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Abstract: Several studies in recent times have linked gut microbiome (GM) diversity to the
pathogenesis of cancer and its role in disease progression through immune response, inflammation
and metabolism modulation. This study focused on the use of network analysis and weighted gene
co-expression network analysis (WGCNA) to identify the biological interaction between the gut
ecosystem and its metabolites that could impact the immunotherapy response in non-small cell
lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data
were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and
classified by chemometric models. The traits considered for the analyses were: (i) condition: disease
or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis
indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM
functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs)
and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae,
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Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more
abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery
of microbiota-linked biomarkers could provide an indication on the road towards personalized
management of NSCLC patients.

Keywords: non-small cell lung cancer (NSCLC); anti-PD1 immune checkpoint inhibitor; gut
microbiome; operational taxonomic unit (OTU); metabolite; network analysis; weighted gene
co-expression network analysis (WGCNA); betweenness centrality; clustering coefficient; communities

1. Introduction

The gut microbiota (GM) plays a fundamental role in the functional framework of the host immune
system and any changes in diet, overuse of antibiotics, xenobiotics and gastrointestinal (GI) tract
infections can lead to substantial shifts in the ecology and composition of the individual microbiome
over extensive periods [1]. Conditions such as immune and inflammatory disorders or induced
immunosuppression lead to these shifts, a phenomenon called “dysbiosis” [2]. This imbalance alters
cellular pathways or signals in some bacteria, causing inflammation, one of the salient characteristics
of carcinogenesis. Thus, GM is considered integral in the development of different cancers such as
colorectal, hepatocellular and breast cancer [3].

Chen and Mellman [4] described the significance of the GM in anti-cancer response via the concept
of a cancer immunity cycle. Most cancers can evade detection of tumor antigens, resulting in a Treg

response rather than an effector T cell response. Proteins like Cytotoxic T-Lymphocyte Antigen 4
(CTLA-4) and Programmed cell death protein 1/Programmed death-ligand 1 (PD-1/PD-L1) have
been identified as negative immune regulators or immune checkpoints (ICIs). They are represented
as the main targets for immuno-therapeutic interventions. Even though immunotherapies with
ICIs, namely anti-CTLA4 and anti-PD1, looked highly promising, they have shown only 20–30%
success in treating cancer patients [5]. In order to obtain a successful stand in cancer immunotherapy,
the therapeutic efforts must be focused on the initiation or re-initiation of the cancer immunity cycle,
resulting in an unfettered immune response.

Several studies demonstrated that the GM can have a long-term effect on immune response,
which could determine the efficacy of ICIs [6–9]. The microbes present in the GI tract can modulate the
immune response via interaction with pattern recognition receptors (PRR) and subsequent signaling
cascades [9]. Landmark studies in animal models revealed that gut microbes can directly affect the
response to immunotherapy [10,11]. In humans, studies on cancer patients undergoing immunotherapy
revealed a higher microbial diversity correlated with improved survival rates [12,13].

Lung cancer is the second most common cancer in men and women worldwide, with the highest
incidence of morbidity and mortality [14]. Non-small cell lung cancer (NSCLC) accounts for more than
80% of all lung cancers and it is one of the most challenging to treat with a poor response to ICIs in most
patients. Interestingly, likewise to the role of the GM in other cancers, recent findings also indicate a
relationship between the GM and the lungs [15]. Moreover, there is growing evidence demonstrating
the association of the GM and its metabolome in ICI treatment response in NSCLC [16–19]. Indeed,
not only the microbial cells but also their metabolites play a role in the stimulation of the immune
response [5]. Their interplays elicit and boost the immune response, aiding the host immune system in
its fight against cancer.

In our previous studies [16,17], we analyzed the GM in responder and non-responder NSCLC
patients undergoing anti-PD1 treatment. Our findings reported a higher incidence of Rikenellaceae,
Prevotella, Streptococcus, Lactobacillus, Bacteroides plebeius, Oscillospira and Enterobacteriaceae in the stool
of NSCLC patients compared to healthy controls. Besides, Ruminococcus bromii, Dialister and Sutterella
species were observed to be abundant in the non-responder compared to responder patients [16].
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Furthermore, an examination of the gut metabolome profile in these patients shed light on certain
metabolites that could play a significant role in immune response [17]. The presence of short-chain
fatty acids (SCFAs) (i.e., propionic, butyric, acetic, valeric acids), lysine and nicotinic acid indicated a
better response to therapy, whereas metabolites such as tridecane and 2-pentanone were suggestive of
non-responsiveness [17]. Hence, the composition of the GM and metabolome is a promising predictive
biomarker for immunotherapy response.

In this study, we further investigated the GM ecological and metabolomic profile in NSCLC
patients undergoing treatment with the anti-PD1 Nivolumab. Given the complexity in structure,
function and compositional variability, the human GM can be modeled and represented as networks in
order to deduce the dynamic nature of host–microbe interactions [20]. Network science is a powerful
tool that uses mathematical models to analyze and comprehend complex systems [21]. In microbiome
studies, network theory can be applied to understand different microbial communities, their metabolites
and their inter-relationships, as well as their effects on the host’s health. Indeed, such studies give
insights into probable molecular mechanisms occurring in different diseases, including cancer.

