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Abstract

Stationary processes have been used as statistical models for dependent quantities evolving

in time. Stationarity is a desirable model property, however, the need to define a stationary

density limits the capacity of such models to incorporate the diversity of the data arising in many

real life phenomena. Alternative models have been proposed, usually resulting in a compromise,

sacrificing the ability to establish properties of estimators, in favor of greater modeling flexibility.

In this paper we present a family of time-honogeneous processes with nonparametric sta-

tionary densities, which retain the desirable statistical properties for inference, while achieving

substantial modeling flexibility, matching those achievable with certain non–stationary models.

For the sake of clarity we restrict attention to first order Markov processes.

Posterior simulation involves an intractable normalizing constant. We therefore present a

latent extension of the model which enables exact inference through a trans-dimensional MCMC

method. Numerical illustrations are presented.

Keywords: Markov model; Mixture of Dirichlet process model; Latent model; Dependent Dirich-

let process; Time-homogeneous process.

1 Introduction

Since the advent of Bayesian posterior inference via simulation techniques (Escobar, 1988;

Gelfand and Smith, 1990), it has been possible to estimate Bayesian nonparametric models.

While the mixture of Dirichlet process (MDP) model, introduced by Antoniak (1974) and Lo

(1984), remains one of the most popular models, the advances in simulation techniques have

now allowed models to move away from standard set–ups involving independent and identically

distributed observations, to cover more complex data structures, such as regression models and

time series models. We cite the book of Hjort et al. (2010) which contains examples, references,

and discussions of these various models; and specifically Chapter 6, for a review on MCMC

based methods.

Before proceeding it is useful here to establish some notation. For the independent and

identically distributed case, assume we have data (y1, . . . , yn). The basic mixture model takes
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the form

f(y) =

∫
k(y|θ) dP (θ),

where k(·|θ) is a density for all θ ∈ Θ and P is a distribution function on Θ. If the prior for P

is assigned as a Dirichlet process (Ferguson, 1973) then, according to Sethuraman (1994), there

is a stick–breaking representation for P given by

P =

∞∑
j=1

wj δθj ,

where the weights (wj) are defined in terms of independent and identically distributed (vj),

from the beta(1, c) density, for some c > 0, as w1 = v1 and subsequently, for j > 1,

wj = vj
∏
l<j

(1− vl).

The (θj) are typically taken as independent and identically distributed from some density func-

tion g(θ), and independently of the weights. Other stick–breaking constructions are possible,

based on alternative beta distributions, which, obviously, correspond to different priors on P .

See Ishwaran and James (2001) for more details.

Perhaps one area that has not been fully exploited from a Bayesian nonparametric point

of view, and involving the Dirichlet mixture model, is time series data. There is a need, in

the context of time series, for flexible models which can accommodate complex dynamics ob-

served in real life data. While stationarity is a desirable property which facilitates estimation

of relevant quantities, it is difficult to construct stationary models for which both the transition

mechanism and the invariant density are sufficiently flexible. Many attempts have been made,

often resulting in a compromise between flexibility and statistical properties. On the one hand,

flexible transition mechanisms have been designed for which the resulting processes are not

stationary; which may be purposefully achieved by the introduction of time as a covariate in a

regression model (see e.g. Griffin and Steel, 2006, 2011; Zhu et al., 2005; Williamson et al., 2010),

or may simply be a consequence of the model construction, for which stationarity conditions

have not been established (see e.g. Müller et al., 1997; Tang and Ghosal, 2007). On the other

hand, stationary models with a flexible transition mechanism have been proposed, for which the

stationary density is restricted (Mena and Walker, 2005) or for which the construction is too

complicated for efficient inference (Mart́ınez-Ovando and Walker, 2011).

2



In this paper, we propose a model with nonparametric transition and stationary densities,

which enjoys the advantages associated with stationarity, while retaining the necessary flexibil-

ity for both the transition and stationary densities. We demonstrate how posterior inference

via MCMC can be carried out, focusing on the estimation of the transition density, both for

stationary and non–stationary data–generating processes. For ease of exposition we only con-

sider first order time series data and models, but the construction we propose can be adapted

for higher order Markov dependence structures using multivariate normal kernels rather than

one dimensional ones. Since the term non-stationarity is generally used in the literature to refer

to general time varying processes, we clarify that our analysis is limited to time homogeneous

processes for which the transition density does not vary with time.

At this point it is worth elaborating on the merits of having both the stationary and the

transition densities represented as infinite mixture models. The idea is that no matter what

new transition mechanism arises in reality, there are sufficient components within the model

to absorb the changes. This clearly would not be true for a finite dimensional model. Hence,

and illustration will bear this out, we believe that the combination of stationarity and infinite

mixtures provides a powerful tool for modelling what might resemble highly irregular processes.

