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Financial  networks  have  shown  to  be  important  in  understanding  systemic  events  in  credit  markets.  In
this  paper,  we investigate  how  the  structure  of  those  networks  can  affect  the capacity  of  regulators  to
assess  the  level  of  systemic  risk. We  introduce  a model  to compute  the  individual  and  systemic  proba-
bility  of default  in  a  system  of  banks  connected  in a  generic  network  of  credit  contracts  and  exposed  to
external  shocks  with  a generic  correlation  structure.  Even  in  the  presence  of complete  knowledge,  we
identify  conditions  on  the  network  for the  emergence  of  multiple  equilibria.  Multiple  equilibria  give rise
inancial networks
ystemic risk
ncertainty
egulatory framework
ontagion

to  uncertainty  in  the  determination  of the default  probability.  We show  how  this  uncertainty  can  affect
the  estimation  of  systemic  risk  in  terms  of  expected  losses.  We  further  quantify  the  effects  of  cyclicality,
leverage,  volatility  and  correlations.  Our  results  are  relevant  to the  current  policy  discussions  on  new reg-
ulatory  framework  to deal with  systemic  events  of distress  as  well  as on  the  desirable  level  of  regulatory
data  disclosure.
. Introduction

The emergence of systemic risk in financial networks is receiv-
ng increasing attention in the literature (Stiglitz, 2010; Allen
nd Babus, 2009; Acemoglu et al., 2015a) and among regulators

IMF, 2015; Yellen, 2013). Network effects matter for financial sta-
ility because shocks can be amplified along various channels:
ommon funding sources can lead to a spreading of bank runs (e.g.,
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Diamond and Dybvig, 2015; Goldstein and Pauzner, 2004); balance
sheet interlocks (e.g., loans, repurchasing agreement, derivatives,
etc.) can lead to cascades of defaults, (e.g., Allen and Gale, 2000;
Eisenberg and Noe, 2001) or propagation of distress (Battiston et al.,
2012); exposures to common assets can lead to a spiral of fire sales
and deleveraging across banks (e.g., Caballero and Simsek, 2013;
Caccioli et al., 2013).

The main focus of the literature has been so far on understand-
ing how the structure of the financial network (along the various
aforementioned channels) can mitigate or amplify systemic risk
(Elsinger et al., 2006; Gai and Kapadia, 2011; Gai et al., 2011;
Georg, 2015; Cont et al., 2013; Roukny et al., 2013; Elliott et al.,
2014; Acemoglu et al., 2015b; Glasserman and Young, 2015). Fewer
works have been devoted to understanding how the structure of
the financial network can instead affect the very ability to assess
systemic risk. At the regulatory level, forecasting limitations is a
source of uncertainty that, in turn, can make any decision poten-
tially harmful to the system despite the apparent need for action
(Bernanke, 2010). At the individual level, uncertainty about cross
exposures and losses of counterparties can trigger panic and fire
sales even from healthy banks (Caballero and Simsek, 2013; Alvarez
and Barlevy, 2014).

In this paper, we  develop a model of a financial network that
includes an interbank market as well as external assets and exter-
nal sources of funds. In spirit, our model is closest to Elsinger et al.

(2006) and Rogers and Veraart (2013) who build on the frame-
work introduced by Eisenberg and Noe (2001) in which a clearing
vector of payments and a recovery rate is determined after the

https://doi.org/10.1016/j.jfs.2016.12.003
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aturity of the contracts (i.e., ex-post) assuming different levels
f liquidation efficiency. Instead, we are here interested in ex-ante
aluation of contracts in order to determine probabilities of default.
urthermore, as in practice asset liquidation implies lengthy legal
ettlements, we assume that, in the short run, recovery rates are
imited (Cont et al., 2013).

Our first contribution is thus to provide a framework that allows
o compute analytically the probability of default of any subset
f banks for a generic structure of the interbank network and a
eneric structure of shocks correlation among external assets. To
ur knowledge, few works have provided a simple solution to this
roblem (Gouriéroux et al., 2013; Glasserman and Young, 2015).
he simplicity of our result stems from the analysis of the set of
efault conditions as a system of coupled equations in the space of
hocks.

Our second contribution is to show how, even in the case of com-
lete knowledge of the web of contracts and distributions of shocks,
ultiple equilibria can exist depending on the network structure.

hose co-existing equilibria may  include the case in which all banks
efault and the case in which no bank defaults, as well as interme-
iate cases.1 More precisely, we show that, under mild conditions
n the balance sheets across banks, a sufficient condition for mul-
iple equilibria to exist is that the interbank network architecture
xhibits cyclical structures, i.e., at least one closed chain of lend-
ng ties. The reason is that a closed chain of lending ties implies a

utual dependence of the interbank asset values.2

A common way to deal with multiple equilibria is to add to the
odel some mechanism of equilibrium selection, in order to be able

o focus only on one equilibrium.3 However, making assumptions
n the equilibrium selection process rules out by construction an
ntrinsic uncertainty that may  be valuable to assess. Indeed, both
rom the point of view of a firm in a network of contracts as well as
or the regulator, uncertainty is fundamental for decision making
Caballero and Simsek, 2013; De Grauwe and Ji, 2015). In this paper,
ur goal is precisely to characterize the uncertainty stemming from
quilibrium multiplicity.

Accordingly, our third contribution is the quantification of this
ncertainty, that is, the extent of the area of multiplicity of equi-

ibria in the space of the shocks. While the realization of each
quilibrium is mathematically consistent with the set of condi-
ions, there might be different mechanisms at work leading the
ystem to one equilibrium rather than another. In fact, each equi-
ibrium is the result of a coordination of actions at the agent level

hich, in turn, depends on each agent’s belief. In this paper, we do

ot model explicitly the mechanisms that could lead to coordina-
ion. We  focus instead on the relation between the structure of the
nancial network and the existence of the multiplicity.4

1 Furthermore, note that, as our model considers secured credit contracts, the
ere occurrence of counterparty default is not sufficient to determine subsequent

efaults. It also depends on the amount of collateral posted by the borrower, the
apacity to recover it after default and the relative exposure of the lender. Hence,
he  co-existing solutions are also determined by the balance-sheet structure of the

arkets participants and the relative level of risk exposure of each bilateral contract.
2 The existence of multiple equilibria due to mutual dependence between agents

lso  relates to previous work on specific ring structures reported in (see Chapter 7
n  Stiglitz and Greenwald, 2003).

3 For example, both in (Rogers and Veraart, 2013) and in (Elliott et al., 2014), the
uthors rank the equilibria according to a systemic risk criteria (e.g., the number of
efaults) and select the first equilibrium.
4 There are several mechanisms that could make agents coordinate on socially

ood or bad equilibria. Such a coordination could be rational, if the equilibrium is
onsistent with the beliefs, or not. The rational case further includes sunspot equi-
ibria as described in (Stiglitz and Greenwald, 2003). While the mechanisms leading
o  the good equilibrium can be very simple (i.e., rational incentives for each bank to
urvive), the bad equilibrium case can result from information asymmetry, interest
ate dynamics, and the combination of liquidity hoarding and asset fire sales. In the
atter, if agents come to believe that external assets held by their counterparties are
l Stability 35 (2018) 93–106

We  further quantify how the uncertainty is affected by the net-
work structure and potential correlations across banks’ portfolio
returns. In particular, we determine the difference between the
probability of default in an optimistic scenario (i.e., the equilibrium
with the least number of defaulting banks) and in a pessimistic sce-
nario (i.e., the equilibrium with the highest number of defaulting
banks) and we introduce a method to measure the cost of equilib-
rium selection in terms of expected losses. For instance, we show
that a market structure in which banks are arranged in a ring of
obligations bears less uncertainty then a centralized structure in
which one bank lends to and borrows from all others mainly due to
an increase of number of cycles in the network. We  also find that
correlations have an ambiguous effect on uncertainty. Correlations
across shocks increase uncertainty when banks balance sheets are
homogenous, but decrease uncertainty for certain heterogenous
allocations of assets across banks.

The insights from this work are relevant to three current pol-
icy discussions. A first discussion concerns the lack of a satisfactory
framework to deal with too-big-to-fail institutions and with sys-
temic events of distress in the financial system (Haldane and May,
2011; BoE, 2013). In this respect, our work makes a contribution
to the stream of work aimed at estimating the systemic impact of
financial institutions in a network context. A second discussion con-
cerns the level of financial data disclosure on the side of individual
institutions that would be desirable for the regulator to properly
assess systemic risk (Abbe et al., 2012). Our results show that the
knowledge of the structure is crucial to assess systemic risk but that
some level of uncertainty is intrinsic to more interconnected sys-
tems. A third discussion concerns the role of the regulator (Draghi,
2012; Miller and Zhang, 2014; De Grauwe and Ji, 2015): in the pres-
ence of multiple equilibria, the actions of the regulator can affect,
voluntarily or not, the equilibrium selection. On the one hand, our
model helps to quantify the expected monetary loss due to a mis-
assessment of systemic risk. On the other hand, our model also
allows to identify when instead the outcomes are very close and,
thus, regulatory decisions would have limited impact.

The structure of the paper is as follows. Section 2 describes the
model. Section 3 analyses necessary and sufficient conditions for
the existence of multiple equilibria. Section 4 shows how to com-
pute default probability in different scenarios and analyses the
effect of the structure of the network and the effect of correla-
tions across shocks. Section 5 introduces a method to compute the
expected losses. Finally, Section 6 concludes.