Here, network-based approaches using network analysis and weighted gene co-expression network
analysis (WGCNA) were carried out to identify the central players that participate in the host
GM signaling pathways and to find potential correlations with NSCLC condition and anti-PD1
treatment response.

2. Results and Discussion

2.1. Patient Characterization

For the study, 11 NSCLC patients and 8 normal healthy CTRLs were recruited. Of the 11 NSCLC
patients, 4 patients did not respond to immunotherapy and were considered as non-responder.
The other seven patients were categorized as responder (R) (test results/i-RECIST/radiology results) [17].
In particular, we defined non-responder (NR) patients experiencing disease progression within three
months from the beginning of nivolumab [17].

2.2. Weighted Gene Co-Expression Network Analysis (WGCNA) Analysis

We used the well-established WGCNA framework [22,23] as the data exploration method
(i.e., to investigate data related to the two traits of interest, NSCLC/CTRLs and R/NR) and as the feature
selection method (i.e., for screening the most important features).

We firstly applied WGCNA on the dataset obtained by merging metagenomics operational
taxonomic units (OTUs) (Supplementary Table S1) and metabolomics (gas chromatography (GC–MS)
and nuclear magnetic resonance (NMR) spectroscopy) matrices (Supplementary Tables S2 and S3),
just considering patients’ R/NR response to therapy (Supplementary Text S1, Figures S1 and S2 and
Table S4). Since these results were not statistically significant, only the NSCLC/CTRLs condition was
subsequently considered. Therefore, the WGNCA analysis was performed just onOTUs and GC–MS
data (Figure 1) because the NMR analysis did not include CTRLs samples.

Initially, a sample clustering was conducted to detect outliers, and all the samples in the cluster
passed the cut-off thresholds (Figure 1a). The clustering algorithm identified two main clusters:
one corresponding to patients and the other one corresponding to CTRLs. Interestingly, these results
showed that the metagenomics and metabolomics data clearly distinguished patients from controls
(Figure 1a).
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and passed the cut-off thresholds. The horizontal bars represent how the traits (i.e., condition and 
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Figure 1. Weighted Gene Co-expression Network Analysis (WGCNA). (a) Clustering dendrogram of
samples. Sample clustering was conducted to detect outliers. All samples were located in the clusters
and passed the cut-off thresholds. The horizontal bars represent how the traits (i.e., condition and response
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to treatment) relate to the sample dendrogram: white (low value) represents controls (CTRLs) and
non-responder (NR) for condition and treatment traits, respectively; red (high value) represents case and
responder (R) for condition and treatment traits, respectively; gray means missing entry. (b) Calculation
and selection of optimal soft-thresholding rule. Influence of different powers on the scale independence
(left) and on the mean connectivity (right). The red arrow indicates the selected soft-thresholding
power. (c) Barplot. The bars represent the size of each WGCNA-detected module and were colored
according to the corresponding module labels. (d) Weighted correlation network. In the network,
the WGCNA-detected modules were highlighted with a colored circle according to the corresponding
module labels. Nodes in the network are colored according to the corresponding module labels. (e) Pie
charts. Pie charts represent the percentages and numbers of operational taxonomic units (OTUs) and
metabolites falling in each WGCNA-detected module. (f) Module–traits associations. In the heatmap,
each row corresponds to a module eigengene (ME) and each column to a trait. Each cell contains the
corresponding correlation and p-value. The table is color-coded by correlation according to the color
legend. (g) Distribution of features (OTUs and metabolites) identified at the end of the data processing,
in the WGCNA-detected modules.

The weighted network was built using the Pearson correlation matrix and the soft-thresholding
power was set equal to 5 (Figure 1b). The final network consisted of four modules (labeled by color),
ranging in size from 33 to 121 members (Figure 1c–e). The gray module represented the grouping of
nodes with outlying profiles and was not considered henceforth. The values for module membership
(MM) and biomarker significance (BS) and the corresponding p-values were calculated for each node
in each module, as reported in Supplementary Table S5.

Finally, tests of association between traits and the module eigengenes (MEs) were performed for
each module and the results were summarized in a heatmap (Figure 1f). The only statistically significant
correlations were found with respect to the NSCLC/CTRLs variable. In particular, the turquoise module
appeared to show the highest correlation with the condition.

The majority of the features in the turquoise module had a negative sign of the correlation value
(Supplementary Table S5_turquoise, BS condition), suggesting that the OTUs and metabolites falling in
this module were mainly expressed in controls rather than in the disease condition. The metabolites that
showed a higher correlation with CTRLs were represented by: acids (pentanoic, butyric), aldehydes
(benzaldehyde, benzenacetaldehyde, 3-methyl-butanal, 2-butenal), ketones (acetone, 2-heptanone,
2-octanone), terpenes (g-terpinene, 3-carene) and p-cresol (Supplementary Table S5_turquoise). On the
other hand, the OTUs linked to CTRLs (p ≤ 0.05) were represented by: Rikenellaceae, Bacteroides caccae
and Dialister. Moreover, the turquoise module indicated positive correlation values (p ≤ 0.05) for certain
metabolites, mainly expressed in patients, including dodecane, 2,6-dimethyl-4 heptanone and methyl
isobutyl ketone (Supplementary Table S5_turquoise).