In Section 2 we describe the model and a latent variable extension is presented in Section 3.

Section 4 provides a description of the MCMC method for posterior inference, for a particular

choice of parametric mixture kernel. Finally, in Section 5 we present some examples for which

inference is carried out, given a simulated sample from a known model. The first two examples

involve the estimation of transition and stationary densities; the final two, the estimation of

transition densities, when the stationary density does not exist.

2 Time series model

In this section we construct a flexible stationary model with nonparametric invariant and

transition densities, i.e. both densities have an infinite mixture form. We begin with a simple

normal first order stationary autoregressive model, AR(1).

Denote by

Kθ(y, x) = N2

(
(y, x)|(µ, µ),Σ

)
,
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the bivariate normal density with mean µ ∈ R and covariance matrix

Σ = σ2

 1 ρ

ρ 1

 ,

for some −1 < ρ < 1 and σ2 > 0, making θ = (µ, ρ, σ). Clearly,

Kθ(y) =

∫
Kθ(y|x)Kθ(x) dx = N(y|µ, σ2),

so we can define a time homogeneous Markov process with stationary density Kθ(y), through

the transition probability

P
(
xn+1 ∈ A|xn

)
=

∫
A

Kθ(y|xn)d y; A ∈ A,

with corresponding transition density given by the conditional

Kθ(y|x) = N
(
y|µ+ ρ(x− µ), (1− ρ2)σ2

)
.

Note that this corresponds to the normal AR(1) model, but the parametrization has been

chosen to guarantee stationarity, without additional conditions on the parameters.

As with all simple parametric models, the dynamics of this process will be easily overwhelmed

by real data. The aim of this paper is to construct a nonparametric version of the autoregressive

model, by reproducing the construction of the transition mechanism as the conditional density

for a given joint. We propose defining a nonparametric mixture directly over the bivariate

density Kθ(y, x), therefore preserving the stationarity.

In the general case we take

fP (y, x) =

∫
Kθ(y, x) dP (θ).

In particular, this can be represented as

fP (y, x) =

∞∑
j=1

wj Kθj (y, x),

when P is a discrete probability measure given by

P =

∞∑
j=1

wj δθj .

Following the same principle used in the parametric case, we define the transition density as the

conditional density

fP (y|x) =

∑∞
j=1 wj Kθj (y, x)∑∞
j=1 wj Kθj (x)

.
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Then the transition probability measure is given by

P
(
xn+1 ∈ A|xn

)
=

∫
A

fP (y|xn)d y; A ∈ A,

which defines a first order time-homogeneous stationary process with invariant density

fP (y) =

∞∑
j=1

wj Kθj (y).

The transition mechanism can be expressed as a nonparametric mixture of transition densities

with dependent weights,

fP (y|x) =

∞∑
j=1

wj(x)Kθj (y|x),

where

wj(x) =
wj Kθj (x)∑∞

j′=1 wj′ Kθj′ (x)
. (1)

Therefore, we have constructed a model for which both the transition and the stationary densities

are defined as nonparametric, i.e. infinite dimensional, mixtures.

So far, we have only defined what Mart́ınez-Ovando and Walker (2011) refer to as a bench-

mark model. In the past, however, this model was considered to be intractable due to the infinite

mixture appearing in the denominator of the dependent weight expression. A contribution in the

present paper is a method, delineated in the following section, to overcome such intractability,

therefore enabling posterior inference for the model.

3 Likelihood function and latent model

Let us consider a sample xn = (x0, . . . , xn). The likelihood function for the model is given by

fP (xn) = fP (x0)

n∏
i=1

fP (xi|xi−1) = fP (x0)

n∏
i=1

 ∞∑
j=1

wj(xi−1)Kθj (xi|xi−1)

 , (2)

where the dependent weights are given by expression (1) and the first observation is assumed

to arise from the stationary density,

fP (x0) =

∞∑
j=1

wj Kθj (x0).
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However, in order to simplify the notation, in the following we will consider, without loss of

generality, the conditional likelihood

fP (xn|x0) =

n∏
i=1

fP (xi|xi−1) =

n∏
i=1

 ∞∑
j=1

wj(xi−1)Kθj (xi|xi−1)

 , (3)

thus assuming a fixed initial point X0 = x0.