2. The model

We  consider a financial network with over-the-counter (OTC)
credit contracts among n agents or, for simplicity, banks. A similar
model can be found in a companion paper (Battiston et al., 2016)
where the focus is on quantifying the effects of network configu-
rations and measurement errors in systemic risk evaluations. We
distinguish between secured contracts (i.e., banks have to post a
collateral in order to receive a loan) within the banking system itself
(“interbank”) and contracts of banks on securities outside the bank-
ing system (“external”). Formally, we  define the interbank financial
network as a directed graph as follows.

Definition 1. The network or graph G is the pair (n, E) where n is a

set of nodes representing the banks and a set of edges E representing
directed credit contracts between two banks going from the lender
to the borrower.

overpriced they will hoard liquidity and sell assets, thus inducing counterparties to
do  the same, effectively causing a coordination on socially bad equilibria.
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.1. Timing of the model

The timing of the model is as follows. At time 1, banks raise funds
nd make investments in external and interbank assets. At time 2,
he values of the external assets are shocked and updated. While the
hock distribution is known at time 1, shocks are only observed at
ime 2. At time 2, the interbank contracts mature and their value is
lso updated depending on the shocks that have occurred. For each
ank i, the main quantities are detailed in the following section.

.2. Balance sheets

Assets and liabilities of bank i on the external markets are
enoted as aE

i
and �E

i
. Assets and liabilities of bank i on the inter-

ank credit market are denoted as aB
i

and �B
i
. Additionally, banks

lso hold other types of assets that they can use as collateral for
heir interbank liabilities, denoted as aC

i
. Total assets and liabilities

re respectively denoted as ai and �i. The equity of each bank is
enoted by ei and is defined as the difference between total assets
nd total liabilities. Fig. 1 illustrates the model in the context of 3
eterogenous banks lending to and borrowing from each other in

 circular way: Bank 1 lends aB
1 to Bank 3 while borrowing lB1 from

ank 2; Bank 2 lends aB
2 to Bank 1 (i.e., lB1 = aB

2) while borrowing lB2
rom Bank 3; Bank 3 lends aB

3 to Bank 2 (i.e., lB2 = aB
3) while borrow-

ng lB3 from Bank 1 (i.e., lB3 = aB
1). At the same time, the 3 banks invest

n some external assets (aE
1, aE

2 and aE
3). In the figure, the 3 assets

artially overlap with each other. This feature highlights potential
orrelations in the return of each bank’s external investment. Below
e detail the different types of assets.

.2.1. External assets
At time 1, each bank i allocates its external assets in a portfolio

f securities on the external markets. Let Eik denote the fraction of
’s external assets invested at time 1 in the security k. The unitary
alue of the external security k is xE

k
. Without loss of generality: at

ime 1, xE
k
(1) = 1 for all k, while xE

k
(2) is a random variable drawn

rom a given distribution. At time 2, then the external assets of bank
, is a sum of random variables:

E
i (2) = aE

i (1)
∑

k

EikxE
k (2).  (1)

For our purposes, it is sufficient to assume that we can express
he external assets of bank i as follows:

E
i (2) = aE

i (1)(1 + �i + �i ui), (2)

here ui is a random variable drawn from a given distribution with
ero mean and finite variance, the parameter �i is the expected net
eturn of the portfolio and �i is a scaling factor of the magnitude of
he shocks. We also assume to know the joint probability distribu-
ion p(u1, . . .,  un). Let us define ei(1) as the equity of bank i at time 1.
t is then convenient to use the parameter εi = (aE

i
(1)/ei(1)) which

easures the magnitude, per unit of initial equity of bank i, of the
nvestments of bank i in external assets. We  thus obtain:

aE
i
(2)

ei(1)
= εi(1 + �i + �i ui). (3)

.2.2. Interbank assets
At time 1, each bank i allocates its interbank assets among the

ther banks, Bij denotes the fraction of i’s interbank assets invested

t time 1 in the liability of bank j. Let us define a default indicator
j(t), with �j(t) = 1 in case of default of bank j at time t and �j(t) = 0
therwise. The unitary value of the interbank liability of bank j to
ank i is xB

ij
(�j(t)).
l Stability 35 (2018) 93–106 95

If all banks are assumed to not default at time 1, we have with-
out loss of generality: xB

ij
(�j(1)) = 1 for all i and j. The liabilities of

bank j are constant in value from the perspective of bank j, i.e., the
debt agreed upon in the contract at time 1. However, from the point
of view of counterparties of j, xB

ij
(�j(2)) = 1 if bank j honors its obli-

gation, xB
ij
(�j(2)) = Rij otherwise, where Rij is the recovery rate, i.e.,

the fraction of assets that the lender i can recover after the default
of j. In formulas:

xB
ij(�j(2)) =

{
1, if �j(2) = 0,

Rij, if �j(2) = 1.
(4)

Accordingly, at time 2, the interbank assets of bank i, is

aB
i (2) = aB

i (1)
∑

j

Bijx
B
ij(�j(2)). (5)

Similar to the external assets, we  introduce the parameter ˇi =
aB

i
(1)/ei(1), which measures the magnitude, per unit of initial

equity, of i’s investments in interbank assets. We  thus obtain:

aB
i
(2)

ei(1)
= ˇi

∑
j

Bijx
B
ij(�j(2)). (6)

2.2.3. Assets used as collateral
Finally, banks hold some assets aC

i
to be used as collateral for

their borrowing. For sake of simplicity, we  assume that the value
of these assets does not change across the two  periods (i.e., aC

i
(2) =

aC
i

(1)). These assets determine the recovery rate for the lender i
after a borrower j defaults. Let Rij be the recovery rate, that is the
share of the interbank asset from bank i to bank j that is covered by
the collateralized asset of bank j (aC

ji
) and Ri be the total recovery

rate of bank i in the interbank market weighted by the exposure to
each counterparty. We  thus have Rij = (aC

ji
/aB

ij
(2)) and Ri =

∑
jBijRij.

As aB
ij

= lB
ji
, the total amount of total collateral posted by one bank

is given by:

aC
i (2) =

∑
j

Rjil
B
ij. (7)

Similar to the previous cases, we  introduce the parameter � i, which
measures the magnitude, per unit of initial equity, of i’s collateral-
ized assets:

aC
i

(2)

ei(1)
= �i. (8)

2.3. Default condition

As it is standard in financial accounting, we  consider that
an agent i defaults when its equity at time 2 is negative (i.e.,
ai(2) − li(2) < 0). Assuming that the funding side remains constant
between time 1 and 2 (i.e., no liability shock), we  can re-express
such condition in equity relative terms, that is, we divide by the
value of equity at time 1 using Eqs. (3), (6) and (8). Note that, in
equity relative terms, the liability side is equal to the value of the
asset side relative to the equity at time 1 minus the equity, we
obtain:

εi(1+�i+�iui)+ˇi

⎛
⎝∑

j

Bijx
B
ij(�j)

⎞
⎠+�i − (εi+ˇi+�i − 1) < 0. (9)
Note that the collateral portion of the balance sheet is removed
from the default condition as its value does not change between
time 1 and time 2. Nevertheless, the value of the collateralized
assets remains captured in the recovery rate as shown in Eq. (4)
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Fig. 1. An illustration of an interbank market of 3 banks lending to and borrowing from each other and investing in external assets (source: Battiston et al., 2016). Each bank
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s  represented by its balance-sheet which is composed of collateral, interbank and e
orrows from Bank 2 while lending to Bank 3 and Bank 2 borrows from Bank 3. The
otential correlations in the assets’ returns.

efining xB
ij
(�j). Finally, we  express the above condition as a func-

ion of the stochastic shock variable on the external assets ui. We
btain a condition such that if the external shock is below a thresh-
ld �i, this leads to the default of bank i:

i < �i =
−εi�i + ˇi(1 −

∑
Bijx

B
ij
(�j)) − 1

εi�i
, (10)

here �i is the threshold value below which ui would cause the
efault of i. Notice that we  have dropped the time in the notation.
hus, depending on the magnitude and the sign of the shock ui
n each bank, some can default on their obligations, potentially
ushing other banks to default.

We can now express the default indicators �i of all banks as a
ystem of equations

i �i = 	(ui − �i(�1, . . .,  �n)), (11)

here 	 denotes the step function (or Heaviside function, i.e.,
quals one if the argument is positive, zero otherwise). A solution
f the system above is denoted as �*. We  define an equilibrium as
ollows:

efinition 2. An equilibrium is a vector of default indicators
 = {�1, . . .,  �n} that is a solution to Eq. (11).

ecause Eq. (11) is a system of non-linear equations, in general
here can be multiple equilibria. This aspect will be analyzed in
ection 3.