In the brown module, microbes such as Peptostreptococcaceae, Mogibacteriaceae, Clostridiaceae
and Coriobacteriaceae and the metabolite anethole showed a negative sign of the correlation value
(Supplementary Table S5_brown, BS condition), implying an association with CTRLs. On the other hand,
the bacterium Granulicatella was found to be significantly higher in responder patients (Supplementary
Table S5_brown, BS treatment). This bacterium could therefore be used as a possible predictive
biomarker for anti-PD1 treatment response.

The blue module was represented by 100% of OTUs, suggesting a highly interconnected set of
microorganisms in the gut. Microbial species like Peptococcaceae and Prevotellaceae demonstrated
a higher expression in the CTRLs group since they showed a negative sign of the correlation value
(Supplementary Table S5_blue, BS condition).

In general, the WGCNA analysis revealed that changes in the GM and metabolome were mainly
associated with the NSCLC/CTRLs condition. Furthermore, we carried out other network-based
analyses focusing only on features whose expression changed with statistical significance between
the NSCLC and CTRLs conditions (Supplementary Figure S3 and Table S6). Notably, 73% of these
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selected features fell in the turquoise module, thus representing the main features associated with the
NSCLC/CTRLs status in the WGCNA network (Figure 1g).

The observations from the WGCNA analysis were in accordance with the literature, emphasizing
the association of SCFAs, such as pentanoic and butyric acids, in healthy gut [24]. Moreover,
they represent beneficial products derived from both proteolytic and saccharolytic fermentation [25]
used not only as an energy source for the host’s colonocytes, but also for their anti-inflammatory
properties [26,27]. SCFAs are involved in immune system regulation and they are generally known as
having a role in tumor suppression [28].

In lung cancer studies, a different pool of metabolites, i.e., ketones, esters, aldehydes and alcohols,
were considered in order to discriminate among groups of patients [17]. However, the specific
biological matrices affected both the qualitative and quantitative profiles of the final set of possible
biomarkers [29,30].

Indeed, amongst VOCs identified in stool samples, metabolites like terpenes (g-terpinene and
3-carene) showed a statistical significance even though they might not be directly correlated with the
condition as they originate from dietary sources (fruits and vegetables) [31].

Methyl phenol, also called p-cresol, is produced via microbial degradation of tyrosine. It is
metabolized at the liver level and excreted in urine as p-cresol sulphate [25]. p-Cresol was also
suggested as a biomarker of protein intake [32].

Moreover, Clostridium difficile, among other gut bacteria, showed its ability to produce p-cresol as
a bacteriostatic compound through fermentation of tyrosine [33].

Since all these features resulted higher in CTRLs, it was possible to hypothesize that they might
be associated with age and diet habits as it has been shown that in older people, the GM composition
could be affected by an altered absorption of nutrients, digestion modifications and weakened immune
system [34].

In addition, diet changes may cause a decrease in GM diversity, for example, a decrease in
anaerobic bacteria such as Bifidobacterium spp. and an increase in Clostridium have been observed [34].

Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae showed a
higher correlation with CTRLs than NSCLC, suggesting dysbiosis in lung cancer patients, as detected
by other authors [16].

The current study did not yield statistically significant information regarding the correlation of
features (OTUs and metabolites) between patients who were anti-PD1 R and NR. However, the highlight
of these aspects was the association of the OTU Granulicatella with Nivolumab treatment response [35].
An additional study on a larger cohort size will be required to confirm this. Continued research in this
area is necessary to further examine the key participants in the GM of the NSCLC immunotherapy
response network.

2.3. Network Analysis

After metagenomics and metabolomics profiling, 198 OTUs, 223 VOCs and 49 non-volatile
metabolites were identified (Supplementary Tables S1 and S2). In order to select the relevant microbes
and metabolites for the network analysis, data were further processed.

At the end of the data pre-processing, forty-four compounds among bacteria and metabolite
features were qualified to be included in the network analysis (Figure 2). The two datasets were
merged together (Supplementary Table S7) and a correlation matrix was obtained cross-correlating all
the features against one another. Figure 3a represents the final matrix after filtration by False Discovery
Rate (FDR) correction and removal of disconnected nodes. Only positive correlations were found to be
within the threshold value and subsequently associated with the edges, giving place to the weighted
adjacency matrix, i.e., the network.
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Figure 2. Z scores across subjects (NSCLC = 1–11, CTRLs = 12–19) calculated for the selected elements
of the two groups (OTUs and metabolites). At the end of the filtration procedure, forty-four compounds
were identified and included in the analysis. Data from patients and controls were merged and
cross-correlated. The solid red line helps to separate the two groups (NSCLC and CTRLs).

Once the network was obtained, some global and local topological properties were estimated.
The global properties evaluated here included the distribution of features in the networks (Figure 3b,
Supplementary Table S7) and the communities (Figure 3c, Supplementary Table S7). Meanwhile,
the local properties of the networks that were analyzed included degree and betweenness centrality
(Figure 3d, Supplementary Table S7) and clustering coefficient (Figure 3e, Supplementary Table S7).

From a global perspective, the network was divided into two main components: a giant one and a
triplet (Figure 3b). The small three-nodes component was found to be composed of a metabolite, node 40
(methyl isobutyl ketone) and two OTUs, node 14 and 15 (Desulfitobacter and Comamonas). The community
detection algorithm subdivided the network into four modules (Figure 3c): one represented by the
three-nodes component and three coming from the giant components. By comparing Figure 3b,c,
the participation ratio (number of OTUs/number of metabolites) in the four communities resulted to be:
orange module = 0.25, light blue module = 0.5, violet module ~5 and green module ~2. The modules
found by the algorithm essentially represent the affinity of features according to their covariance
across subjects.

