence level. The BM2ru model also attains the lowest AIC value, an additional indication that this would
be the preferred model for the data under study.

5.2 Point Processes
Results for all six point process models for all seasons (annual, summer, and winter) in both the urbanized
and the rural catchment are presented in Figure 4, using the same symbols and color scheme as in Figure 3.
Results for the scale and shape parameters, along with the negative log likelihoods and the AIC values, are
shown in Table 3. One first notable feature of the results is that, unlike the results for the block maxima, for
all catchments and seasons, rainfall is a significant covariate. Once rainfall is taken into account (PP2ru), the
urbanization extent appears to be significant for all seasons, with a very strong signal appearing in the
summer series. If only urbanization is included in the model (PP1u) for the winter series, it appears to be
nonsignificant, but it is a nonnegligible covariate when rainfall is included (PP2ru). This shows that including
the rainfall information can lead to a different understanding of the net impact of urbanization. Also, while
urbanization is significant in the PP2ru model, time is not significant in PP2rt, which indicates that the
increase observed in the winter high flows is not constant, but changes at a speed related to the increase of
impervious cover in each year. This shows the advantage of describing the changes in the high flows gener-
ating process as a function of a covariate which describes the actual changes in the catchment rather than
looking at changes on the temporal scale only.

Table 2. Estimate (Standard Error) of the Scale and Shape Parameters, Negative Log Likelihood, and AIC for the GEV Modelsa

Model

Urban Catchment Rural Catchment

r̂ (s.e.) n̂ (s.e.) 22Log-Lik AIC r̂ (s.e.) n̂ (s.e.) 22Log-Lik AIC

Annual BM0 4.78 (0.67) 0.03 (0.13) 206.38 212.38 6.18 (0.92) 0.21 (0.16) 210.51 216.51
BM1r 4.27 (0.62) 0.01 (0.14) 199.62 207.62 4.53 (0.70) 20.02 (0.17) 198.98 206.98
BM1t 4.07 (0.60) 20.07 (0.13) 199.47 207.47 5.79 (0.85) 0.24 (0.15) 205.09 213.09
BM2rt 3.96 (0.57) 20.02 (0.13) 195.94 205.94 4.82 (0.85) 0.17 (0.23) 195.90 205.90
BM1u 4.15 (0.59) 20.03 (0.13) 199.18 207.18
BM2ru 4.04 (0.57) 0.01 (0.12) 195.69 205.69

Winter BM0 5.03 (0.66) 0.20 (0.11) 209.36 215.36 5.55 (0.84) 0.19 (0.17) 204.26 210.26
BM1r 3.85 (0.55) 0.15 (0.14) 193.51 201.51 2.96 (0.54) 20.26 (0.21) 180.21 188.21
BM1t 4.86 (0.62) 0.19 (0.09) 207.00 215.00 5.24 (0.77) 0.15 (0.15) 202.10 210.10
BM2rt 4.10 (0.71) 0.37 (0.22) 189.54 199.54 3.19 (0.64) 20.07 (0.29) 178.03 188.03
BM1u 4.74 (0.61) 0.19 (0.09) 205.32 213.32
BM2ru 4.86 (1.16) 0.85 (0.29) 182.42 192.42

Summer BM0 5.54 (0.95) 20.08 (0.21) 220.38 226.38 4.83 (0.68) 20.05 (0.12) 216.52 222.52
BM1r 5.57 (0.88) 0.01 (0.18) 217.30 225.30 3.89 (0.54) 0.00 (0.12) 199.14 207.14
BM1t 4.52 (0.72) 20.16 (0.16) 209.96 217.96 4.86 (0.67) 0.06 (0.12) 212.15 220.15
BM2rt 4.02 (0.70) 20.24 (0.19) 205.02 215.02 3.79 (0.50) 0.05 (0.11) 195.62 205.62
BM1u 4.12 (0.73) 20.27 (0.20) 207.81 215.81
BM2ru 3.66 (0.70) 20.35 (0.23) 202.56 212.56

aBold values indicate the lowest negative log likelihood and AIC attained.
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For the rural catchment, time is never a significant covariate and no changes can be detected for the high
flows of this catchment in any season. The AIC values for the PP2rt models in all seasons are very close to
the PP1r, indicating that the additional complexity in the model obtained by adding one variable is not

Figure 4. Results for the point process models: results for (left) the urbanized catchment and (right) the rural catchment; results for (top) the annual series, (middle) the winter series,
and (bottom) the summer series.

