
WATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Detection and attribution of urbanization effect on1

flood extremes using non-stationary flood frequency2

models3

I. Prosdocimi
1
, T. R. Kjeldsen

2
and J. D. Miller

1

Corresponding author: I. Prosdocimi, Centre for Ecology & Hydrology, Maclean Building -

Benson Lane OX10 8BB Wallingford, United Kingdom. (ilapro@ceh.ac.uk)

1Centre for Ecology & Hydrology,

Maclean Building, Benson Lane,

Wallingford, OX10 8BB, United Kingdom.

2Department of Architecture and Civil

Engineering, University of Bath, Claverton

Downs, Bath, BA2 7AY, United Kingdom.

D R A F T May 7, 2015, 10:53am D R A F T



X - 2 PROSDOCIMI, KJELDSEN AND MILLER: URBANIZATION AND NON-STATIONARITY

Abstract. This study investigates whether long-term changes in observed4

series of high flows can be attributed to changes in land-use via non-stationary5

flood frequency analyses. A point process characterization of threshold ex-6

ceedances is used, which allows for direct inclusion of covariates in the model;7

as well as a non-stationary model for block maxima series. In particular, changes8

in annual, winter and summer block maxima and peaks over threshold ex-9

tracted from gauged instantaneous flows records in two hydrologically sim-10

ilar catchments located in close proximity to one another in northern Eng-11

land are investigated. The study catchment is characterized by large increases12

in urbanization levels in recent decades, while the paired control catchment13

has remained undeveloped during the study period (1970-2010). To avoid the14

potential confounding effect of natural variability, a covariate which summa-15

rize key climatological properties is included in the flood frequency model.16

A significant effect of the increasing urbanization levels on high flows is de-17

tected, in particular in the summer season. Point process models appear to18

be superior to block maxima models in their ability to detect the effect of19

the increase in urbanization levels on high flows.20
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1. Introduction

Frequency analysis of extreme flood events is routinely being conducted assuming that21

the events can be adequately represented by a stationary modeling framework. Hydrol-22

ogists have nevertheless always been aware that this assumption of stationarity is, at23

best, a convenient approximation given the constant anthropogenic and natural changes24

observed in catchments [Lins and Cohn, 2011; Stedinger and Griffis , 2011]. Tradition-25

ally, non-stationarity in flood estimation was either ignored or sometimes acknowledged26

through the simple use of multiplication factors. For example, design rainfall and flood27

estimates are routinely increased by a factor between 20% and 30% to account for future28

impacts of climate change [Madsen et al., 2014], similarly urbanization is often accounted29

for by first deriving flood statistics as if a catchment is rural and then post-adjusting the30

as-rural estimates according to the level of urbanization in a given catchment [Kjeldsen,31

2010; Madsen et al., 2014].32

As Montanari and Koutsoyiannis [2014] point out, before switching to a fully non-33

stationary modeling paradigm, one should provide scientific evidence that changes in34

the generation of extreme events can be detected. If trends in the extreme processes35

are detected, the causes of such changes should be investigated, to rule out, as far as36

possible, the influence of spurious information contained in short and highly variable37

flood series. Therefore, as Merz et al. [2012] point out, next to the detection of trend,38

rigorous attribution is needed, i.e. an understanding of the drivers of the detected change.39

Many investigations have been carried out to detect and potentially attribute changes40

in high flow regimes. A number of studies focus on the changes in time of block maxima,41
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although the effect of other covariate on the properties of the distribution of hydrological42

extremes has also been explored. See, among others, Delgado et al. [2010], Vogel et al.43

[2011], Sun et al. [2014].44

The impacts of urbanization on catchment flood characteristics have, at least conceptu-45

ally, been accepted for several decades [Leopold , 1968; Bailey et al., 1989; Packman, 1980;46

Shuster et al., 2005]. Various studies have investigated whether an increase in the mag-47

nitude of observed flow records can effectively be linked to changes in the urbanisation48

levels [e.g. Beighley and Moglen, 2002; Konrad and Booth, 2002; Villarini et al., 2009;49

Vogel et al., 2011]. In a study of AMAX series from 200 urbanised catchments in the50

UK, Kjeldsen [2010] found that L-CV decreased and L-SKEW increased with increasing51

urbanisation, though none of these effects were particularly strong. The increase of the52

magnitude of peak flows in urbanising catchments is due to a number of factors and the53

interplay between them. A reduction in the natural infiltration can be expected due to the54

introduction of impervious surfaces, leading to an increase in the volume of storm runoff.55

At the same time, the replacement of natural water courses with more efficient man-made56

drains reduces the lag-time of the runoff response [see discussions in e.g. Kjeldsen et al.,57