Figure 3d,e show the local properties of the network: degree centrality, betweenness centrality
and clustering coefficient. Nodes 39 and 13, which represent the metabolite 3-methyl indole and
OTU Bifidobacterium pseudolongum, showed a high degree and betweenness centrality (Figure 3d),
suggesting that they could be necessary for network functionality. On the contrary, 3-methyl indole
was characterized by a low value of the clustering coefficient, suggesting that probably it did not
allow for discriminating between NSCLC and CTRLs. Another key observation was node 32, namely
3-methyl butanal, which expressed a high degree and clustering co-efficient in the network (Figure 3e).
This could suggest this node as a hub of connection among the violet module and the other nodes
in the network, thus serving as an another important signaling molecule to maintain balance in the
gut ecosystem.
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Figure 3. (a) The matrix obtained by cross-correlating OTUs and metabolites across subjects was
thresholded according to statistical significance (p < 0.05) and False Discovery Rate (FDR)-corrected
for multiple comparisons. Only positive correlations were found to be statistically significant and
subsequently associated with the edges, giving place to the weighted adjacency matrix, i.e., the network.
(b) The distribution of features within the network: green—OTUs, pink—metabolites. Numbers within
the nodes identify features according to the order shown aside the weighted adjacency matrix.
The network was divided into two main components: a big one and a triplet (nodes 14, 15, 40).
(c) Communities founded by the Louvain algorithm in the network. Colors were used only for
distinguishing the different communities, which, in turn, represents the affinity of species according
to their covariance across subjects. (d) Degree and betweenness centrality calculated in the network.
The size of each node is proportional to its betweenness, while the color code (from white to dark
green) refers to the magnitude of the degree centrality (from low degree to high degree). (e) Clustering
coefficient and betweenness centrality calculated in the network. The size of each node is proportional
to its betweenness centrality, while the color code (from white to dark blue) refers to the magnitude
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of the clustering coefficient (from low clustering to high clustering coefficient). Legend Panel b–e.
(1) Coriobacteriaceae; (2) Bacteroides caccae; (3) Bacteroides uniformis; (4) Rikenellaceae; (5) Akkermansia
muciniphila; (6) Collinsella aerofaciens; (7) Roseburia faecis; (8) Peptostreptococcaceae; (9) Mogibacteriaceae;
(10) Methanobrevibacter; (11) Ruminococcus bromii; (12) Atopobium; (13) Bifidobacterium pseudolongum;
(14) Desulfitobacter; (15) Comamonas; (16) 1-Hexanol; (17) 1-Pentanol; (18) 2.3-Butanedione;
(19) 2-Butanone; (20) 2-Butenal; (21) 2-Heptanone; (22) 2-Hexanone; (23) 2-Octanone; (24) 3-Carene;
(25) 6-Methyl-3.5-heptadiene-2-one; (26) 6-Methyl-5-hepten-2-one; (27) Acetoin; (28) Acetone;
(29) Anethole; (30) Benzaldehyde; (31) Benzeneacetaldehyde; (32) Butanal, 3-methyl-; (33) Butyric
acid; (34) Caryophyllene; (35) Butanoic acid ethyl ester; (36) g-Terpinene; (37) Heptane, 3.4-dimethyl-;
(38) Indole; (39) Indole, 3-methyl-; (40) Methyl Isobutyl Ketone; (41) p-cresol; (42) Pentanoic acid;
(43) Phenol; (44) Pyridine.

Other nodes of interest (Figure 3d,e) were found to be the OTUs Peptostreptococcaceae (node 8)
and Akkermansia muciniphila (node 5) and metabolites 1-pentanol (node 17), 3.4-dimethyl heptane
(node 37) and indole (node 38). All the cited features resulted higher in CTRLs compared to NSCLC
(Supplementary Tables S1 and S2).

Consistent with earlier studies, our results emphasize that bacteria such as Bifidobacterium and
Akkermansia muciniphila, were some of the main players in the GM network functionality, usually
indicated as the signature of a healthy intestinal ecosystem [17,36]. Indeed, A. muciniphila is a
mucin-degrading bacterium that is known to help maintain gut mucosa and host health. Akkermansia
muciniphila could improve liver activity, alleviate oxidative stress, normalize gut microbes and suppress
inflammation. Thus, it might also be considered as one of the new probiotics [37].

Tryptophan catabolites like indole and indole derivatives have shown to exert anti-inflammatory
and anti-oxidative effects in the gut by activating aryl hydrocarbon receptor signaling in
astrocytes suppressing central nervous system inflammation, contributing to intestinal and systemic
homeostasis [38]. Numerous bacteria including species of Bacteroides, Clostridium, Lactobacillus,
Peptostreptococcus, Bifidobacterium and Ruminococcus have been demonstrated to be involved in the
degradation of tryptophan into several catabolites [39]. In addition, indole 3-methyl, also known
as skatole, is a well-known gut metabolite generated by the decarboxylation of indoleacetic acid by
Bacteroides spp. and Clostridium spp.