.4. Threshold values

From the above definitions, it follows that the threshold value

f every bank i can take a finite amount of different values depend-
ng on the identity of i’s counterparties that default at time 2.5 Let
i denote the subset of banks borrowing from bank i and |Vi| the

5 Note that, in case of homogeneity, only the number of defaulting counterparties
atters and not their identity.
al assets and liabilities. The 3 banks are arranged in a circular way, such that Bank 1
ks also invest in external assets. The overlap between the external assets highlights

cardinality of such a set. Let 
i be the discrete set of all values
that �i can take, sorted by ascending order, 
i = {�1

i
, . . .,  ��i

i
} with

�s
i

≤ �t
i

if 0 < s ≤ t ≤ �i and s, t ∈ N. As every counterparty can
have 2 states (i.e., �j = 1 or �j = 0), we  denote the number of values
that �i can take as �i such that:

�i = |
i| ≤ 2|Vi |. (12)

We can characterize the minimum and maximum values that
the threshold can take, respectively �1

i
and ��i

i
. For convenience,

we will refer to those values as �−
i

and �+
i

. Intuitively, the former
corresponds to the case where none of the counterparties defaults
(i.e., �j = 0 ∀ j ∈ Vi) while the latter corresponds to the case where all
counterparties default (i.e., �j = 1 ∀ j ∈ Vi). From Eq. (10) it follows:⎧⎪⎨
⎪⎩

�−
i

= �i(�j = 0 ∀j ∈ Vi) = −εi�i − 1
εi�i

,

�+
i

= �i(�j = 1 ∀j ∈ Vi) =
−εi�i + ˇi(1 −

∑
j
BijRij) − 1

εi�i
= �−

i
+ ˇi(1 − Ri)

εi�i
,

(13)

where for convenience we denote by Ri =
∑

jBijRij the total amount
of collateral that bank i recovers from the default of all its counter-
parties.

The equation above shows that as long as Ri < 1 and the param-
eters εi, �i, ˇi are positive, it follows that �−

i
< �+

i
. This reflects

the fact that it is easier to default when all counterparties have
defaulted than when none has defaulted. Indeed, a larger value of
the threshold implies that more shocks will fall below the thresh-
old.

An equivalent way  to interpret �−
i

is to view it as the threshold
condition below which a shock would lead bank i to default irre-
spective of its counterparties’ default state (recall that in our model
shocks on the external assets can be positive or negative). Indeed,

if the shock is below �−

i
, bank i defaults even if none of its counter-

parties defaults. Hence, it does not matter whether the bank faces a
counterparty default or not, the shock will always lead to the default
of bank i. In contrast, �+

i
represents the minimal shock needed to
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ustain the worse case scenario, i.e., when bank i has lost all its
nvestments in the interbank market, apart from the collateral.

In the remainder of this section, we discuss the parameters’
alue of interest for our study. We  identify conditions under which
he value of ui has an effect on the default of bank i. Let us start with
he extreme cases:

when �i ≤ −1, In this case, no matter what the value of the shock
ui is, the bank will never default;
when �i ≥ 1, In this case, no matter what the value of the shock ui
is, the bank will always default;
when −1 < �i < 1, In this case, the default is a function of the shock
ui. Hence, we are interested in this range of values.

s our study will focus on thresholds whose values belong to the
hird point, let us analyze what are the underlying parameter con-
itions for that condition to hold. In order to do so, we can focus on
he two extreme thresholds values, �−

i
and �+

i
, as any other �i ∈ 
i

ill be comprised between those two extremes.
For the case of �−

i
, using Eq. (13) on the above condition, we

ave:

1 < �−
i

< 1 ↔
{

−εi(�i − �i) > 1,

−εi(�i + �i) < 1.
(14)

To interpret the elements εi(�i − �i) and εi(�i + �i), recall the
xpression of the volatility of the external portfolio at time 2
nd extract the changes with time 1: εi(�i + ui�i). Hence, the two
xpressions result from the extreme cases where ui is equal to −1
nd 1, respectively. As we are framing our accounting in terms rel-
tive to the equity, we have that the equity is equal to 1. It is thus
ossible to read the conditions of Eq. (14) as a set of 2 conditions
n the effect of the worst shock and best shock. The worst shock,
hat is, when ui =−1, must yield a return on the external asset that
s a loss larger than the equity. The best shock, that is, when ui = 1,

ust yield a return on the external asset that can be a loss but not
arger than the equity.

Similarly, for the case of �+
i

, we have:

1 < �+
i

< 1 ↔
{

−εi(�i + �i) < 1 − ˇi(1 − Ri),

−εi(�i − �i) > 1 − ˇi(1 − Ri).
(15)

Following the same reasoning as for the interpretation on the
onditions for �−

i
, similar results hold with the subtraction of the

lement ˇi(1 − Ri) from the equity. Indeed, this element represents
he fraction of assets covered by collateral in terms relative to the
quity. Hence, 1 − ˇi(1 − Ri) represents the equity of bank i after
ll its borrowers have defaulted and all the collateral has been
ransferred to bank i.

It is clear that all values of �i do not have to be constrained
etween −1 and 1. Nevertheless, those ranges are the ones of inter-
st when focusing on default scenarios. The above exercise is thus
n illustration of how to interpret the conditions under which the
etwork of contracts and the distribution of external shocks will
ave an effect on the system’s equilibrium. For convenience and
ithout loss of generality, we can thus use the following expres-

ion:

î = min{max{�i, −1}, 1}, (16)
here �̂i is the result of a cut-off on both sides of the threshold vari-
ble. Indeed, as shown above, when values of �i exceed the range
−1, 1], the results become independent of the rest of the system
onditions.
l Stability 35 (2018) 93–106 97

3. Multiple equilibria

We now analyze under which conditions the system of equa-
tions characterizing the default (i.e., Eq. (11)) leads to multiple
equilibria. In particular, we are interested in identifying the con-
ditions on the network structure leading to unique or multiple
solutions. Indeed, the structure of the network of contracts enters
in the default conditions of Eq. (10) via the matrix Bij of interbank
assets. For each bank i, the associated equation has a default thresh-
olds �i that is a function of the bank’s borrowing counterparties’
default status. Such subset of banks is, in turn, determined by the
network of contracts.

Let us start by defining the notions of walks, paths and simple
cycles, that we  use to address the multiplicity of equilibria.

Definition 3. A walk Wi1,ik
connecting bank i1 and ik is a

sequence of banks (i1, i2, . . ., ik) such that the ordered pairs (i1i2),
(i2i3),. . .,(ik−1ik) ∈ E, i.e., are edges in the network. A walk is closed
if the first and last bank in the sequence are the same, and open if
they are different. The length of the walk is given by the number
of edges it contains, i.e., any walk W(i1, ik) has length k − 1. A sim-
ple cycle, denoted by Cn, is a closed walk encompassing n different
banks and n − 1 edges.

In simple terms, in an interbank financial network, a cycle is thus
an arrangement of contracts that can be displayed on a circle such
that a bank at a position i is borrowing from its left neighbor and
lending to its right neighbor. Using this definition, we can now state
the necessary and sufficient condition for the system to generate
multiple equilibria.

Proposition 1 (Multiple equilibria). Consider the case of n banks,
with: recovery rate Ri < 1; interbank leverage ˇi > 0; external leverage
εi; shock scale �i positive and finite; shock mean �i finite. For some
realization of u, multiple equilibria exist if and only if there exists a
simple cycle Ck of credit contracts along k ≥ 2 banks, such that for each
bank i and its borrowing counterparty i + 1 along the cycle Ck, it holds
that �̂i(�1, . . .,  �i, 0, . . .,  �k) /= �̂i(�1, . . .,  �i, 1, . . .,  �k)

Proof. See Appendix A. �

The necessary and sufficient conditions in the proposition above
are supported by two  related but different aspects. The first is the
network structure: there can only be multiple solutions to Eq. (11)
if the network contains at least 2 banks whose default condition
depend upon each other’s default status. More in general, a cycle is
a chain of dependencies that goes back to the first node, so that the
banks involved in such a structure are indirectly lending from and
borrowing to all others. Therefore their default conditions depend
on all others’ defaults. In contrast, an acyclic structure implies that
some banks are not lending to any other. It is thus possible to com-
pute unequivocally the default state of those banks independently
of any other bank. Once we know their status, the default status
of their lender can be determined unequivocally. The same process
is iterated recursively to the lenders of the lenders until a unique
vector of all default states is reached (i.e., a unique equilibrium).

The second aspect is related to the dependencies among the
default states. If, for a given shock on the external assets, the default
condition of bank i does not change whether i’s borrowing coun-
terparties default or not because, for instance, both thresholds are
above 1 or below −1 or equal, then there are no multiple equilibria
for bank i. Accordingly, the second condition in the above Proposi-
tion, states that the default of a borrower of bank i in the cycle must

imply a difference on the default condition of bank i. Note that in
the Proposition we use the cutoff expression (see Eq. (16)) for the
thresholds in order to account for the fact that the interval between
the thresholds must intersect the shock domain [−1, 1].
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In order to overcome this problem, we resort to the study of
Fig. 2. Example of network structures.

While it might be intuitive to think that the different structure
ill lead to different profiles of multiplicity in the shock space,

roposition 1 allows to gain precise insights regarding specific
tructures. To illustrate this point, let us inspect several simple
etwork structures represented in Fig. 2.

For the tree structure, which is acyclical, we can deduce that,
or all combinations of shocks, the equilibrium will be unique. The
ame holds for the star-out structure. On the contrary, the com-
lete and ring structure will display multiple equilibria as long as
ondition 2 of Proposition 1 holds. From condition 1 in Proposition
, we can also state a sufficient condition on the interbank market
o ensure uniqueness of the equilibrium.

orollary 1. An interbank market with no intermediation (i.e., banks
nly act as borrowers or lenders) always lead to a unique equilibrium
or the default state.