2013; Miller et al., 2014]. Next, the connectivity to drainage, termed effective impervious58

area (EIA) or directly connected impervious area (DCIA), would also play a role in the59

catchment response to rainfall events [Shuster et al., 2005]. The impact of urbanisation60

could then be different according to the perviousness of the catchment before the large61

increases in urbanisation levels, or the design of the new impervious cover. Finally, ur-62

banisation is likely to affect the magnitude of smaller, more frequent, floods rather than63

the really large and rare events [Hollis , 1975]. As we consider larger storms the relative64
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effect of the impervious area decreases as the high intensity and volume of rainfall exceeds65

infiltration capacity of pervious surfaces, causing the non-urban parts to behave more like66

an impervious surface.67

As discussed in Prosdocimi et al. [2014] and later in this work, the record length available68

for annual maxima series (typically around 35 years in the UK) is not large enough to69

allow for an unequivocal detection and attribution of trends via statistical testing, and the70

analysis of such block maxima can be highly influenced by anomalies in the data series.71

Beside block maxima, peaks-over-the threshold series (POT), also known as a Partial72

Duration Series (PDS), are frequently used to assess the behavior of extreme events [see73

Madsen et al., 1997; Lang et al., 1999]. It can be shown that a connection exists between74

the models typically used to estimate flood frequency using either block maxima or the75

POT series, and both methods would asymptotically lead to equivalent inference. The76

performance of different estimation methods applied to block maxima and POT series are77

discussed in Madsen et al. [1997]. The analysis of threshold exceedances would potentially78

be a better tool to detect and attribute the effect of different variables on the high flow79

properties as this would ensure that a larger number of data points (all characterizing the80

extremal part of the distribution) are used to investigate the effects of the variables on high81

flows. Threshold exceedances series would also potentially be less sensitive to outliers and82

leverage points present in the data. In particular, the point process characterization for83

threshold exceedances is advocated as this characterization allows for a simpler approach84

to non-stationarity modeling and can be shown to be equivalent to the classical peaks-85

over-threshold modeling frequently used in hydrology [Coles , 2001].86
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In this work we present methods for attributing flood change that are in line with the87

suggestions by Merz et al. [2012] within a case-control framework, by comparing high flows88

series of two very similar catchments in North England, which differ mainly with regard89

to the spatio-temporal development of urbanization. The case catchment went through90

significant urbanization over the study period (1976-2010), while the paired land-use in91

the control catchment remained largely unchanged from the 1970s till present times. It92

is assumed that the behavior of the two nearby catchments is broadly similar [a realistic93

assumption, as shown by Andréassian et al., 2012], so that changes in the peak flow94

behavior would reflect the changes in the catchment properties. Further, the potential95

effects of other important drivers are accounted for in the models, which can explain a96

large part of the variability observed in the data. Assuming that the drivers included in97

the models can explain a large part of the natural variability of flow peaks, the detected98

change in the urbanizing catchment can be attributable solely to the increasing urban99

cover, in particular when compared to the unchanged patterns in the high flows of the100

rural paired catchment. Paired catchments have been widely employed in the assessment101

of the effects of changes in the catchment vegetation on river flow, in particular in forest102

hydrology [Brown et al., 2005; Alila et al., 2009]. In this study the effects of the changes103

in land-use on peak flows are investigated by assessing if any changes can be identified in104

the observed peak flows of the paired catchments. A possible different approach would105

be to compare the observed peak flows and the peak flows which one could expect from106

an hydrological model simulated under a different land-use scenario, as in, among others,107

Brath et al. [2006] and Harrigan et al. [2014]. Furthermore, in this study a variable which108

actually describes the dynamic evolution of the catchment land-use is used rather than109
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relying on time as a surrogate covariate. This allows for a stronger and more process-based110

attribution, so that the attributed impact can be more easily extrapolated for increasing111

levels of urban cover. Also, rather than relating the increase in the urban extent to the112

peak flow values only, the estimation focuses on the net effect of urbanization after the113

climate variability is taken into account, in line with López and Francés [2013]. In order114

to have a better assessment of the potential effects of urbanization on high flows, both115

annual and seasonal data are analyzed in this work. This allows for a better understanding116

of the type of changes in floods which might be expected with increasing urbanization117

levels.118

2. Case study description

To identify the effects of urbanization on catchment flood response, it was necessary to119

identify a catchment with increasing levels of urban land use and a nearby hydrologically120

similar rural catchment which experienced no significant change in land-use. If, after121

accounting for natural variability, any significant trends can be detected in the high flow122

data observed in the urbanizing catchment (the case catchment) but not in the data from123

the rural catchment (the control catchment), these changes could be attributed to the124

increasing urbanization with a greater degree of confidence.125

Using the catchment similarity measure developed for regional frequency analysis in126

British catchments [Environment Agency , 2008], the urbanized catchment of Lostock at127

Littlewood Bridge (gauging station 70005) was selected as a case study, while the nearby128