Finally, butanal is a common aldehyde in the gut formed by bacterial breakdown of leucine,
and high levels of this metabolite have been associated with inflammation and cancer [40].

However, the precise mechanisms of action and cellular signaling pathways involved in NSCLC
are yet to be delineated.

3. Materials and Methods

3.1. Selection of Patients and Controls

The cohort of 11 NSCLC patients was recruited at the Department of Clinical and Molecular
Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, for 1 year from 2016 to 2017. The study
group included 8 male and 3 female patients, between 44 to 82 years of age, with a median age of 68 years.

The inclusion criteria for patient selection included (i) age >18 years; (ii) histology diagnosis of
NSCLC; (iii) Eastern Cooperative Oncology Group (ECOG) performance status ≤2; (iv) anti-PD-1
nivolumab as second-line treatment; and (v) satisfactory pulmonary, cardiac, liver, renal and bone
marrow functions. Meanwhile, the medical conditions considered for exclusion criteria were
(i) autoimmune diseases; (ii) symptomatic interstitial lung disease and other comorbidities; (iii) systemic
immunosuppression; and (iv) precedent treatment with an immune-stimulatory antitumor factor such
as checkpoint-targeted molecules.

Nivolumab (anti-PD1) was prescribed to patients at a dosage of 3 mg/kg every 2 weeks until
disease progression or toxicity was observed. Using the Response Evaluation Criteria in Solid Tumors
(i-RECIST) criteria, radiological response was assessed. Toxicity evaluation was conducted on day 1 of
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every dosage cycle until the end of cure. Toxicity, if any, was reported in accordance with National
Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0). For our study,
progression-free survival (PFS) represented the time from patient registration on clinical trial until
the first recorded tumor progression or death from any cause, while the overall survival (OS) was the
time from patient registration to death from whatever cause. Patients that showed tumor progression
within 3 months from the starting of nivolumab treatment were considered as non-responders (NR),
whereas patients presenting PFS longer than 12 months were defined as responders (R).

The study also included a cohort of 8 CTRLs, who were age-matched with the patients. They were
screened by a survey conducted by the Human Microbiome Unit at Bambino Gesù Children’s Hospital
in Rome (OPBG). The inclusion criteria for selection of controls were: (i) absence of GI infections,
and (ii) no antibiotic and pre-probiotic administration in the previous two months.

Good clinical practices were followed throughout the study, in accordance with the ICH-GCP
guidelines and Helsinki Declaration. Approvals were obtained from the institutional ethics committee
(Ethical Committee n. 4421, “Sapienza University”) for the study protocols. Moreover, informed
consent was taken from patients and controls, with the guidance of the hospital ethics committee and
approval of regulatory agencies. Sample collection for GM ecological and metabolomics profiling,
biobanking and integration processing of omics data was conducted at the Human Microbiome Unit
OPBG and NMR-based Metabolomics Laboratory, Sapienza University of Rome.

3.2. Gut Microbiome-Targeted Metagenomics and Metabolomics Profiling

3.2.1. Targeted Metagenomic Profiling

The general workflow included isolation of genomic DNA from stool samples, followed by
amplification and sequencing of the variable region from the 16S rRNA gene, as described by
Botticelli et al. [17]. DNA extraction was carried out using the QIAmp Fast DNA Stool mini kit
from Qiagen, Hilden, Germany. The variable region V3-V4 from the 16S rRNA gene (~460 bp)
was amplified according to the MiSeq rRNA Amplicon Sequencing workflow (Illumina, San Diego,
CA, USA). For the amplicons purification, AMPure XP beads (Beckman Coulter Inc., Beverly, MA,
USA) were used. A second round of amplification was conducted with a unique set of Illumina
Nextera adaptor primers followed by purification to obtain the final library. The quantification was
performed using Quant-iT™ PicoGreen® dsDNA Assay Kit (Termo Fisher Scientifc, Waltham, MA,
USA). The library was finally diluted to 4 nM, pooled and sequenced using the Illumina MiSeqDX.
The Qiime v1.8. (http://qiime.org/1.4.0/) pipeline was followed [41], sequences were organized into
operational taxonomic units (OTUs) and alignments were conducted using PyNAST v.0.1 software
(https://biocore.github.io/pynast/) [42] against the Greengenes 13_08 database [43] with a 97% threshold
of similarity.

3.2.2. Metabolomic Profiling

The stool samples were further investigated to detect volatile organic compounds (VOCs) and
non-VOCs [17,44].

Gas chromatography solid-phase microextraction (GC–MS/SPME) was used to characterize and
quantify the VOCs into different chemical classes—alcohols, esters, aldehydes, ketones, alkenes,
alkanes, etc. [44]. Samples were exposed to the SPME fiber for 45 min and then, for desorption, were
placed for 10 min into the GC injection port. The GC–MS analyses were obtained using the Agilent
Technologies 7890B GC coupled to a 5977A mass selective detector. The instrument was equipped with
a Restek capillary column with dimensions of 60 m and 0.32 mm. Run conditions were based on the
same conditions reported by Botticelli et al. [17]. The chromatograms were utilized by integration and
identification of the fragment pattern with the ones present in the mass spectral library (NIST library)
(version 2.2, NIST 14MS database; National Institute of Standards and Technology, Rockville, MD) and

http://qiime.org/1.4.0/
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bibliography [45] and then followed by visual inspection. The data were detected by interpolating the
relative area vs. internal standard (IS) area and these data were expressed as ppm (mg/kg).