This result is obtained from the fact that, in a directed graph,
f the nodes have only out-going or in-coming links, for sure there
annot be a directed cycle. In other words, in a market where banks
lay only one role (i.e., no intermediaries, only strict borrowers and
trict lenders), there are no cyclical interdependencies and thus no
ultiplicity of equilibria.

. Probability of default

We  now show how our model can be used to compute the
ndividual and systemic probability of default, given a network
f contracts and a joint probability density function of shocks on
xternal assets. In order to compute the systemic probability of
efault, in analogy to the individual default indicator, we  define a
ystemic default indicator �sys as follows:

sys = ˘i�i. (17)

The definition implies that �sys = 1 only when all banks default,
sys
.e., �i = 1 ∀ i and � = 0 otherwise. Note that this definition could

e relaxed in order to account for less extreme definitions of sys-
emic default. For example, we could consider as systemic default
l Stability 35 (2018) 93–106

a situation in which at least more than half of the banks default as
follows,

�sys =

⎧⎨
⎩

1 if
∑

i

�i >
n

2
,

0 else.

For the sake of simplicity in the remaining of the paper, we  focus
on the cases of all banks defaulting (i.e., ˘ i�i = 1 for all i). We  also
show that the results are qualitatively robust to relaxations in the
definition of �sys as long as it is based on the vector of defaults states
{�i}.

Let us consider the case in which Eq. (11) has a unique solu-
tion for every combination of shocks. Given the individual and
systemic indicators of default, we can compute the individual
(resp. systemic) probability of default by integrating the individual
(resp. systemic) default indicator across the whole space of shocks,
weighted by the joint probability associated with each shock com-
bination according to the following definition.

Definition 4 (Systemic default probability). Consider a market of n
banks. The default probability of an individual bank i, Pi, and the
systemic default probability Psys for the default states {�i} for each
u are defined as follows:

∀i Pi =
∫

[−1,1]n
�i(u) p(u) du, (18)

Psys =
∫

[−1,1]n
�sys(u) p(u) du, (19)

where �i is a unique solution of Eq. (11) as a function of u and
p(u) denotes the joint probability distribution of the shocks on the
external assets of the banks.

The above definition illustrates that, once the default status of
all the banks is known for every combination of shocks and that
each combination of shocks is associated with a probability, we
can compute the probability of default of every bank individually
and the probability of systemic default.

In fact, for any given default state �, we can determine the values
of the thresholds � = f(�). For example, in a market of two  banks, we
have:

(�1, �2) = (1,  1) iff u1 > �1
1(�2 = 1) and u2 > �1

2(�1 = 1).

From the values of the thresholds in the space of shocks, we  can
determine the individual probability of default Pi.

Recall that the space of shocks is weighted by the probability
distribution of the shocks, which account for possible correlations.
Every default condition holds in a region of the space. As the default
information is retrieved by the binary default indicator �i summing
up the areas where a given condition holds and dividing by the
whole area of shocks gives its probability of occurrence.

Notice that by weighting the elements of the shock space by
the joint probability distribution of the shocks we account for pos-
sible correlations across shocks. Any correlation structure can be
embedded in the function p(u).

4.1. Multiple equilibria and probability of default

In the presence of multiple equilibria of the default state � for a
given combination of shocks, the formula of Definition 4 cannot be
applied anymore, because, when integrating over the shock space,
the integrand can take several values for the same shock.
scenarios. Depending on the scenario, for any given shock for which
multiple equilibria exist, one equilibrium is selected according to a
predefined rule. More precisely, we  define the worst and the best
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quilibrium as the function that for any given shock u, selects the
olution in which the largest (resp. the smallest) number of banks
efault.

efinition 5. Given the set {�sys
k

(u)} of all the possible solutions
or the default conditions of Eq. (11) for any given shock u, the worst
quilibrium is the function of the shock u: �sys+(u) = maxk{�sys

k
(u)}.

he best equilibrium is the function of the shock u: �sys−(u) =
ink{�sys

k
(u)}

In the following we will refer to the best (worst) scenario as the
ne in which the best (worst) equilibrium is selected. Accordingly,
e define as P+ (respectively P−) the systemic default probabilities

n the two scenarios.

efinition 6. The systemic default probability in the worst (+)
“pessimistic”) scenario and best (−) (“optimistic”) is defined as:

± =
∫

�sys±(u) p(u) du. (20)

e define as uncertainty on the systemic default probability
he difference between the systemic default probability in the two
cenarios:

P  = P+ − P−. (21)

e define as uncertainty area, the portion of the shock space in
hich the worst and the best equilibria are different.

U =
∫

(�sys+(u) − �sys−(u)) du. (22)

According to the above definitions, �U  measures the area in
he normalized shocks space where multiple equilibria arise, while

P measures the difference between the probability of default in a
pessimistic” and in an “optimistic” scenario. Note that the inequal-
ty 1 ≥ �P  = P+ − P− ≥ 0, always holds, with �P  = P+ − P− > 0 strictly
olding in the case of multiple equilibria.

Intuitively, while �U  captures the extent of the multiplicity,
P  captures the impact of the multiplicity on the computation of

efault probabilities. More in detail, �P  captures the uncertainty
n the assessment of systemic risk, due to the presence of multi-
le equilibria, as a difference between the probabilities of systemic
efault in the best and the worst scenario. In other words, �P
easures the possible misjudgment in assessing systemic risk by

elying only on one single scenario (the optimistic or the pessimistic
ne). In this respect, cases with small �P  (even in the presence
f multiple equilibria) imply less uncertainty and less potential
isjudgment than cases with large �P.
If the systemic default indicator is defined as equal to one in case

 subset of banks default instead of the whole system, the results
f this paper remain qualitatively robust. In fact, the insights from
roposition 1 would still hold for the following argument. Recall
hat in order to compute the probability of a systemic event of k out

 banks defaulting we have to impose the default of k banks and
easure the area in the shock space where this is a solution of the

ystem. If multiple solutions exist, the default of at least k banks rep-
esents the worst scenario (instead of requiring n defaults), while
he solution with the least number of defaults represent the best
cenario. The conditions for multiplicity are still the same, i.e., that
here is at least a cycle of contracts with different values of thresh-
lds for each of the banks along the cycle.

In contrast, quantitatively the result could change with k < n.
ndeed, everything else the same, it is more probable to have at least

 banks out of n defaulting rather than n banks defaulting. In the

imit of very large n and very small k (with homogenous banks), the
robability of having no bank defaulting or k bank defaulting should
e the same and thus �P  → 0. However, the qualitative results of
his paper still hold because in the formula for �P  the worst case
l Stability 35 (2018) 93–106 99

scenario of n banks defaulting includes the case of at least k < n
defaulting. In the following, we obtain analytical expressions for
this measure and we  provide results on how it depends on the net-
work structure and the balance sheet of the banks. To make the
presentation more intuitive, we start with a simple example of two
banks.

4.2. Example: a market of 2 banks

Let us take a market composed of only 2 banks that lend to and
borrow from each other. For the sake of simplicity, let us assume
the distribution of shocks to be uniform and uncorrelated. In this
simple case, Bank 1 and Bank 2 experience respectively the shocks
u1 and u2 on their external assets, and their corresponding default
state depends on each other’s default state. More precisely, their
default condition threshold �i can take 2 values. In formulas, we
have:

�i =

⎧⎪⎨
⎪⎩

�−
i

= −εi�i − 1
εi�i

if �j = 0 ∀j,

�+
i

= −εi�i − 1
εi�i

+ ˇi(1 − Rij)
εi�i

if �j = 1 ∀j.

(23)

The case of 2 banks can be easily illustrated on the 2-dimensional
shock space, as shown in Fig. 3 where the market with 2 banks is
illustrated in the top of the figure while the bottom part of the figure
represents the shock space in which the different equilibrium cases
are reported.

Recall that �−
i

defines the threshold below which the bank
defaults unconditionally. In Fig. 3, those thresholds are reported in
dotted lines. The case of �+

i
defines the threshold below which the

bank defaults conditional on the other bank’s default. In Fig. 3, those
thresholds are reported in plain lines. The space can be divided
into 4 different regions characterized by the ordered pair of default
state combinations. Recall that the value of interbank liability of
bank j and its default state are related as follows: xB

ij
= 1 iff �j = 0

(no default) and xB
ij

= Rij iff �j = 1, see Eq. (4). Note that, as banks
have only one exposure, we can simplify the expression by Ri = Rij.
Therefore, we have:

(�1, �2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,  0) when ui > �−
i

∀i;

(0,  1) when u1 > �+
1 and u2 < �−

2 ;

(1, 0) when u1 < �−
1 and u2 > �+

2 ;

(1, 1) when ui < �+
i

∀i;

(24)

Notice that the first and fourth conditions in the list above hold
simultaneously for certain values of u1, u2, implying that there is
a multiplicity of equilibria. In particular the equilibrium in which
both banks default and the one in which no bank defaults coexist
in the following region of shocks, indicated in squared purple area
in Fig. 3.