Expression (3) is familiar in the context of nonparametric mixture models, and different

methods for posterior inference for this type of likelihood model have been proposed. Such

methods are usually divided into two families: the so called marginal methods rely on integrating

out the random distribution function from the model, thus removing the infinite dimensional

parameters (see e.g. Escobar, 1988; MacEachern and Müller, 1998; Neal, 2000); other methods

work by sampling a finite but sufficient number of variables at each iteration of a Markov chain

simulation scheme with the desired stationary distribution (see e.g. Muliere and Tardella, 1998;

Ishwaran and Zarepour, 2000; Papaspiliopoulos and Roberts, 2008; Kalli et al., 2011). We will

use the latter idea, as it is more convenient in the present case, in which we also have to deal

with the intractable component in the denominator of (1). Accordingly, we introduce for each

i an allocation variable di ∈ {1, 2, . . .}, and use the latent model

fP (xn,dn) =

n∏
i=1

wdi(xi−1)Kθdi
(xi|xi−1)

=

∏n
i=1 wdi Kθdi

(xi−1)Kθdi
(xi|xi−1)∏n

i=1

∑∞
j=1 wj Kθj (xi−1)

. (4)

Once again, in order to illustrate the ideas, while keeping the notation simple, we consider a

bivariate Gaussian kernel and mix over the mean and correlation coefficient, keeping the variance

fixed across mixture components, so as to avoid overparametrization (see further comments in

section 5). In other words, in what follows, we take

Kθj (y|x) = N
(
y|µj + ρj(x− µj), (1− ρj2)σ2

)
;

Kθj (x) = N(x|µj , σ2).

In this case, the denominator in (4) can be rewritten as

σ−n
n∏
i=1

 ∞∑
j=1

wj exp
{
− 1

2 (xi−1 − µj)2/σ2
} .
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We now observe that the product terms are bounded by 1, and hence it is possible to use

the identity ∞∑
k=0

(1− c)k = c−1,

which holds for any 0 < c < 1. Consequently, for each i, we can substitute ∞∑
j=1

wj exp
{
− 1

2 (xi−1 − µj)2/σ2
}−1

with
∞∑
ki=0

1−
∞∑
j=1

wj exp
{
− 1

2 (xi−1 − µj)2/σ2
}ki ,

bringing the infinite sum from the denominator to the numerator of the likelihood expression.

Furthermore, we may use the (ki) as latent variables and introduce, for each i and l = 1, . . . , ki,

new allocation variables, zi,l ∈ {1, 2, . . .}, in the same spirit of the di introduced before. There-

fore, a latent expression for dealing with the denominator in (4) is given by

σn
n∏
i=1

ki∏
l=1

wzi,l

[
1− exp

{
− 1

2 (xi−1 − µzl,i)2/σ2
}]

.

This combines with the numerator to give the full joint latent model,

fP (xn,dn,kn, zn) = σn
n∏
i=1

wdi N
(

(xi, xi−1)|(µdi , µdi),Σdi
)

×
ki∏
l=1

wzi,l

[
1− exp

{
− 1

2 (xi−1 − µzi,l)2/σ2
}]

,

for which inference can be achieved via posterior simulation through the usual methods, as we

will show in the following section. Notice that the subindex associated with the matrix Σ in the

above expression refers to the component-wise correlation coefficient ρdi .

It is easy to check that the original likelihood is recovered by summing over the latent

variables dn = {di : i = 1, . . . , n}, the kn = {ki : i = 1 . . . , n} and the zn = {zi,l : i =

1, . . . , n; l = 1, . . . , ki}. Their introduction, therefore, does not alter the model, but makes

posterior simulation for the (µj), (wj), σ and ρ possible via MCMC. We refer the reader to the

supplementary material for more details, including the particular case in which the mixing is

done over the means only, while the complete corvariance structure, represented by ρ and σ2,

remains constant across components.
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4 Posterior inference via MCMC.

The Bayesian model is completed by defining assigning a prior to P ; effectively, over σ and the

(wj , µj , ρj)
∞
j=1.A typical choice is that of a stick–breaking process prior, i.e. for independently

distributed Beta(aj , bj) variables, (vj)
∞
j=1, for some aj , bj > 0 (see Ishwaran and James, 2001),

let
w1 = v1, and for j > 1, wj = vj

∏
l<j

(1− vl).

In this paper, we focus on a Dirichlet Process prior, for which aj = 1 and bj = b.

For τ = σ−2 we use a gamma prior, and for each ρj , a discrete uniform prior on R ⊂ (−1,+1),

independently across j. The (µj) are taken independent and identically distributed from a

base measure, which we choose to be a Normal distribution. With some care and reasonable

restrictions on the priors, the results can be extended for component dependent variance (σ2
j );

however, this does not seem a good idea due to unidentificability issues introduced by the

additional parameters (see the supplementary material for details).