Similarly, the non-VOCs in stools, i.e., acids, amino acids, amines and sugars, were analyzed,
only for NSCLC patients, by NMR spectroscopy [46]. For this experiment, 500 mg of stool was suspended
with 1 mL of D2O–PBS–NaN3 buffered solution. In order to obtain fecal waters, the following steps
were performed. Firstly, the sample underwent vortex for 2 min and then it was centrifuged for 25 min
at 10,000 rpm at 4 ◦C. In accordance with the study of Brasili et al., the supernatant was filtered and an
entire 600 µL of volume was analyzed [46]. The NMR analysis was executed at 298 K by means of a
Bruker Advance400 spectroscope (Bruker BioSpin GmbH, Rheinstetten, Germany), facilitated with a
magnet operating at 9.4 Tesla (400.13 MHz for 1 H frequency). 1D 1H NMR experiments were carried
out by implementing the standard presaturation pulse sequence. The spectral conditions and 2D
homonuclear NMR total correlated spectroscopy (TOCSY) and heteronuclear single quantum coherence
(HSQC) experiments were performed according to Brasili et al. [47] and Wishart et al. [48]. ACD Lab
1D-NMR Manager 12.0 software (Advanced Chemistry Development, Inc., Toronto, ON, Canada) helped
to process and measure 1D NMR spectra, while MestReC software (Mestrelab Research SL, Santiago de
Compostela, Spain) was used to evaluate 2D NMR spectra. The metabolites quantification was detected
by the confrontation of the integrals (normalized for number of protons) of specific signals with the IS
trimethylsilyl propionic acid sodium salt (TSP) and then normalized for feces weight (µmol/g).

3.3. Data Pre-Processing

The targeted metagenomic and metabolomic profiling was performed for two distinct groups,
NSCLC and CTRLs, consisting of 11 and 8 subjects, respectively. In order to use a homogeneous
approach, a unique dataset was created that included both NSCLC and CTRLs. Thereby, for each
element of the two groups “s” (OTUs and metabolites), patients and controls were concatenated into a
single array, that is, [Pi, Cj] (i = 1, . . . , 11; j = 1, . . . , 8).

Consequently, the data were transformed into Z scores across subjects. This means that, for each
element of the two groups “s” and each subject “k”, the Z score Zs(k) was calculated as Equation (1)

Zs(k) =
sk −

N∑
k=1

sk

1
N

√
N∑

k=1

(
sk −

1
N

N∑
k=1

sk

)2
(1)

The total number of samples was denoted by N, where N = samples in group NSCLC + samples
in group CTRLs (i.e., 11 + 8 = 19). Suitable thresholds were set with the view to remove features whose
expression was nearly zero or had no significant variation across N samples. Firstly, a threshold was
set to allow poorly expressed features to be equal to zero for the maximum number of samples out of
N. The second threshold was set to optimize the variation, by measuring the interquartile range (IQR)
percentile allowed for each gene across N samples. For the final data, species with a presence of <25%
and a minimum IQR percentile of 11 were included. Finally, two additional thresholds were used to
eliminate features whose expression did not vary between the two given conditions, i.e., NSCLC and
CTRLs. These criteria also removed features whose expression did not change enough or changed
without statistical significance [49] among NSCLC and CTRLs. To begin with, the log fold-change
(the logarithm of the ratio) between the average expression of NSCLC samples and the average
expression of CTRLs samples was considered. Then, a fixed cut-off value of 3.4 was set as the threshold
on the log fold-change, which allowed the removal of features falling behind in absolute value.

The last threshold regarded the smallest probability (p-value) which allowed the rejection of
the null hypothesis (i.e., the means of the two distributions—CTRLs and NSCLC—are identical) of
a non-parametric permutation test. In order to adjust the statistical tests for multiple comparisons,
the FDR method [50] was used for p-values estimation. In order to retain only significant correlations,
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the p-values associated with the correlation coefficients were corrected for multiple comparisons and a
threshold was set. Accordingly, only correlations associated with p-values ≤ 0.05 and FDR-corrected
were considered.

3.4. Network Analysis

The data pre-processing resulted in a threshold-set correlation matrix. The features included
in the correlation matrix calculation were treated as nodes of the graph (Supplementary Tables S1
and S2) showing the identification numbers for the different features. The non-zero entries in the
matrix were considered as weighted connections or edges between the pairs of nodes. Subsequently,
an adjacency matrix (a representative 2D matrix whose elements indicate whether pairs of nodes are
connected or not in the network) was obtained by binarizing the thresholded correlation matrix [51].
Network analysis can give us an insight into the probable role of OTUs and metabolites in terms of
centrality and help deduce the importance of their participation in biological interactions. In order to
illustrate the relevance of the gut metagenome and metabolome profile in NSCLC patients undergoing
Nivolumab (anti-PD1) treatment, network analysis was conducted for the selected elements obtained
after data pre-processing and returned only those significantly expressed in NSCLC and CTRLs,
as described above.

3.4.1. Degree, Betweenness Centrality and Clustering Coefficient

Centrality is a term used to estimate how important a node or edge is for the connectivity or flow
of information in the network. Degree is a simple measure of centrality, corresponding to the number
of edges that connect to a node (synonymous with the collector of information within the network).