(0,  0) AND (1,  1) when �−
1 < u1 < �+

1 and �−
2 < u2 < �+

2 . (25)

Following Eq. (20), and recalling that we have assumed in this
example a uniform distribution of shocks in the space [−1, 1] (hence
p(u) = 1), we can provide the analytical expression of P+ and P−.
Indeed, the region where the default indicator equals 1 is the region
defined by the fourth condition in Eq. (24). We  thus obtain:

P+ = (1 + �̂+
1 )(1 + �̂+

2 )
4

,  (26)

(1 + �̂+)(1 + �̂+) (�̂+ − �̂−)(�̂+ − �̂−)

P− = 1 2

4
− 1 1 2 2

4
,  (27)

�P  = (�̂+
1 − �̂−

1 )(�̂+
2 − �̂−

2 )
4

.  (28)
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Fig. 3. Simple example of a market of 2 banks lending to and borrowing from each
other. The 2 banks also invest in uncorrelated and uniformly distributed external
assets. The top figure illustrates the corresponding market of interactions while bot-
tom figure illustrates the shock space and the regions of equilibrium with respect
to  the combination of states (�1, �2). In the shock space, the light blue color is asso-
ciated with the Bank 1 and the light yellow color is associated with the Bank 2. The
white area corresponds to a unique equilibrium where both banks do not default.
The  light blue area (resp. light yellow area) corresponds to a unique equilibrium
where only the Bank 1 (resp. Bank 2) defaults. The plain purple area corresponds to
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 unique equilibrium where Bank 1 and Bank 2 default. The squared purple corre-
ponds to a case of multiple equilibria: both the equilibrium in which Bank 1 and
ank 2 default and the equilibrium in which Bank 1 and Bank 2 do not default coexist.

ssuming that banks are homogenous and that �̂i = �i, we obtain
n expression of �P  as a function of the banks’ exposure to the
xternal assets and to the interbank:

P  = (�+ − �−)2

4
=
(

ˇ(1 − R)
2ε�

)2

. (29)

Finally, �P  must be bounded between 0 and 1. We  thus have as
nal expression of the uncertainty in a market of 2 banks:

P  = min

{
1, max

{
0,

(
ˇ(1 − R)

2ε�

)2
}}

. (30)

ote that, with the uniform distribution of the shocks, the portion
f the shock space that is affected by multiple equilibria is simply
U = �P.
The above example highlights how mutual interdependencies

ead to multiple solutions for the default probability. Moreover, in
he homogenous case, the difference between the probability of
efault in the best and the worse equilibrium as well as the area
f the region of multiplicity, increases with the exposure to losses

n the interbank market (i.e., measured by the product ˇi(1 − R)).
n contrast, they both decrease with the scale of shocks on the
xternal markets (i.e., measured by �i). More in general, the result
hows that if the recovery rate is equal to one (i.e., the exposure is
l Stability 35 (2018) 93–106

completely covered by the collateral) then the difference �P is 0
and there is no equilibrium multiplicity. On the other hand, when
the recovery rate R is equal to 0, we  have �P  = min{1, (ˇ/2ε�)2},
i.e., the difference is maximal (a difference of probabilities must
have one as its upper bound). The situation R = 0 corresponds to the
extreme scenario of lending contracts that are fully unsecured.

4.3. A ring market of n banks

We  now generalize the results illustrated above to a market of
n banks arranged in two types of benchmark structures: a ring and
a star. Let us start with the ring structure, defined as follows.

Definition 7. A ring market is a network composed of contracts
arranged in one cycle Cn.

In light of the discussion of Proposition 1, in this market there
is a closed chain of dependencies from any bank i through the
whole set of other (n − 1) banks. For the sake of simplicity, we  post-
pone the analysis of correlation across shocks to Section 4.5 and we
assume a uniform distribution of shocks. We can state the following
proposition.

Proposition 2 (Effect of multiplicity in a ring market). Consider
n banks with interbank credit, arranged in a ring market. Assume:
recovery rate Ri < 1 and interbank leverage ˇi > 0; external leverage
εi and shock scale �i positive and finite; shock average �i finite; the
joint probability distribution of shocks p(u) is uniform and with no
correlation across shocks. Then:

1. The uncertainty�P on the default probabilities in the worst and
best scenario, P+ and P− increases with the interbank leverageˇi of
the banks; it decreases with the fraction of collateralRi, the exter-
nal asset leverageεi and the variance on the shocks �i (where
increase and decrease are strict). Its expression reads:

�P  = min

{
1, max

{
0, ˘n

i=1(
�̂+

i
− �̂−

i

2
)

}}
. (31)

2. If �̂i = �i ∀i, the uncertainty�P decreases with the lengthn of the
ring market and its expression reads

�P  = min

{
1, max

{
0, ˘n

i=1

(
ˇi(1 − Ri)

2εi�i

)}}
. (32)

Proof. See Appendix B. �

The proof is analogous to the computation illustrated above in
the example of two  banks. Note that the expression of the portion of
the shock space subject to multiple equilibria �U follows the same
equation as in Eq. (31) under the uniform distribution assumption.
Hence similar results can be inferred.

The above proposition shows that uncertainty increases with
the leverage on the interbank, proportionally to the loss exposure
(taking into account the collateral, i.e., with ˇi(1 − Ri)). This result
stems from the fact that the probability of default in the optimistic
scenario (i.e., selecting the best equilibrium) decreases with respect
to the interbank exposure (see proof). This shows that increase
in the reliance on the interbank market increases the uncertainty
in terms of systemic risk but improves the outcome in case the
optimistic scenario is realized.

Moreover, uncertainty decreases with the leverage on the exter-
nal market and its volatility (i.e., with εi�i). This means that an
increase in diversification in a bank’s portfolio of external assets

increases uncertainty. The result seems counterintuitive but it sim-
ply stems from the fact that, in relative terms, the smaller the
variance of the shocks on the external assets, the smaller the role of
the shocks in determining whether banks default or not and thus
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Fig. 4. Star market.

he larger the role played by the interbank assets. In particular, if
he variance of the shocks is very small and the interbank assets of
anks exceed their equity, then, no matter what is the value of the
hocks, in the scenario in which interbank assets are lost, default
ould occur with probability one.

Finally, the product in the expression of the uncertainty in the
bove proposition implies that the uncertainty decreases with the
ength n of the cycle as long as ˇi(1 − Ri)/2εi�i < 1, which is guar-
nteed if �̂ = � (see proof). This means that the uncertainty of a
ing market decreases exponentially with its size only if the rela-
ive weight of the interbank assets over the external assets is small
nough.

.4. A star market of n banks

Let us now move to the case of a star market. In a star market,
e have a central counterparty for all the banks in the periphery,

oth for their borrowing and lending relationships. We  illustrate a
ase of 5 banks in Fig. (4).

efinition 8. A star market is a network composed of one bank in
he center, denoted by c, and n − 1 banks in the periphery, denoted
y the index j. All banks in the periphery only lend to and borrow
rom the bank at the center.

For sake of simplicity, in the following we assume that the bank
t the center lends uniformly across its borrowing counterparties.
e thus have that: Bcj = (1/|Vc|) where Vc is the set of borrowers of

he bank at the center. Note that we now have a system made of
ultiple cycles. As a result, we have the following proposition.

roposition 3 (Effect of multiplicity in a star market). Consider
 banks with interbank credit arranged as a star network. Assume:
ecovery rate Ri < 1 and interbank leverage ˇi > 0; external leverage

i and shock scale �i positive and finite; shock average �i finite; the
oint probability distribution of shocks p(u) is uniform and with no
orrelation across shocks. Then: The uncertainty�P on the default
robabilities in the worst and best scenario, P+ and P−

P  = min

{
1, max

{
0, ˘n

i=1

(
�̂+

i
− �̂−

i

2

)

+
(�̂+

c − �̂c(
∑

j�j = 1))˘n−1
j=1 (1 + �̂+

j
)

2n

}}
. (33)

roof. See Appendix B. �

Where �̂c(
∑

j�j = 1) is the threshold value for the bank at the
enter to default when only one counterparty has defaulted, that
s, when

∑
j�j = 1.
Comparing Eq. (33) for the star market with Eq. (31) for the ring
arket, we observe that the first part of the star market expression

s equal to the ring market. In fact, this term comes from the region
f overlap between the cases in which all counterparties default and
l Stability 35 (2018) 93–106 101

no one defaults. Such situation is thus similar to the ring case. There
are however other equilibria overlap to account for in the case of
the star market. Those equilibria correspond to cases where (1) the
bank at the center does not default, (2) at least one peripheral bank
default and (3) at least one peripheral bank survives. Overall, we
thus see that the uncertainty increases when we move from a ring
market to a star market mainly due to the increase of cyclicality
within the market structure.

4.5. Effect of correlation

We now explore how the uncertainty (i.e., the distance between
the best and worse possible probabilities) is affected when we
introduce correlations between the shocks on the external assets.
In order to illustrate the effect of correlation in the simplest terms,
we focus on the case of a ring market structure and we  assume
a uniform distribution of shocks in [−1, 1]. Under the assumption
of uniformity, the uncertainty on the default probability coincides
with the area of the region of multiplicity. We  further consider the
case of fully correlated shock and we compare the results with those
of uncorrelated shocks from Proposition 2.

Proposition 4 (Effect of correlation). Consider a market of n banks
with interbank credit arranged in a ring. Assume: recovery rate R < 1
and interbank leverage ˇi > 0; external leverage εi and shock variance
�i positive and finite; shock average � finite. Shocks are distributed
uniformly. Denote by �PU the uncertainty in case of uncorrelated
shocks and by �PC the uncertainty in case of fully correlated shocks.
Then, the following statements hold.