Table 3. Estimate (Standard Error) of the Scale and Shape Parameters, Negative Log Likelihood, and AIC for the Point Process Modelsa

Model

Urban Catchment Rural Catchment

r̂ (s.e.) n̂ (s.e.) 22Log-Lik AIC r̂ (s.e.) n̂ (s.e.) 22Log-Lik AIC

Annual PP0 4.57 (0.39) 0.06 (0.08) 569.29 575.29 4.49 (0.58) 20.23 (0.13) 519.18 525.18
PP1r 4.45 (0.34) 0.12 (0.07) 554.16 562.16 4.20 (0.40) 20.02 (0.09) 495.62 503.62
PP1t 4.59 (0.40) 0.05 (0.08) 564.15 572.15 4.48 (0.57) 20.22 (0.13) 518.52 526.52
PP2rt 4.46 (0.35) 0.11 (0.07) 550.59 560.59 4.18 (0.39) 0.00 (0.09) 493.32 503.32
PP1u 4.57 (0.40) 0.05 (0.08) 559.65 567.65
PP2ru 4.45 (0.35) 0.11 (0.07) 546.10 556.10

Winter PP0 4.49 (0.55) 0.11 (0.14) 373.39 379.39 4.60 (0.70) 20.07 (0.20) 354.51 360.51
PP1r 4.56 (0.46) 0.28 (0.09) 356.83 364.83 4.95 (0.55) 0.20 (0.10) 334.07 342.07
PP1t 4.48 (0.55) 0.11 (0.14) 373.09 381.09 4.60 (0.70) 20.07 (0.21) 354.51 362.51
PP2rt 4.66 (0.46) 0.41 (0.16) 353.84 363.84 4.98 (0.54) 0.24 (0.10) 331.90 341.90
PP1u 4.46 (0.54) 0.10 (0.14) 371.05 379.05
PP2ru 4.65 (0.45) 0.67 (0.17) 346.66 356.66

Summer PP0 6.57 (0.76) 0.15 (0.09) 410.34 416.34 4.32 (0.57) 20.06 (0.13) 379.34 385.34
PP1r 6.63 (0.71) 0.25 (0.10) 393.95 401.95 4.54 (0.54) 0.09 (0.10) 361.18 369.18
PP1t 6.35 (0.74) 0.07 (0.08) 390.86 398.86 4.41 (0.57) 0.00 (0.12) 377.85 385.85
PP2rt 6.31 (0.71) 0.11 (0.08) 380.05 390.05 4.52 (0.54) 0.08 (0.11) 361.14 371.14
PP1u 6.37 (0.73) 0.09 (0.08) 389.77 397.77
PP2ru 6.32 (0.71) 0.12 (0.08) 376.65 386.65

aBold values indicate the lowest negative log likelihood and AIC attained.
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compensated by a noticeable increase in the likelihood. For the summer season in fact, the lowest AIC is
attained by the PP1r model. The fact that no significant effect of time is detected in the rural catchment,
combined with the strong significance of the urbext parameters in the urban catchment gives evidence of a
significant effect of the increased urbanization levels on the location parameter of the distribution of peak
flows. Compared to the results for the block maxima shown in Figure 3, the assessment of the statistical sig-
nificance of the covariates differs. In particular, differences are seen in the significance of the rainfall variable
in the rural catchment and the effect of rainfall and urbanization on the winter series in the urban catch-
ment, where a strong link between change in floods and change in urbanization is identified.

5.3 The Effect of Influential Points
The exceptional events which characterize some years can have a large influence in the assessment of sig-
nificance of the different covariates. In Figure 5, the annual and seasonal maxima series for each catchment
are plotted against the corresponding 99th rainfall quantile of the catchment averaged daily rainfall. The
values corresponding to the events in 1980 and 1983 are indicated as, respectively, squares and triangles.
Visually, it would appear that for some series the events in these years are leverage points. Notably for the
urbanized catchment the event in 1983 is characterized by very high potential rainfall values, although the
maximum flow in this year is not equally extreme; the summer flow maximum recorded in this year is very

Figure 5. Scatterplot of annual and seasonal maxima against the appropriate rainfall covariate. Data points for the year 1980 and 1983 are indicated, respectively, as squares and
triangles.
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low. The events recorded in year 1980 were characterized by very high winter 99th rainfall percentiles for
both catchments and very high annual 99th rainfall percentile for the rural catchment. The recorded values
for the annual and winter flow maxima in this year are fairly high and in line with the general shape of the
relationship between the rainfall variable and flow maxima. For the urbanized catchment, the odd behavior
of the 1983 data point can partially be explained by the fact that, although in 1983 very high values were
recorded for the 99th rainfall quantile (31.75 mm), the year was not particularly wet and was characterized
by an average daily rainfall of 2.68 mm, in line with the overall average daily rainfall of 2.76 mm. On the
other hand, the high 99th rainfall quantile value of 1980 coincided with a fairly wet year with a mean daily
rainfall well above the average (3.73 mm).