Therefore, a node with a high degree will have a significant role in the network.
If A = {aij} is the adjacency matrix, the degree centrality is given by Equation (2)

d(i) =
N∑

k=1

aki (2)

Betweenness centrality represents the capacity to connect two or more non-adjacent nodes
(synonymous with influence and control over the network) and measures the extent to which a node
lies on sequences of edges (paths) between other nodes [52]. Nodes with high betweenness centrality
are of great interest as they control the flow of information in the network. Conversely, removal of
these nodes from the network might disrupt the interaction among other nodes lying between them on
the largest number of paths. The betweenness centrality is measured by how often a node occurs on all
the geodesic paths (shortest paths) between two nodes. It is to be noted that a geodesic path is not
necessarily unique and the geodesic paths between a single pair of nodes may pass through some of the
same nodes. Mathematically, let dts(i) be the number of geodesic paths from nodes “s” to “t”, that pass
through “i”, and let dts be the total number of geodesic paths from s to t. Then, the betweenness
centrality of node “i” is Equation (3)

b(i) =
N∑

t,s=1
t,s,i

dts(i)
dts

(3)

Another statistical description used in network analysis is the clustering coefficient, which represents
the ability to form cores or cliques (synonymous with local communication efficiency within the
network) and gives the measure of the degree to which nodes in a graph tend to cluster together [53].
The Clustering coefficient, C(i), of a node is a measure of the number of triangles connected to that
node, normalized to the number of triples connected to that node [54]. A triple connected to a node is
a set of two edges connected to it. If the degree of the node i is zero or one, we set C(i) = 0.
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3.4.2. Communities and Modularity

One of the major objectives of network analysis is to detect communities. Communities are a
subset of nodes within a network that have dense internal connections, compared to the connections
with the rest of the network [55]. If a network consists of two isolated components, each community is
limited to only one component. Moreover, nodes in a community are likely to have more connections
to nodes of the same community than to nodes in other communities [55]. The most common approach
to community detection is based on the maximization of some modularity measure. Modularity can be
defined as the quantification of the strength of the division of a network into different parts. Here,
in order to find the modular properties of the network of interest, the Louvain method was used for
community detection [56]. It maximizes a modularity score for each community, where the modularity
quantifies the quality of the assignment of nodes to a particular community by evaluating how many
connections the nodes have within a community, compared to the number of connections they would
have in a random network.

3.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA is the most commonly employed method to construct gene co-expression networks,
identifying modules and detecting the central or hub genes within the modules [22,23]. The WGCNA
R package consists of the functions used to perform the co-expression network analysis [23]. Here,
the WGCNA framework was applied on the merged dataset (metagenomics and metabolomics) to
identify features (OTUs and metabolites) with similar profiles in the sample population.

The objective was to identify modules that are associated with two traits of interest: (i) condition
trait, i.e., NSCLC or CTRLs status, and (ii) treatment trait, i.e., R or NR. Sample clustering was
conducted to detect outliers and to visualize how the traits (i.e., NSCLC/CTRLs status and R/NR status)
would relate to the sample dendrogram.

Subsequently, a weighted network was built by computing the Pearson correlation coefficient
between any pair of nodes and by setting a soft-thresholding power equal to 5. The choice of this
correlation threshold was based on two criteria.

The first selection criterion derived from the evidence that most biological networks show
a scale-free distribution of the node degree [57–59]. Hence, the obtained network should have
approximately this topology. Moreover, scale-free networks are highly heterogeneous and their
topology is dominated by hubs, which are the few highly connected nodes. These hubs link the rest of
the less connected nodes within the network. One of the defining properties of scale-free networks
is that the degree distribution P(k) (i.e., the probability that a node has k edges) decays as a power
law P(k)~k(−α). Therefore, in order to evaluate whether the correlation network displays a scale-free
behavior, the index R-squared (defined as the square of the correlation between log(P(k)) and log(k)) was
calculated as a function of the correlation threshold. As it is not biologically reasonable that a network
includes more hubs than non-hubs, R-squared was multiplied with −1. If the estimated coefficient
α of the best fitting regression line between log(P(k)) and log(k) is positive, then a signed version of
this index is obtained. However, if the R-squared approaches 1, then there is a linear relationship
between log(P(k)) and log(k) and a scale-free topology is attained. Overall, these points were taken
into consideration so as to select a correlation threshold able to guarantee, at least approximately,
a scale-free network topology, i.e., signed R-squared >0.8 [22].

The second criterion allowed selecting a threshold that would guarantee a reasonable
mean connectivity.

At the end, WGCNA produced a set of modules (labeled by color), each containing a set of unique
nodes (OTUs and metabolites).

To summarize the information contained in a given module of the WGCNA network, the module
eigengene (ME) was used. ME is defined as the first principal component of the module [23].
Accordingly, the ME can be defined as a representative node capable of condensing each module
into a single profile. Next, the module membership (MM) and the biomarker significance (BS) were
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calculated for each node in each module [23]. The MM of a node represents the correlation between the
node profile and the ME, whereas the BS of a node represents the correlation between the node profile
and a given trait. If the MM of a node is close to 0, the node is not considered a part of the module.
Conversely, if the MM tends to 1 or −1, the node is highly representative of the module. The sign of
the MM explains if the node has a positive or a negative relationship with the ME. Concerning the BS,
the greater the absolute value of the BS of a node, the more biologically significant the node is. A BS of
0 indicates that the node is not significant with reference to the trait of interest.