1. In the case of full shock correlation, the uncertainty on the default
probability in the best and worst scenario is:

�PC = min

{
1, max

{
min{�+

i
} − max{�−

i
}

2
, 0

}}
, (34)

and if min{�+
i

} ≤ max{�−
i

}, there is no uncertainty,  �PC = 0.
2. �PC > �PU if ∃ k ∈ N s.t. min{�+

i
} = �+

k
and max{�−

i
} = �−

k
,

i.e., complete correlation yields larger uncertainty than no corre-
lation. As a special case, in a ring of identical banks, complete
correlation implies larger uncertainty than in the uncorrelated case.

3. �PC < �PU if n
√

min{�+
i

} − max{�−
i

} < min{�+
i

− �−
i

}, i.e., com-
plete correlation yields smaller uncertainty area than no correlation.

4. �PC > �PU if n
√

min{�+
i

} − max{�−
i

} > max{�+
i

− �−
i

}, i.e., then
complete correlation yields larger uncertainty area than no corre-
lation.

Proof. See Appendix C. �

In the proposition above, the expression of �PC is obtained from
a projecting the n-dimensional hypercuboid of the shock space onto
its diagonal. Indeed, fully correlated shocks imply that all the shocks
hitting all banks have the same value at a time.

From this projection, the determination of the uncertainty
depends on the maximal threshold distance (i.e., the distance
between the smallest �+

i
across all banks i) and the largest �−

i
(i.e.,

the smallest maximal and the largest minimal default thresholds
across all the banks) in the system.

The first point in the proposition above states that the uncer-
tainty is completely removed if the system has a maximal threshold
distance equal to 0, that is, if there is a bank with a maximal default
threshold that is smaller than the largest minimal default threshold.

Second, compared to the case of no correlation, full correlation

brings in more uncertainty when the two threshold yielding the
maximal threshold distance belong to the same bank. This means
that there is a bank k for which the interval [�−

k
, �+

k
] is comprised

within the intervals [�−
i

, �+
i

] of all the other banks. An important
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onsequence is that in an homogenous ring, full correlation implies
ore uncertainty than in the uncorrelated case.
Third, correlation also brings more uncertainty when the nth

oot of the maximal threshold distance is higher then the maximum
istance between the 2 extreme thresholds of a single bank in the
ystem. On the contrary, correlation brings less uncertainty when
he n-th root of the maximal threshold distance is smaller than the

inimum distance between the 2 extreme thresholds of a single
ank in the system.

Overall, the above proposition shows that the relation-
hip between correlation and uncertainty is in general non-
onotonous.

. Expected individual and systemic losses

We  now provide a extension of our methodology to compute
he expected monetary loss in the system resulting from a given
onfiguration of defaults:

efinition 9 (Expected loss). Consider a market of n banks with
nterbank credit. The expected losses of bank i, Ei[loss], and the total
xpected losses Etot[loss] are defined as follows:

i Ei[loss] =
∫

[−1,1]n
ei(εi + ˇi − �i − 1)�i(u)p(u)du, (35)

tot[loss] =
∫

[−1,1]n

∑
i

ei(εi + ˇi − �i − 1)�i(u)p(u)du, (36)

here �i is a solution of Eq. (11) and p(u) denotes the joint proba-
ility distribution of the shocks.

Given the individual probabilities of default of each bank, the
bove definition yields the expected loss that each bank causes
o its creditors in case of default. Given a realization of shocks, if
ank i defaults, the aggregate amount of money that is lost from its

nterbank creditors and its external investors is equal to the total
iability of bank i, ei(εi + ˇi − 1) minus the amount posted as a col-
ateral, ei� i), i.e., ei(εi + ˇi − � i − 1). Hence, in order to compute the
xpected loss from bank i, we integrate the aggregated monetary
oss over the whole range of shocks accounting for the cases where
ank i defaults (i.e., �i = 1). For the total expected loss, that is, the
otal amount of money expected to be lost due to the default of any
ank at the system level, we simply aggregate the individual losses
or each realization of shocks (i.e.,

∑
iei(εi + ˇi − � i − 1)�i(u)) and

ntegrate over the whole range of shocks. Note that in this way, we
an simply use the individual default indicator and do not need to
dentify any systemic default indicator. Hence, in contrast with the
omputation of the probability of systemic default, the expected
otal loss quantity Esys is not subject to an arbitrary definition of
ystemic events (i.e., there no systemic event indicator akin to �sys

n Eq. (36)).
Similar to the procedure followed for the probabilities of default,

f there are multiple equilibria, we consider an optimistic and a pes-
imistic scenario. In the optimistic (pessimistic) scenario, for any
iven shock, we choose the equilibrium with the smallest (largest)
alue of expected losses.

We  then define the distance, �Etot[loss], between the smallest
nd largest total expected losses, E−tot[loss] and E+tot[loss], respec-
ively. This distance measures the impact of multiplicity on the
ssessment on expected losses and can be interpreted as the mon-
tary cost of uncertainty.
.1. Example: market of 2 banks.

We  illustrate the computation of expected losses with an exam-
le of a market of 2 banks lending and borrowing from each
l Stability 35 (2018) 93–106

other. For the sake of clarity, let us assume that the distribu-
tion of shocks is homogenous and uncorrelated. Let us also define
e∗

i
= ei(εi + ˇi − �i − 1). Losses occur each time at least one bank

defaults. With 2 banks, we have 3 different combinations: bank 1
defaults while bank 2 does not; bank 2 defaults while bank 1 does
not; both banks default. We  thus have:

Etot[loss] = e∗
1P({�1 = 1, �2 = 0}) + e∗

2P({�2 = 1, �1 = 0})
+ (e∗

1 + e∗
2)P({�1 = 1, �2 = 1})

The last component of the right hand side bears the multiple equi-
libria issues defined in the Example 4.2 (i.e., P({�1 = 1, �2 = 1}). From
Example 4.2 we can derive the expression of highest and lowest
total expected losses:

E+tot[loss] = e∗
1(1 − �+

1 )
4

+ e∗
2(1 − �+

2 )
4

+ (e∗
1 + e∗

2)P+

= e∗
1(1 − �+

1 ) + e∗
2(1 − �+

2 ) + (e∗
1 + e∗

2)(1 + �+
1 )(1 + �+

2 )
4

E−tot[loss] = e∗
1(1 − �+

1 )
4

+ e∗
2(1 − �+

2 )
4

+ (e∗
1 + e∗

2)P−

= e∗
1(1 − �+

1 ) + e∗
2(1 − �+

2 )
4

+ (e∗
1 + e∗

2)[(1 + �+
1 )(1 + �+

2 ) − (�+
1 − �−

1 )(�+
2 − �−

2 )]
4

Finally, we can identify the effect of equilibrium choice on the
expected loss assessment, which we  identify by �Etot[loss]:

�Etot[loss] = (e∗
1 + e∗

2)[(1 + �+
1 )(1 + �+

2 ) − (�+
1 − �−

1 )(�+
2 − �−

2 )]
4

�Etot[loss] = (e∗
1 + e∗

2)�P

If we consider that banks are homogenous and that �̂ = �, we
obtain:

�Etot[loss] = 2e( +  ̌ − � − 1)

(
ˇ(1 − R)

2ε�

)2

6. Discussion

In this paper, we investigate how the network structure result-
ing from credit ties among financial agents (i.e., banks) can affect
the capacity of a regulator to assess the level of systemic risk.
We introduce a model to compute the individual and systemic
probability of default in a system of banks connected in a generic
interbank network and exposed to shocks with a generic correla-
tion structure. We  find that multiple equilibria can exist even in the
presence of complete knowledge.

Our main contribution is to show that multiple equilibria can
arise from the presence of closed chains of debt in the network (i.e.,
cycles). Note that this mechanism differs from the one described in
previous works where multiple equilibria result from self-fulling
expectations (e.g., Diamond and Dybvig, 2015). In its simplest form,
our result states that, if the default conditions of a set of banks are
mutually dependent along cycles of credit contracts, there exists a
range of external shocks such that the equilibrium where all those
banks default and the equilibrium where none of them defaults
co-exist. More generally, in any network structure the multiplicity

of equilibria can arise in the presence of at least one closed chain
of lending ties in the market. It is worth noting that, empirically,
closed chains of lending ties are ubiquitous in financial markets.
Indeed, a large portion of various national interbank markets is
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ften found to be strongly connected,  i.e., connected through at
east one closed chain (Roukny et al., 2014). Furthermore, the core-
eriphery structure identified in many cases of inter-bank markets
Fricke and Lux, 2012; Craig and Von Peter, 2014; van Lelyveld
t al., 2014) is characterized by an important level of cyclical depen-
encies between the core-banks (i.e., they form a fully connected
etwork).

The importance of multiple equilibria and the fact that focusing
nly on the best or the worst equilibrium might be insufficient is
itnessed by the growing interest not only in the academic liter-

ture but also in policy debates (Draghi, 2012; Miller and Zhang,
014; De Grauwe and Ji, 2015).

Beyond the mere existence of multiple equilibria, the range
f shocks where multiplicity occurs as well as the difference in
xpected losses across equilibria are also very important. Multi-
licity is particularly relevant if both the range of shocks and the
ap on the expected losses are large.