Conder at Galgate (gauging station 72014) was taken as a control catchment. The two129

catchments are located in the North West of England (see Figure 1) and have fairly long130

high-quality instantaneous flow records.131
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Key catchment descriptors of the two catchments, taken from Institute of Hydrology132

[1999], are also shown in Figure 1: BFIHOST is a Base Flow Index representative of133

catchment responsiveness; FARL is an index of Flood Attenuation by Reservoirs and134

Lakes; SAAR is the Standard period Average Annual Rainfall (1961-1990); QMED is the135

median annual maximum flow, and URBEXT2000 is an index of urban extent in the year136

2000. Beside the URBEXT2000 values, the other characteristics of the two catchments137

are quite similar, although the area upstream of Lostock is larger. The Conder at Gal-138

gate catchment is a predominantly rural catchment, which has seen very little change139

in land-use, as testified by its inclusion in the undisturbed benchmark catchments used140

by Hannaford and Marsh [2008]. In contrast, the Lostock at Littlewood Bridge catch-141

ment experienced a significant increase in urban extent. Urban extent is calculated as a142

weighted mean of the Urban and Suburban land-use classes defined in the Land Cover143

Map 2000 dataset [LCM2000 - Fuller et al., 2002].144

Additionally, in catchment 70005 the land-use classes and associated URBEXT value145

were derived for each decade using the method for mapping historical change in urban146

land-use and impervious cover developed by Miller and Grebby [2014]. This involved the147

processing of digitized historical maps produced by the UK Ordnance Survey to produce148

mapping of urban land-use and has been demonstrated to provide robust estimates of149

urbanization. However, the values are only point estimates of urban extent for a single150

decade and cannot provide detailed information on a finer time scale. The urban catch-151

ment 70005 (Figure 2) changed from a predominantly rural catchment in 1970 (URBEXT152

= 6.3%) to one having large areas of urban development in 2010 (URBEXT = 16.4%): a153

260% increase in URBEXT.154
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URBEXT is a relatively simple measure developed in response to the need for a standard155

method to quantify the artificially impervious cover of a catchment across the whole UK.156

It is a proxy for the hydrological and hydraulic alteration of a catchment associated with157

urban development and makes no direct account for the specific physical changes that will158

have occurred such as increased drainage network density or installation of attenuating159

features. It is nevertheless a valid indicator of changes in the catchment properties and160

has the great advantage of being relatively easy to implement for any given catchment161

across the country.162

3. Hydrometric and land-use data

Instantaneous peak flow data recorded at 15-minute intervals for the stations 70005 and163

72014 were acquired from the Environment Agency. A water-year in the UK runs from164

the 1st of October to the 30th of September: throughout the rest of the paper, all the165

references to annual and yearly quantities should be interpreted as referring to water-years,166

rather than calendar years. The data were checked against the annual maxima published167

by Hi-Flows UK (http://www.ceh.ac.uk/data/nrfa/peakflow_overview.html) and168

against the monthly maxima available at CEH Wallingford, to ensure that the identified169

peaks corresponded to genuine high flows. Water-years in which less than 90% of the flow170

data were recorded were discarded from the analysis, to ensure that no potentially large171

event would be missing from the analyzed datasets.172

Catchment averaged daily rainfall series for both catchments were extracted from a173

national grid of daily rainfall totals at a 1km resolution obtained by interpolating the174

observed values of a dense gauging network [Keller et al., 2005]. In the years for which175

the peak flow data were available for the catchments under study, the national network176
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had approximately between 3000 and 5000 functioning gauges. To give a representation177

of the potential for high rainfall in each year and season the 99th percentile of the daily178

rainfall series for each year and season were used for each catchment. In a national scale179

study, Prosdocimi et al. [2014] had found that the 99th percentile of the annual catchment180

averaged daily rainfall series was significantly correlated to block maxima values for most181

catchments in the UK.182

Finally, for the Lostock at Littlewood Bridge catchment, yearly URBEXT values are183

constructed by interpolating between the decadal URBEXT point estimates.184

4. Methods

Identifying the effect of urbanization on extreme events using block maxima and point185

process models requires the extraction of two different data sets. The complete record of186

instantaneous flow recorded in a period of M years at a gauging station consists of n∗ flow187

measurements recorded at every 15-minutes, r = (r1, . . . , rn∗). The corresponding annual188

maxima (AMAX) series is denoted as q = (q1, . . . , qM) and is formed by selecting the189

single maximum value recorded in each water-year. Also, seasonal maxima series can be190

extracted by considering the maximum flow recorded in the summer (April-September)191

and winter (October-March) months. Conversely, peaks-over-threshold (POT) data con-192

sist of a series of independent events extracted from the original r record by selecting193

only independent events exceeding a certain high threshold value, denoted u. If a total of194

n threshold exceedances are extracted from r, the corresponding POT series is denoted195

y = (y1, . . . , yn). In this study, the procedures presented by Bayliss and Jones [1993] were196

used to ensure independence between the extracted threshold exceedances. Rather than197

the classical POT model, this study uses the more general point process characterization198
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for POT data [Smith, 1989; Katz et al., 2002], which allows for a more direct modeling199

of covariate effects on both the frequency and the magnitude of threshold exceedances200

simultaneously.201

The selection of the threshold to be used when building a POT series is a non-trivial task,202

and a number of tools exist to select sensible threshold values [Coles , 2001; Lang et al.,203