Together with the joint latent model, the prior specification provides a joint density for all

the variables which need to be sampled for a Monte Carlo based posterior estimation, i.e. the

model parameters σ, (wj , µj , ρj)
∞
j=1,and the latent variables

(
(zl,i)

ki
l=1, di, ki

)n
i=1

.

There is still an issue due to the infinite state space for the (zl,i, di), corresponding to the

infinite number of mixture components. One way to overcome this is to use the slice sampling

technique of Kalli et al. (2011) (we refer the reader to the supplementary material for more

details). However, as we have mentioned before, our model has to deal with the infinite mixtures

of both the numerator and the denominator of the likelihood expression, which are represented

by the two sets of indexing variables, (di) for the numerator (zl,i) for the denominator. This

increases the sensitivity of the simulation algorithm to the slice sampling parameters. Therefore,

in the following, we will use a more stable algorithm based on an adequate random truncation

(see Muliere and Tardella, 1998; Ishwaran and James, 2000, 2001).

As is well known, at each iteration of the MCMC, the (wj)
∞
j=1 can be calculated as w1 = v1

and wj = vj
∏
l<j(1 − vl) for j > 1. The (vj) must be independently sampled from the full

conditional distribution, which can easily be identified as

f(vj | · · · ) = Beta(1 + nj +Nj , b+ n+j +N+
j ),
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where

nj =
∑
i

1(di = j); Nj =
∑
i,l

1(zi,l = j); n+j =
∑
i

1(di > j); N+
j =

∑
i,l

1(zi,l > j).

Clearly, we cannot sample an infinite number of weights, therefore, we sample only (wj)
J
j=1,

for J = max(J1, J2), where J1 = max{zl,i, di : i = 1, . . . , n; j = 1, . . . , ki} ensures the inclusion

of all components active at the current iteration; and J2 = min{j :
∏
l<j(1 − vl) < ε} for a

sufficiently small ε > 0, ensures that the sum of the J sampled weights is close enough to one.

In other words, for j > J , wj is almost zero and, therefore, the probability of sampling an index

equal to such j at the current iteration is negligible.

A discrete prior for the component-wise correlation coefficient, ρj results in a discrete full

conditional distribution, with

P(ρj = r| · · · ) ∝ π(r)(1− r2)−nj/2 exp

−τ2 ∑
di=j

µ̂′iΣ
−1
r µ̂i

 ,

where

µ̂i =

 xi − µdi
xi−1 − µdi

 , Σr =

 1 r

r 1

 ,

for every r ∈ R. This can be sampled directly given a finite set R and a prior π over it.

The sampling of the (µj) is also not problematic. For each j, the prior for µj is a normal

distribution, N(µj |m, t−1), therefore the full conditional distribution can be written as

f(µj | · · · ) ∝ N(µj |mj , t
−1
j )

n∏
i=1

ki∏
l=1

[
1− exp

{
−

(xi−1 − µzi,l)2

2σ2

}]
where

mj =
1

tj

mt+ τ
∑
di=j

xi + xi−1
1 + ρj

 ;

tj = t+
2nj

1 + ρj
;

Since the product term in this full conditional is clearly bounded, we use a Metropolis-Hastings

step, with proposal distribution given by the Gaussian factor in the distribution.

Before updating the σ it is convenient to introduce additional latent variables, (ui,l), which

allow us to substitute the term

n∏
i=1

ki∏
l=1

[
1− exp

{
−

(xi−1 − µzi,l)2

2σ2

}]
(5)
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with a truncation term,

n∏
i=1

ki∏
l=1

1

(
ui,l < 1− exp

{
−

(xi−1 − µzi,l)2

2σ2

})
.

Recall that τ = σ−2 is assigned a Gamma(τ |a, c) prior, which is conjugate for the precision of

the Normal density kernel. Therefore, the full conditional for τ is a truncated Gamma,

f(τ | · · · ) ∝ Gamma(τ |â, ĉ)1(τ > T );

â = a+ n/2;

ĉ = c+ 1
2

n∑
i=1

µ̂′iΣdi
−1µ̂i;

T = max
l,i

{
−2 log(1− ui,l)

(xi − µzi,l)2

}
.

Note that, since the variance is common for all mixture components, a small change in σ2 may

result in a small change in the product term (5), thus making the choice of the proposal dis-

tribution in a Metropolis-Hastings scheme inconvenient. Consequently, the use of the auxiliary

variables (ui,l) seems more effective in this case.
Finally, we need to describe how to update each ki. Since the dimension of the sampling

space changes with ki, we use ideas for trans-dimensional MCMC developed in the context of

model selection (Green, 1995; Godsill, 2001).