In this respect, in this paper we develop an analytical frame-
ork to formalize the problem and quantify the gap in relation to

he network structure. We  quantify this uncertainty by analytically
omputing the difference between the most extreme scenarios. The
ptimistic scenario is the one where, when multiple equilibria exist,
he equilibrium with the minimum number of defaults is selected.
imilarly, the pessimistic scenario is constructed by selecting the
quilibrium with the maximum number of defaults. In addition,
e also provide a method to quantify such difference in mone-

ary terms (i.e., expected losses), thus allowing to assess the cost of
ncertainty.

Furthermore, we investigate how such uncertainty depends on
everage, volatility, interbank market structures and correlation
cross external shocks. We  find that leverage both on the interbank
arket and the external assets increases uncertainty. Volatility in

xternal assets has ambiguous effects. Correlation across shocks
an also have non monotonous effects on uncertainty. However,
omplete correlation in a set of homogenous banks univocally
ncreases uncertainty with respect to the uncorrelated case. In
erms of network structure, we show that the uncertainty decreases
ith the length of the credit chain. When analyzing a market com-
osed of multiple cycles (i.e., star market), we find that uncertainty

ncreases compared to single-cycle structures.
By design, the model and the analysis could be applied to real

ata and parameters could be calibrated using information on
ssets portfolios, credit registers and balance sheets. The model
an be used to assess both the level of (individual and systemic)
isk and the uncertainty arising from the interconnectedness.

Finally, the work also contributes to several policy related dis-
ussions. As it offers a novel way to estimate the systemic impact of
nancial institutions in a network context, it can bring new insights

n the discussion about too-big-to-fail institutions (Haldane and
ay, 2011; BoE, 2013). By showing how cyclical structures in the

etwork imply more uncertainty over default probability, we also
ontribute to the discussion on regulatory financial data disclosure
Abbe et al., 2012; Alvarez and Barlevy, 2014).

ppendix A. Proof of Proposition 1

We  separate the proof in two parts. In the first we  show the
ecessity of cyclicality in the network of contract and in the second
art we show that, once we have a cycle, the sufficient condition
o have multiple equilibria is that there is an overlap between the

pace of default thresholds depending on the counterparties’ status
n the cycle and the space of shocks.

Necessity. In order to show the necessity of a cycle of contracts
ith non-empty intervals for the thresholds �̂−

i
< �̂+

i
of each bank
l Stability 35 (2018) 93–106 103

in the cycle, we show that in absence of cycles there is a unique
equilibrium.

Indeed, if the graph of dependencies is an acyclic graph, then we
can identify the leafs nodes of the graph (i.e., banks who  do not lend
to anyone) and recursively the parent nodes of every bank in the
interbank network (the creditor of those banks). For every vector of
shocks u, the state of default � of the leafs is uniquely determined.
Recursively, the state of all parent nodes is also uniquely deter-
mined. Therefore, in order to have multiple solutions, the graph
must not be acyclic and thus contain at least one cycle. Further, if
�̂−

i
= �̂+

i
for some i in the cycle, then the volume in the shock space

where multiple solution may  exist collapses to zero. Notice that
only for the nodes in the cycle and those pointing directly or indi-
rectly to the cycle there may  be multiple solutions for their default
state. All the other nodes, e.g., those that are not part of a cycle or
that cannot reach the cycle along a path, will have a unique default
state.

Sufficiency. We  want to show that the condition in the state-
ment implies that are at least two  coexisting equilibria. Following
the assumptions that R < 1 and  ̌ > 0, we have that �−

i
< �+

i
for all

i ∈ N. Assume that there is a cycle. If �̂i(�i+1 = 0) < �̂i(�i+1 = 1), we
have that [�i(�i+1 = 0), �i(�i+1 = 1)] ∩ [−1, 1] /= ∅.

Further, the fact that the threshold values are strictly different
for every node in the cycle and include some values of the shock
domain implies that there is an overlap of the shock spaces associ-
ated with the different equilibria. In fact, the following two sets of
equilibrium conditions overlap because �−

i
< �+

i
for all i ∈ N.

(�1, . . .,  �m) = (0,  . . .,  0) ⇔

⎧⎪⎪⎨
⎪⎪⎩

u1 > �1(�2 = 0) = �−
1

...

um > �m(�1 = 0) = �−
m

(�1, . . .,  �m) = (1,  . . .,  1) ⇔

⎧⎪⎪⎨
⎪⎪⎩

u1 < �1(�2 = 1) = �+
1

...

um < �m(�1 = 1) = �+
m

(A.1)

In the system above there are m banks in a cycle, numbered in
ascending order along the direction of lending. Bank m lends to
bank 1, thus closing the cycle. We  thus see that the two equilibria
co-exist in the space of shocks defined by �−

i
< ui < �+

i
.

Appendix B. Proof of Proposition 2 and 3

To compute the distance between the best P+ and worst P−

probabilities of systemic default, stemming from the optimistic and
pessimistic scenarios respectively, we  introduce a generic method-
ology that we then apply to the network structure of interest.

The basic idea is to identify the overlapping shock spaces where
the equilibrium {�i = 1} ∀ i is a solution. Indeed, such solution leads
to �sys = ˘ i�i = 1, that is, the identification of systemic default for
the computation of the probability of systemic default.

First, we identify the largest portion of shock space where
{�i = 1} ∀ i, which we call the benchmark shock space. This case cor-
responds to a situation where, for every bank, the shock is ui < �+

i
because this threshold is the one accounting for the default of all
the borrowing counterparties of bank i. In this case, the shock space
is thus defined by {ui < �+

i
} ∀i. Note that, for the rest, all the other

default thresholds have a value inferior to �+
i

(see Section 2).
Next, we need to find the equilibria with related shock spaces
that overlap with the systemic default equilibrium (i.e., {ui <
�+

i
} ∀i). Those equilibria are the equilibria for which the ranges

of shocks form a non-empty set of intersection with the systemic
default equilibrium shock space. Formally, we need to the find the
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et of conditions with respect to ui such that {�∗
i

< �+
i

} ∀i. There can
e several sets of condition (i.e., several equilibria that overlap with
he systemic default equilibria). Note that the overlapping equi-
ibria have, within the definition of their shock spaces, conditions
ifferent then �+.

Finally, once all the overlapping shock spaces have been iden-
ified, we sum the fraction of shock space that overlaps with the
ystemic default equilibria {ui < �+

i
} ∀i. This sum determines �U.

e then use the joint probability distribution of shocks to deter-
ine �P.

.1. Application to the ring structure

Without loss of generality and to keep the notation simpler we
evelop the proof in the case �̂i = �i for all i. We  denote by �−

i
and

+
i

the minimum and maximum values that the threshold can take
here �−

i
corresponds to the case in which none of the counter-

arties default (i.e., �j = 0 ∀ j ∈ Vi) while the �+
i

corresponds to the
ase in which all counterparties default (i.e., �j = 1 ∀ j ∈ Vi). From
q. (10) it follows:

�−
i

= −εi�i − 1
εi�i

,

�+
i

=
−εi�i + ˇi(1 −

∑
jBijRij) − 1

εi�i
= �−

i
+ ˇi(1 − Ri)

εi�i
,

(B.1)

here for convenience we denote by Ri =
∑

jBijRij the total amount
f collateral that bank i recovers from the default of its counterpar-
ies.

In a cycle of n agents, each agent has only 2 possible values for
he default threshold:

i ∈ {�−
i

= �i(�i+1 = 0),  �+
i

= (�i+1 = 1)}.
he equilibria of interest for our purposes are: {�i = 1} ∀ i occurring
n the region of the shock space where {ui < �+

i
} ∀i; and {�i = 0}

 i, occurring in the region of the shock space where {ui > �−
i

} ∀i.
If and only if the values of �−

i
and �+

i
differ for all i then there is a

egion where the two equilibria coexist. For each agent, the magni-
ude of the overlap along the dimension �i is then (�+

i
− �−

i
). From

he expression above it follows that (�+
i

− �−
i

) = ˇi(1 − Ri)/εi�i.
For n agents, we obtain:

U  = ˘i(�̂
+
i

− �̂−
i

)

2n
.

or the uncertainty, we obtain the following expression:

P  = min

{
1, max

{
0,

˘i(P̂i(�̂
+
i

) − P̂i(�̂
−
i

))

2n

}}
,

here P̂i(u) is the cumulative density function obtained from
oint probability function p(u) projected on bank i. �P  is bounded
etween 0 and 1.

Since we assume a uniform density function it holds �P  = �U
nd we can develop furthermore the expression to highlight the
ole of the different parameters of the system:

P  = min

{
1, max

{
0,

˘i(�̂
+
i

− �̂−
i

)

2n

}}

= min

{
1, max

{
0, ˘i(

ˇi(1 − Ri)
2εi�i

)

}}

s we can directly observe from the expression above, �P  depends

inearly in ˇ, Ri and decreases monotonically with  and � for  > 0
nd � > 0. Therefore, the increase and decrease in these variables is
trict.
l Stability 35 (2018) 93–106

B.2. Application to the star structure

We  assume Bik = (1/|Vi|). We  denote by index c the center agent
in the star and j the agents in the periphery. Let us assume that
the center agent uniform portfolio such that Bik = 1/(n − 1) and
Rij = Ri/(n − 1).

In a star, agents in the periphery only interact with the center
agent. They thus have only 2 thresholds:

�j ∈ {�−
j

= �j(�c = 0),  �+
j

= (�c = 1)}.