In Figures 6 and 7, the results for the GEV models fitted to the block maxima without the data points of
1980 and 1983, respectively, are shown. These should be compared with the results shown in Figure 3.
Unsurprisingly, the biggest differences between the results for the complete series and the results of the
modified series can be seen for the catchments and seasons for which either the data point of 1980 or the
data point of 1983 was visibly different from the bulk of the data points. For example, for the winter series
of the urbanized catchment, a more pronounced effect of time and urbanization is visible in Figure 6. The
1980 winter record is characterized by a high rainfall and a high-flow value. In contrast, the 1983 winter, is
characterized by a rainfall value of magnitude similar to the one of 1980, but by a much smaller flow value.
Since both records are also characterized by relatively low URBEXT values, the difference in the flow value
cannot be explained by this additional covariate in the models fitted to the whole data set. When the 1980
event is removed, the relatively modest peak flow of 1983 in the presence of a high rainfall can partially be
explained by the low URBEXT value recorded in that year.

Considering the urban catchment, removing the 1980 annual, winter, or summer events from the data set
lowers the estimated effect of the rainfall variable, while the estimated effect of urbanization increases. For

Figure 6. Results for the block maxima models for series without the data point of 1980: results for (left) the urbanized catchment and (right) the rural catchment; results for (top) the
annual series, (middle) the winter series, and (bottom) the summer series.
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the rural catchment, the removal of the 1980 leverage point has the opposite effect and allows the esti-
mated effect of rainfall to increase. A similar effect is observed for the summer series for the urbanized
catchment when the data point for 1983 is removed: the estimated effects of rainfall in the left bottom cor-
ner of Figure 7 are stronger than the ones seen in Figure 3. This is due to the relatively low flow maxima
registered in the summer of 1983 despite the rainfall variable being one of the highest on records. Remov-
ing the 1983 event also changes the significance assessment of the rainfall variable in the BM2rt and BM2ru

models in the urbanized catchment.

The interpretation of the results is not radically changed if the year 1980 or 1983 is removed from the data
set, but the strength and the significance of some results is slightly different. The differences in the results
for the point process models (not shown) when the data for year 1980 or 1983 are similar to the ones seen
for the GEV model, although somewhat smaller, since more data points are used to fit the model and the
parameters show less variability. This stresses once more the challenges connected with attribution of
change in block maxima series: due to the relative short series it is enough for one point to behave some-
how differently from the main pattern for the results to become so variable that they can mask the actual
signal of change. The use of POT data ensures that larger sample sizes are used for trend detection, making
the testing procedure generally less variable and more powerful.

6. Conclusions

Overall, the results for the point process models presented in section 5 indicate that there is a statistically
significant effect of increased urbanization levels on the high flows recorded at the Station 70005 for all sea-
sons such that the magnitude and frequency of floods increase with increasing urbanization extent. This

Figure 7. Results for the block maxima models for series without the data point of 1983: results for (left) the urbanized catchment and (right) the rural catchment; results for (top) the
annual series, (middle) the winter series, and (bottom) the summer series.
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effect is significant in all seasons, with a stronger impact detected for the summer extreme flows. The
observed effect has been shown to be present especially when the high year to year variability, represented
by process-related variables such as the 99th quantile of daily rainfall is taken into account in a nonstation-
ary model. Further, no statistically significant effect of time has been detected in a paired, almost pristine,
nearby catchment which is hydrologically similar to the urbanized catchment under study. Since URBEXT, a
variable specific to the actual urbanization process, rather than time is used in the model, the effect identi-
fied by the statistical models can be directly attributed to the land use change from predominantly rural in
1970 to heavily urbanized by 2010.

Peaks-over-threshold series, rather than block maxima, have proven to be useful to perform such attribu-
tion. The use of POT data rather than block maxima results in larger samples which are representative of
only the high end of the hydrograph and can be less affected by specific conditions observed in one year.
In this study, the point process characterization of POT series is advocated, rather than the traditional POT
approach. Point processes allow for a unique framework in which the effect of different covariates on the
process parameters can be easily included. The direct inclusion of the covariates and the larger series used
when analyzing threshold exceedances allow for a better assessment of the impact of urbanization on high
flows.

The point processes framework has been employed to assess the impact of different covariates on high
flows and to carry out flood-frequency analysis in a nonstationary framework. Nevertheless, such analysis
requires the availability of long records of the instantaneous flow data and of the covariates of interest, like
a good measure of land use change and some summary information of the rainfall observed in the catch-
ment. The high demands in term of data availability and modeling continues to make the attribution of
drivers of changes in high flows a challenging task.