With probability 0 < p < 1, we propose a move from ki to ki + 1 and accept it with

probability

min

{
1,

1− p
p

[
1− exp{−τ

2
(xi − µzi,ki+1

)2}
]}

.

Clearly, the evaluation of this expression requires the sampling of the additional zi,ki+1. We

take zi,ki+1 = j with probability wj .

Whenever a move of this type is not propsed, and if ki > 0, we accept a move to ki− 1 with

probability

min

{
1,

p

1− p

[
1− exp{−τ

2
(xi − µzi,ki

)2}
]−1}

.

Thus, we have shown it is possible to perform posterior inference for the time series model.

In the next section, we illustrate this in practice.
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5 Illustrative examples.

In this section we present four examples, all of them involving simulated data, to illustrate the

model presented in Section 2, and focusing on prediction. In the first example, data is simulated

from the stationary model with a fixed known number of fully specified mixture components. In

the second example, the data is generated by a stationary process which is not stated in terms of

a nonparametric mixture, but in the form of a diffusion process. In these two examples, we use

posterior simulation to recover the transition and stationary densities, the latter corresponding

with the data histogram for a large enough sample. The excellent results for these two examples

are not surprising.

However, that these excellent results also arise with data from a non–stationary model is of

great interest. In the final two examples the data is generated from processes for which a station-

ary density does not exist. Nevertheless, both processes have fixed time homogeneous transition

densities, and we are able to estimate them using the nonparametric stationary mixture model

presented in this paper.

Therefore, the examples are chosen to illustrate how our model can be used for transition

and invariant density estimation simultaneously, when the stationary density exists; yet remains

suitable for transition density estimation, even when the data is not generated by a stationary

process.

5.1 Example 1: Stationary mixture model

We generate a sample of size n = 1000 from the stationary mixture model described in Section

2, with three mixture components and true parameters µ0 = (−1, 0, 3)′, w0 = (0.1, 0.4, 0.5)′,

σ2
0 = 1 and common ρ0 = 0.8. Figure 1 (upper plot) shows the data, in blue, along with a heat

plot for the true predictive density f0(xi|xi−1), for i = 1, . . . , n. We then perform posterior

inference for both the stationary and the transition densities, via MCMC sampling, considering

the full likelihood of expression (2). We use a Dirichlet process prior with mass parameter b = 0.1

for the mixing probability P . The base measure, defined in the previous section, requires the

specification of some hyperparameters, and we take, for the µj , m = xn and t = 1/sn, the sample

mean and precision respectively; a = 1, c = 0.1 for the τ = σ−2; and R = {0.001, . . . , 0.999} for

the ρj .
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Figure 1: True (above) and estimated (middle) predictive densities for n = 1000 data points produced from

the stationary mixture model with 3 mixture components; in both images, the blue dots represent the data.

Below, the true (left) and estimated (right) transition density surfaces. The colors indicate the predictive

density, with darker colors indicating higher density values.
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Figure 1 shows, in the middle, a heat plot of the estimated predictive densities, which

correspond to the Monte Carlo average of the posterior sample produced by the Markov Chain

scheme for the latent model, evaluated at each data point. We use a Monte Carlo sample size

of 2000 after a burn in period of 48000 iterations. By comparing the upper and middle plots in

this figure, we conclude that the transition structure generating the data is indeed recovered by

the estimation procedure.

Note that the estimate for the true transition density f0(y|x) is given by

fn(y|x) =

∫
f(y|x)dΠn(f).

We therefore may obtain point-wise Monte Carlo estimates, for different values of x and y, thus

producing a transition density surface, illustrated at the bottom of Figure 1. Once again, the

similarity of the true surface (left plot) with the estimated one (right plot), suggests a success

of the estimation mechanism.

Figure 2: For the stationary mixture model with 3 mixture components, on the left, the transition density

from the last data point x = Xn; on the right, the stationary density . The true curves are shown in blue

and the color plot indicates point-wise posterior estimation, with darker color corresponding to a higher

posterior probability.

From the predictive point of view, one may be interested in predicting, for instance, the next

value, xn+1 in the data sequence. This can be done, through the predictive density fn(y|xn).

Clearly, from a Bayesian point of view, the estimation of such density would be incomplete

13



without taking into account the complete estimated posterior. The left hand side of Figure 2

shows the true transition density given the last data point, i.e. f0(y|xn), and a heat plot of the

point-wise posterior estimates of the transition density. In other words, the colors illustrate the

estimated posterior probability for each point of the predictive density; we can see that posterior

estimation is highly concentrated around the true transition density, represented by the blue

dashed line.