4. Conclusions

In 2013, science named immunotherapy as a breakthrough in cancer treatment that demonstrated
promising results bettering the prognosis of cancer patients across the globe [60,61]. The success was
attained through ICIs and chimeric antigen receptor (CAR) T cells [61]. As described by Chen and
Mellman, the cancer immunity cycle is now known to play an important role in the identification and
utilization of checkpoint inhibitor targets [4]. Recently, several studies suggested the role of the GM in
modulating patient response to immunotherapy in cancer [16,17,36,62,63]. This evidence also implied
that certain host bacteria in the gut contributed to the positive response rate to immunotherapies,
while others exhibited the opposite effect. Such findings emphasized that each individual’s microbiome
is unique and hence immunotherapy response may vary due to the composition of the GM at the time
of immunotherapy.

Here, we have focused on the impact of the GM on NSCLC and the efficacy of ICIs in the treatment.
Preliminary data by Botticelli and colleagues suggested an important role of GM metabolic pathways in
immunotherapy response [17]. Their findings linked the presence of SCFAs as an important indicator
of positive response to treatment. Such discoveries of microbiota-linked indicators of non-responder
and responder patients can be a positive indication on the road to personalized management of
cancer patients.

Here, a network approach was used in order to gain a deeper understanding of the crosstalk
between the GM and lungs. Using network degree and centrality measures, it was found that metabolites
like indole 3-methyl, butanal 3-methyl, indole, pentanol and heptane could be some of the main
signaling molecules regulating gut ecosystem functioning and, thus, affecting host health. WGCNA
generated strong correlations between the presence of SCFAs and a normal healthy GM, supporting
Botticelli et al.’s hypothesis [17], and therefore it is potentially possible to consider SCFAs as biomarkers
of anti-PD1 therapy response in NSCLC patients. Furthermore, commensals such as Akkermansia
muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae
were found to be more abundant in controls but not in lung cancer patients, thus proposing an
imbalance in the intestinal microbiota of NSCLC patients. Interestingly, Granulicatella showed a
significant correlation with anti-PD1 treatment responders, and hence could be a choice for diagnostic
and prognostic biomarkers. Hence, not only the differences in microbial ecology could explain the
different responses to therapy but it is also necessary to take into account the microbial functional
activity of the entire community, to understand which signaling molecules are employed for a crosstalk
with host. In this experimental study, molecules such as indoles and aldehydes emerged as particularly
noteworthy for the signaling role in GM functionality.

Moving forward, it is necessary to conduct further investigations on larger datasets to unravel
the complex relationship between gut microorganisms, metabolites, tumor pathogenesis and host
immunity. The gut–lung microbiota axis could influence ICIs treatment response in NSCLC and
other cancers. The mechanisms by which the microorganisms in the gut and various other body sites,
individually or collectively, interact with the host immune system is still largely unknown.

Studies also highlighted fecal microbiota transplantation (FMT) as a new promising therapeutic
strategy to treat cancer, which involves complex microbiota community transfers, dietary prebiotics
and elimination of harmful gut microbes with selective antibiotics or viruses [64–66].
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To conclude, further research in this direction is necessary to improve patients’ treatment responses
and life conditions, through new therapeutic approaches to cancer.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/
21/22/8730/s1. Supplementary Text S1. Results of Weighted Gene Co-expression Network Analysis
(WGCNA)_GC_NMR_OTU; Supplementary Figure S1. Weighted Gene Co-expression Network Analysis
(WGCNA) analysis on GC-NMR-OTU data; Supplementary Figure S2. Visualization of Weighted Gene
Co-expression Network Analysis (WGCNA) network on GC-NMR-OTU data; Supplementary Figure S3.
Abundance of the 44 selected features; Supplementary Table S1. OTUs raw data; Supplementary Table
S2. GC–MS raw data; Supplementary Table S3. NMR raw data; Supplementary Table S4. Weighted Gene
Co-expression Network Analysis (WGCNA) modules OTUs NMR GC–MS; Supplementary Table S5. Weighted
Gene Co-expression Network Analysis (WGCNA) analysis; Supplementary Table S6. Statistics of the 44 selected
features; Supplementary Table S7. List of identification numbers for the OTUs + metabolites network.
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GM Gut microbiome
GI Gastrointestinal
CTL-4 Cytotoxic T-Lymphocyte Antigen 4
PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
ICIs Immune checkpoint inhibitors
PRR Pattern recognition receptors
NSCLC Non-small cell lung cancer
SCFAs Short chain fatty acids
WGCNA Weighted Gene Co-expression Network Analysis
ECOG Eastern Cooperative Oncology Group
i-RECIST Response Evaluation Criteria in Solid Tumors
PFS Progression-free survival
OS Overall survival
NR Non-responders
R Responders
CTRLs Controls
OTUs Operational taxonomic units
VOCs Volatile organic compounds
GC-MS/ Gas-chromatography-mass spectrometry/

SPME Solid phase microextraction/

IS Internal Standard
NMR Nuclear magnetic resonance spectroscopy
TSP Trimethylsilyl propionic acid sodium salt
IQR Inter Quartile Range
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FDR False Discovery Rate
ME Module eigengene
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