Appendix A

A1. Derivation of Equation (3)
Given a set of independent identically distributed random variables ðR1; . . . ; Rn� Þ with common distribution
function FR(x), the distribution of Mn�5maxðR1; . . . ; Rn� Þ can be derived as

PrðMn� � uÞ5PrðR1 � uÞ3 . . . 3PrðRn� � uÞ5FRðuÞn
�

(A1)

by virtue of the independence of the Ri.

Taking the traditional Extreme Value theory result: FðgðMn� ÞÞ ! GEVðl; r; nÞ, with gðMn� Þ an appropriate
standardization of Mn� , from equation (2) follows:

FRðuÞn
�
� exp 2 12n

u2l
r

h i1=n
� �

: (A2)

It then follows that

n�ln FRðuÞ � 2 12n
u2l

r

h i1=n
: (A3)

Using a Taylor expansion of ln FRðuÞ around FR(u) 5 1 gives

ln FRðuÞ � 2 12FRðuÞf g: (A4)

which, combined with equations (A2) and (A3), gives

PrðR > uÞ512FRðuÞ � 2ln FRðuÞ �
1

n�
12n

u2l
r

h i1=n

A2. Likelihood Function for a (Nonstationary) GEV Model
Denote by q5ðq1; . . . ; qMÞ the vector of M observed block maxima. The log likelihood to be maximized to
derive ML estimates for the l, r and n parameters of a GEV distribution with n 6¼ 0 can be derived from
equation (1) as
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lðl; r; n; qÞ5
XM

i51

ln ðf ðl; r; n; qiÞÞ

52Mln r2
Xn

i51

tið12nÞ1e2ti
� � (A5)

taking ti52n21ln ð12nðqi2lÞ=rÞ.

For the nonstationary case in which the location is defined as a function changing linearly with one covari-
ate X, i.e., lðxÞ5b01b1, the log likelihood would then become a function to be maximized over four param-
eters (b0, b1, r, and n), and is obtained by conveniently adjusting (A5) as

lðb0; b1; r; n; q; xÞ52Mln r2
Xn

i51

tið12nÞ1e2ti
� �

taking ti52n21ln ð12nðqi2b02b1xiÞ=rÞ.

A3. Likelihood Function for a (Nonstationary) Point Process Model
The likelihood for a point process model can be derived from the threshold exceedance process building
on the Generalized Pareto assumption for the threshold exceedances.

Consider that out of the n* observations ðr1; . . . ; rn� Þ, only a small number of independent peaks n exceeds
the threshold u, while for ðn�2nÞ observations the only information relevant to the extremal part of the dis-
tribution is that they are below the threshold. Denoting as Y the random variable which describes the mag-
nitude of the peaks above the threshold, the likelihood of the threshold exceedance model can then be
written as

Lðl; r; n; rÞ5
Yn�2n

i51

Prðri < uÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ri under the threshold

Yn

i51

fPrðYi5yiÞg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ri peaks above the threshold

5ðPrðR < uÞÞn
�2n
Yn

i51

PrfYi5yig:

(A6)

Points not exceeding the threshold contribute to the first component. The nonexceedance of the threshold
happens with probability 1 2 p, with p defined in (3). The first component can then be further reworked to
be

ðPrðR < uÞÞn
�2n � ð12pÞn

�
� exp f2n�pg

5exp 2 12n
ðu2lÞ

r

� �1=n
( )

;
(A7)

where the fact that n is small compared to n* and that n* is large are used.

The second component of the likelihood, which describes the contribution of the actual threshold exceed-
ance, assuming a Generalized Pareto distribution (Y � GPð~r; nÞ, with ~r5r1nðu2lÞ), can be reworked to be

PrfYi5yig5PrfYi > ugPrfYi5yijYi > ug5pf ðyi2u; ~r; nÞ

5p~r21 12
nðyi2uÞ

~r

� �2111=n

5ðn�Þ21 12n
ðu2lÞ

r

� �1=n

~r21 12
nðyi2uÞ

~r

� �2111=n

:

5ðrn�Þ21 12n
ðyi2lÞ

r

� �2111=n

(A8)

Plugging the results of equations (A7) and (A8) in (A6) gives the likelihood of a point process:
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Lðl; r; n; rÞ / exp 2 12n
ðu2lÞ

r

� �1=n
( )

r21
Yn

i51

12n
ðyi2lÞ

r

� �2111=n

: (A9)

For the nonstationary case in which the location parameter is taken to be a linear function of the covariate
X, li5b01b1xi , the likelihood in equation (A9) becomes

Lðb0; b1; r; n; r; xÞ / r21
Yn

i51

exp 2 12n
u2b02b1xi

r

� �1=n
( )

12n
yi2b02b1xi

r

� �2111=n

:
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