The right hand side of Figure 2 shows a similar plot, this time for the stationary density of

the process. One more time, the true curve, f0(x) is shown in blue and the colors illustrate the

point-wise posterior estimation. As might be expected, the transition density is recovered by

the model better than the stationary density. This can be attributed to the fact that each new

data point provides more information about the transition mechanism, while the information

about the invariant measure is disturbed by the dependence between data points. However,

given that the sample size is relatively small for this type of analysis, we believe the estimates

to be satisfactory.

Figure 3: For the stationary mixture model with 3 mixture components, trace plot (in black) and moving

average (in red) for: the common kernel precision τ (top left); the mean of the active kernel correlations

vector
∑
ρdi/n (bottom left) the monitoring transformation

∑
[τ/n(1 − ρ2di)] (top right); and the mean of

the active kernel means vector
∑
µdi/n (bottom right).

In order to assess the convergence of the model, one may look directly at the trace plots

of the model parameters. However, as is often the case for nonparametric mixture models,
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unidentificability issues complicate the interpretation of such plots. The left hand side of Figure

3 illustrate this issue. On the top, we can see the trace plot (in black) and moving average plot

(in red) for the precision parameter τ = σ−2, while on the bottom we show a summary of the

component-wise correlation coefficients, given by
∑
ρdi/n, which corresponds to the mean of

the individual correlation coefficients of the components to which the data points are assigned

at a given iteration, thus resulting in a weighted average, a common practice when monitor-

ing convergence in the context of mixture models. In these plots, the interaction between the

precision and correlation parameters is evident; even when the moving averages show signs of

convergence, these plots are not reliable. Instead, we monitor a transformation of both conflict-

ing parameters, which corresponds to the precision of the component-wise conditional density

fj(y|x), given by τ/(1 − ρ2j ). Once again, we use the weighted average of such transformation

over occupied components to construct the trace plot and moving averages represented on the

top right hand side of Figure 3; on the bottom we see the analogous plot for the mean param-

eters µj . Both plots show lead us to believe that the burn-in period we are using is more than

sufficient.

5.2 Example 2: Stationary diffusion

Here, we consider a diffusion process X = {Xt : t ≥ 0} defined as the solution to the stochastic

differential equation (SDE)
dXt = θ

Xt√
1 +X2

t

dt+ dWt,

which we refer to as the Hyperbolic diffusion. For θ < 0, this is known to be a stationary

process, with invariant density

f(x) ∝ exp
{

2θ
√

1 + x2
}
.

The transition density, however, cannot be calculated explicitly (see e.g. Bibby and Sorensen,

1995, for more details).

A sample of size n = 1000 of observations, at times ti = i, is generated using the exact

simulation algorithm of Beskos et al. (2006), from the Hyperbolic diffusion with true parameter

θ0 = −2. The top plot in Figure 4 shows the data, along with a heat plot of the true transition

density f0(xi|xi−1). Since an explicit form for the latter is not available, we replace it with a

smoothed histogram of a sample generated, for each i = 1, . . . , n, via exact simulation.
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Figure 4: Posterior inference for n = 1000 data points produced from the hyperbolic diffusion with pa-

rameter θ = −2. The top and middle images represent the true and estimated predictive densities: darker

colors indicate higher density values; the blue dots represent the data. On the bottom, the left plot shows

the estimated transition (solid line) and histogram of a true sample; the right plot shows the true stationary

density (dashed line) and a color plot indicating point-wise posterior estimation, this time, lighter colors

indicate higher posterior density.
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The SDE provides a parametric description of the process. However, a nonparametric model

should be flexible enough to recover the dynamics of the data generating mechanism. To illus-

trate this, we do posterior inference using the stationary time series mixture model described in

this paper. We use the same hyperparameters as for the previous example. Posterior inference

is, once again, carried out for the stationary and the transition densities, through posterior

simulation for the latent model via MCMC, with a Monte Carlo sample size of 2000 after a

burn in period of 48000 iterations. The middle plot in Figure 4 shows the estimated transition

density at each data point. The right and left plots at the bottom of Figure 4 show the results.

The estimated transition density (black line) is compared to a histogram (in blue) of a sample

of size 2, 000 points generated from the true diffusion transition, via exact simulation. The nor-

malizing constant for the true stationary density is calculated by numerical integration. Both

the stationary and the transition densities can be seen to be recovered by the model.

Figure 5: For the hyperbolic diffusion with parameter θ = −2, trace plot (in black) and moving average

(in red) for the monitoring transformation
∑

[τ/n(1 − ρ2di)] (top) and the mean of the active kernel means

vector
∑
µdi/n (bottom).