While the agent at the center has n thresholds:

�c ∈

⎧⎨
⎩�−

c , �c

⎛
⎝∑

j

�j = 1

⎞
⎠ , �c

⎛
⎝∑

j

�j = 2

⎞
⎠ , . . .,  �c

⎛
⎝∑

j

�j = n − 2

⎞
⎠ , �+

c

⎫⎬
⎭

where �c(
∑

j�j = k) retrieves the threshold for the center agent to
default in case k peripheral agents default.

To compute the distance between P+ and P−, the equilibrium
of interest is {�i = 1} ∀ i and the benchmark shock space is {ui <
�+

i
} ∀i.
The overlapping equilibria are related to shock spaces where

the intersection with the benchmark shock space is non-empty and
where �i < �+

i
for all i.

For the peripheral agents, the threshold can thus only be �j = �−
j

.
A first case of overlap is when all shocks are between �− and �+

(i.e., �−
i

< ui < �+
i

for all i). This case is similar to the ring:

˘i(�̂
+
i

− �̂−
i

)

2n
.

We  use the cumulative density function to obtain the expression
in terms of probabilities distance

˘i(P̂i(�̂
+
i

) − P̂i(�̂
−
i

))

2n
.

The other cases of overlap can be determined as follows. For
each �c, all ranges of values for the other shocks are obtained
by aggregating the overlapping equilibria. For a given threshold
of the center agent �−

c < �c < �+
c , the conditions on the periph-

ery agents to default are {uj < �+
j

} ∀j, which corresponds to share

(1 + �+
j

) in each periphery agents shock space. The corresponding
(n-1)-volume in the hypercubique subspace of all periphery agents
is thus equal to ˘j(1 + �̂+

j
). On the center agent, the segment in

the shocks space is equal to the distance between the threshold
where all counterparties default �+

c and the threshold where at least
one counterparty defaults �c(

∑
j�j = 1). Overall, the fraction of the

shocks space is thus:

(�̂+
c − �̂c(

∑
j�j = 1)))˘j(1 + �̂+

j
)

2n
.

Similarly, translating in probabilities distance, we obtain

(P̂c(�̂+
c ) − P̂c(�̂c(

∑
j�j = 1)))˘j(P̂j(�̂

+
j

))

2n
.

Finally, we  sum of the elements and obtain:
→ �U = ˘i(�̂
+
i

− �̂−
i

)

2n
+

(�̂+
c − �̂c(

∑
j�j = 1)))˘j(1 + �̂+

j
)

2n
,
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Table  B.1
Shock space equilibrium conditions for a star market of 3 banks.

Equilibrium Central Peripheral 1 Peripheral 2

0 0 0 uc > �−
c up1 > �−

p up2 > �−
p

0 0 1 uc > �1
c up1 > �−

p up2 < �−
p

0 1 0 uc > �1
c up1 < �−

p up2 > �−
p

0 1 1 uc > �+
c up1 < �−

p up2 < �−
p

1 0 0 uc < �−
c up1 > �+

p up2 > �+
p

1 0 1 uc < �1
c up > �+

p up < �+
p

→

o
e
s

�

B

a
2
t

�

�

t
o

d
{

d

•
•
•

t

1 2

1 1 0 uc < �1
c up1 < �+

p up2 > �+
p

1 1 1 uc < �+
c up1 < �+

p up2 < �+
p

 �P  = min

{
1, max

{
0,

˘i(P̂i(�̂
+
i

) − P̂i(�̂
−
i

))

2n

+
(P̂c(�̂+

c ) − P̂c(�̂c(
∑

j�j = 1)))˘j(P̂j(�̂
+
j

))

2n

}}
.

If we assume a uniform density function and that �̂i = �i, we
btain a result equal the �U and we can develop furthermore the
xpression to highlight the role of the different parameter of the
ystem:

P  = min

{
1, max

{
0, ˘i(

ˇi(1 − Ri)
2εi�i

)

+
(�+

c − �c(
∑

j�j = 1))˘j(1 + �+
j

)

2n

}}
.

.2.1. Example with 3 banks
To illustrate the above case, let us take 3 banks organized in

 star-market: one central bank c lending to and borrowing from
 peripheral banks denoted by p1 and p2. The central agent has 3
hresholds:

c ∈

⎧⎨
⎩�−

c = �c

⎛
⎝∑

j

�j = 0

⎞
⎠ , �1

c = �c

⎛
⎝∑

j

�j = 1

⎞
⎠ , �+

c

= �c

⎛
⎝∑

j

�j = 2

⎞
⎠
⎫⎬
⎭ .

The peripheral agents instead have 2 thresholds:

p ∈ {�−
p = �p(�c = 0),  �+

p = �p(�c = 1)}

We  can list all the different equilibrium and the related condi-
ions in the shock space. Table B.1 retrieves, for each combination
f default states, the corresponding share of shock space.

We  are interested in identifying all equilibria for which the con-
itions that satisfy the systemic default case (i.e., “1 1 1”), that is:
uc < �+

c ; up1 < �+
p ; up2 < �+

p }.
The three first rows of Table B.1 are compatible with these con-

itions. The corresponding shock spaces are:

(�+
c − �−

c )(�+
p − �−

p )(�+
p − �−

p ).
(�+

c − �1
c )(�+

p − �−
p )(1 + �−

p ).
+ 1 − + −
(�c − �c )(1 + �p )(�p − �p ).

When aggregating the three shock space, we see that the condi-
ions for the peripheral agents are complementary (i.e., �+

p − �−
p +
l Stability 35 (2018) 93–106 105

1 + �−
p ), and obtain the final expression as a share of the total shock

space:

�U  = (�+
c − �−

c )(�+
p − �−

p )2 + (�+
c − �1

c )(1 + �+
p )2

23
.

Appendix C. Proof of Proposition 4

In this proof, we  analyze a situation where the returns on all
banks’ portfolio are completely correlated. Let us start with a case
of 2 banks lending and borrowing from each other. From the 2-
dimensional representation, a fully correlated situation can be
obtained by projecting the results obtained in the Example in Sec-
tion 4 on the diagonal such that u1 = u2 for all combinations of
shocks. We  then need to compute the length of the diagonal that
is under the different areas. The fraction of this length on the total
lengths of the diagonal will give us the probability value.

P− =

√
(1 + max{�̂−

i
})2 + (1 + max{�̂−

i
})2

2
√

2
= |1 + max{�̂−

i
}|

2
,

P+ =

√
(1 + min{�̂+

i
})2 + (1 + min{�̂+

i
})2

2
√

2
= |1 + min{�̂+

i
}|

2
,

�P = min

{
1, max

{
0,

1 + min{�̂+
i

}
2

− 1 + max{�̂−
i

}
2

= min{�̂+
i

} − max{�̂−
i

}
2

}}
.

Note that we  can remove the absolute values as 0 ≤ 1 + �̂i. The
results are the same when we generalize to a system of n banks
arranged in a ring, as shown in what follows:

P− =

√∑
i(1 + max{�̂−

i
})2

2
√

n
= |1 + max{�̂−

i
}|

2
,

P+ =

√∑
i(1 + min{�̂+

i
})2

2
√

n
= |1 + min{�̂+

i
}|

2
,

�P = min

{
1, max

{
0,

1 + min{�̂+
i

}
2

− 1 + max{�̂−
i

}
2

= min{�̂+
i

} − max{�̂−
i

}
2

}}
.

C.1. Comparative statics

We are now interested in comparing the difference of best of
worst probability in a ring market where shocks are completely
correlated with the case where shocks are completely independent.

Given the expression for the uncorrelated case (�Pu = (((�̂+
1 −

�̂−
1 )(�̂+

2 − �̂−
2 ))/4)) and for the correlated case (�Pc = ((min{�̂+

i
} −
max{�̂−
i

})/2)), we  can explore how increasing correlation affects
the uncertainty area.

Note that in case min{�̂+
i

} ≤ max{�̂−
i

}, there is no uncertainty in
the correlation.
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In case min{�̂+
i

} = �̂+
1 and max{�̂−

i
} = �̂−

1 : �Pu = �Pc((�̂+
2 −

ˆ−
2 )/2). Given that −2 ≤ �̂+

2 − �̂−
2 ≤ 2:

Pu < �Pc.

he same stands if min{�̂+
i

} = �̂+
2 and max{�̂−

i
} = �̂−

2 . In general:

in{�̂+
i

} and max{�̂−
j

} have i = j.

In case min{�̂+
i

} and max{�̂−
j

} have i /= j: Note that:

�̂+
1 − �̂−

2 ) < (�̂+
i

− �̂−
i

) ∀i.

We  look at the 2 extreme cases:

min  {�̂+
i

− �̂−
i

}n

2n
< �Pu <

max  {�̂+
i

− �̂−
i

}n

2n
.

For the upperbound, we have that:

Pu <
max  {�̂+

i
− �̂−

i
}n

2n
,

f n

√
min{�̂+

i
} − max{�̂−

i
} > max{�̂+

i
− �̂−

i
}, we thus have that:

Pu < �Pc.

or the lower bound, we have:

Pu >
min  {�̂+

i
− �̂−

i
}n

2n
,

f n

√
min{�̂+

i
} − max{�̂−

i
} < min{�̂+

i
− �̂−

i
}, we thus have that:

Pu > �Pc.
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