The data in this example was not generated from the model used for inference and, therefore,

there is no reason to expect that the posterior distribution should concentrate around a fixed

theoretically “true” value. Thus, the shape of the trace plot for the monitoring transformation

τ/(1 − ρ2j ) on the left hand side of Figure 5 is not surprising, and convergence of the Markov

Chain can be assessed by observing the moving average (in red). This further is confirmed by

the corresponding plot for the mean parameter summary, on the right hand side of the figure.

5.3 Example 3: Standard Brownian motion

Standard Brownian motion is a typical example of a non stationary process. For discrete obser-

vations at times ti = i, the transition density is known and given by f(xi|xi−1) = N(xi|xi−1, 1),
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the standard normal distribution centred at xi−1.

Figure 6: Data (above) and estimated transition densities(bottom) for n = 1000 data points produced

from a standard Brownian motion and modelled via the stationary nonparametric mixture presented in this

paper, with darker colors indicating higher density values.

Figure 6 (top) shows, in blue, a sample of n = 1, 000 observations at times ti = i from a

standard Brownian Motion path. Inference is carried out using a mixture over the mean, µ and

the correlation coefficient ρ of the parametric components. We use an MCMC posterior sample

size of 2000 after a burn-in period of 48000 iterations.

The mixture model we propose for time series is stationary. However, for any fixed sample

size, it is flexible enough to capture the dynamics of the data, in the sense that we may use

the model to estimate the transition density. The bottom plot of Figure 6 shows a heat plot of

the MCMC posterior sample of the transition density f(y|x) at each data point. Knowing that

the true transition density is a normal density with unitary variance centered at the previous

visited state, it is possible to verify the quality of the estimation. Furthermore, the plot on the

left hand side of Figure 7, corresponds to the predictive density, i.e. the estimated conditional

density given the last observation, E[f(xn+1|xn)|xn]. The sample size is relatively small, for
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this type of problem, yet the model can recover the transition density. In this case, there is

no stationary density to estimate. The model structure, for which only the conditional density

appears in the likelihood, given X0 = 0, guarantees that all of the information contained in the

data is used to estimate the transition density.

Figure 7: For n = 1000 data points produced from a standard Brownian motion and modeled via the

stationary nonparametric mixture presented in this paper: on the left, the true transition density (blue) and

a color plot indicating point-wise posterior estimation, with lighter color corresponding to a higher posterior

probability; on the right trace plot (in black) and moving average (in red) for the monitoring transformation∑
[τ/n(1− ρ2di)] (top) and the mean of the active kernel means vector

∑
µdi/n (bottom).

The plots on the right of Figure 7 give clear indication of the convergence of the Markov

Chain scheme for posterior simulation.

5.4 Example 4: Non-stationary diffusion

Finally, we consider a stochastic process X = {Xt : t ≥ 0} defined as a weak solution to the

SDE
dXt = sin(Xt − θ)dt+ dWt.

A sample of size n = 1000 of observations, at times ti = i, is generated using the exact simulation

algorithm of Beskos et al. (2006), from this Sine diffusion, with true parameter θ0 = 2. The

data can be seen at the top of Figure 8. Posterior inference is carried out for the transition

density, through posterior simulation, via the MCMC algorithm for the latent model presented
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Figure 8: Data (above) and estimated transition densities(bottom) for n = 1000 data points produced from

the sine diffusion with parameter θ0 = 2 and modelled via the stationary nonparametric mixture presented

in this paper, with darker colors indicating higher density values.

in Section 2. Once again, the Monte Carlo sample size is 2000 after a burn in period of 48000

iterations with the same hyperparameters used for the previous examples. A color plot of the

estimated transition density at each data point is shown at the bottom of Figure 8. There is no

analytic expression available for the true transition density of this diffusion, however comparing

with the data, we can appreciate that the dynamics of the process have been captured by the

model.

Figure 9 shows the estimated transition density f(y|x) x = −20 (left plot). The true tran-

sition density for this data is unavailable, but the estimate is compared against a smoothed

histogram of a sample of size 10000, generated from the true model via exact simulation. Given

the irregularity of the data, and the relatively small sample size, the heavier tails of the estimated

density with respect to the exact simulated sample is justified. Overall, the transition density

estimate can be considered accurate. In particular, the point x = −20 was chosen to illustrate

how the model performance is improved for areas of the sample space frequently visited by the
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particular path represented by the data. On the right, we show the estimated m-step transition

f(xn+m|xn) which, as expected reflects the complex dynamics of the data-generating process.

Figure 9: On the left, the predictive (transition) density, corresponding to an arbitrary point x = −20, for

a sample of n = 1000 data points from the sine diffusion with parameter θ0 = 2; the color plot indicates

point-wise posterior estimation, with lighter color corresponding to a higher posterior probability, while the

blue like corresponds to a smoothed histogram of an exact sample from the diffusion. On the right, the

estimated m-step transitions from the last data point xn = −25.43.

As for previous examples, we present, in Figure 10, trace plots of key quantities supporting

the convergence of the Markov Chain posterior simulation scheme within the burn-in period.

Figure 10: Trace plot (in black) and moving average (in red) for the monitoring transformation
∑

[τ/n(1−

ρ2di)] (left) and the mean of the active kernel means vector
∑
µdi/n (right).
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6 Discussion

In summary, we have presented a stationary Markov model for which both the transition and

stationary densities are nonparametric infinite mixture models. The construction is based on

an infinite mixture of joint parametric kernels kθ(y, x) for which both marginals are identical.

The stationary density for the process is then given as the infinite mixture of such marginals,

and the transition density is the corresponding conditional density, given by the ratio between

the joint and the marginal mixtures. The infinite sum in the denominator can be seen as an

intractable normalizing constant for the transition density. We have proposed a method for

MCMC posterior inference based on the introduction of suitable latent variables.

We have illustrated the use of the stationary nonparametric model for posterior estimation

of the transition and stationary densities when the data is generated by some true but arbitrary

stationary process. In this case, a fixed true joint density for pairs of observations is available,

and the model is able to recover it. At the same time, the stationary density is estimated and

estimation of the transition density coincides with the ratio of the two.

When the data is generated by a non stationary but time homogeneous process, the model is

still able to estimate the transition density, as we have empirically shown through some examples.

In this case, there are no fixed marginal and joint densities to replicate, so the numerator and

the denominator in the transition density expression do not have a direct interpretation. It

is a known fact that a ratio can remain constant even when the numerator and denominator

change. An analogous phenomenon explains the capacity of a stationary model to replicate a

non stationary transition mechanism.

In order to have some intuition as to why, using a stationary model which is large enough,

we may capture transition densities which arise from non-stationary models, let us write the

transition mechanism from the stationary model as

fp(y|x) =

∑∞
j=1 wj Kθj (y, x)∑∞
j=1 wj Kθj (x)

=
J

M
.

The likelihood function is equal to the product of such transitions and thus, posterior estimation

will recover the true transition density f0(y|x). If the data are coming from a stationary process

then we know that such transition has associated bivariate and marginal densities f0(y, x) and

f0(x). Thus can reasonably expect the posterior for J and the posterior for M to both converge

to these true values, hence the capacity of the model to simultaneously estimate the stationary
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density of the process. On the other hand, if the data are not coming from a stationary model

then clearly there are no associated bivariate and marginal densities to estimate and therefore,

rather than forcing the convergence of the posterior of J and M separately, the shape of the

likelihood function ensures that the posterior of J/M converges, thus correctly estimating the

transition f0(y|x), provided the x falls within the range of the data. A formalization of this idea

would likely require an account of the mass assigned to neighbourhoods of x by the empirical

distribution.

We emphasize that the model we propose is intended for inference on the transition density

f(y|x) and, if existent, the stationary density f(x). As is often the case with nonparamet-

ric mixture models, there are identifiability issues to consider and, therefore, the number of

components and the values for the specific parameters are not interpretable. This was briefly

discussed in Section 5, and more precisely, in Example 1, when choosing the quantities to be

used for assessing the convergence of the MCMC procedure.

We have demonstrated the latent model construction and MCMC algorithm for a particular

choice of parametric joint kernel, the bivariate Gaussian density. However, other kernel choices

are available. Consider a measurable space (X,A) and denote by Kθ(y, x) any bivariate density

on X× X with respect to some reference measure , for which the marginals are identical; i.e

Kθ(y) =

∫
Kθ(y, x) dx and Kθ(x) =

∫
Kθ(y, x) d y.

Clearly,
Kθ(y) =

∫
Kθ(y|x)Kθ(x) dx,

and therefore the model construction would still result in a flexible stationary time series.

Furthermore, the condition requiring both marginal densities to be equal is only needed to

guaranty the stationarity of the mixture Markov model. Arbitrary joint kernels can be used

to construct general autoregressive models if stationarity is not an issue. This includes the

definition of multivariate time series models. An adequate choice of kernels in this case is not

obvious and requires a careful study that goes beyond the scope of the present paper. Similarly,

a nonparametric mixture is defined over multivariate kernels can be used to define a higher order

Markov dependence structure. If the joint kernel includes m + 1 random variables, an order

m Markov transition can be defined as the ratio between the joint mixture over the m-variate

marginal from which the (m + 1)-th variable has been integrated out. Once again, a careful
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choice of the correlation structure in the multivariate kernels is paramount to the effectiveness

of the model.
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