1999]. This selection is even more complicated when it is unsure whether the underlying204

series is non-stationary: the non-stationarity in the flow series could be reflected in the205

use of a threshold changing with the covariates influencing the original flow series, as206

discussed in Kyselý et al. [2010]. In order to facilitate the comparison of results across207

the two different catchments and across the annual or seasonal divisions the threshold u208

was selected to be the value for which an average of 4 events per year (annual series) or 2209

events per season (winter and summer series) are recorded. The final POT annual series210

are also largely comparable to the series obtained following the standard practice in the211

UK of choosing a threshold such that an average of 5 independent events per year are212

kept in a POT series [Bayliss and Jones , 1993]. The chosen threshold levels have a return213

period of about 1.2 years, and identify relatively high peak flows.214

Different modeling strategies will be deployed to investigate the effect of urbanization215

and climate variability on the magnitude of extreme events. Non-stationary GEV models216

(Section 4.1) are used for the annual and seasonal maxima series, and point processes217

(Section 4.2) are used for the annual and seasonal threshold exceedances.218

4.1. Non-stationary block maxima

Block maxima are typically assumed to come from some heavy-tailed distribution, such219

as the Generalized Extreme Value (GEV) distribution, which can be shown to be the220
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limiting distribution of maxima [Coles , 2001]. Assuming that Q, the random variable221

describing flow maxima, follows a GEV distribution, the pdf and cdf of Q are defined as222

[Hosking and Wallis , 1997]:223

fq(q) = σ−1e−(1−ξ)t−e−t

, t =

{
−ξ−1 ln(1− ξ(q − µ)/σ), when ξ 6= 0

(q − µ)/σ, when ξ = 0
(1)

Fq(q) = exp{−e−t} (2)

where µ, σ, and ξ are the location, scale and shape parameters. The set of flow values q224

in which the function is defined is determined by the shape parameter ξ as: −∞ < q ≤225

µ+ σ/ξ if ξ > 0; −∞ < q <∞ if ξ = 0; µ+ σ/ξ < q <∞ if ξ < 0.226

In the stationary case, the sample of block maxima q is assumed to come from a GEV227

distribution Q ∼ GEV (µ, σ, ξ), with all the parameters constant. In the non-stationary228

case, one or more of the parameters can be assumed to be changing as a function of one229

or more covariates. A simple way to include such dependence in the model structure230

is, for example, to allow the location parameter to depend linearly on some covariates231

(X1, . . . , Xp) so that µ(X1, . . . , Xp) = β0 +
∑p

j=1 βjXj, where the βi values are the (p+ 1)232

regression model parameters. The location of the distribution would then have a different233

value for each observation i according to the corresponding value of the observed covariates234

sample xi = (x1i, . . . , xpi).235

The relatively short records which are typically available, can undermine the capability236

of an analysis of AMAX data to detect relevant changes in flood patterns. The use of POT237

series ensures that larger samples are used in change detection. In particular, as discussed238

in Section 5.3, the analysis of AMAX data can be influenced by specific characteristics of239

some years.240
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4.2. Threshold exceedances: a point process characterization

POT series contain information on two different processes: (i) the frequency at which a241

certain high threshold is exceeded and (ii) the magnitude of the peak flows. Typically, the242

number of events recorded in each year is assumed to be Poisson distributed, while the243

magnitude of the exceedances above the threshold u is assumed to be distributed according244

to a Generalized Pareto (GP) distribution [Lang et al., 1999]. It can be shown [e.g.245

Coles , 2001] that the annual maxima Q of a flow record in which the threshold exceeding246

process follows the standard Poisson-GP assumption for POT data, are asymptotically247

GEV distributed: Q ∼ GEV (µ, σ, ξ).248

Exceedances above the threshold can be considered as a random process in which in-249

formation on the fact that an exceedance occurred (and therefore the total number of250

exceedances) and the magnitude of the exceedance itself are of interest. Rather than us-251

ing two separate processes to describe the threshold exceedance rate and the magnitude252

of the exceedance itself, it would be advantageous to characterize the different aspects253

of threshold crossing simultaneously. For example, for a fixed threshold u, a threshold254

exceeding process with a heavier tail is expected to result in more exceedances of the255

threshold, i.e. the threshold exceedance rate should be related to the threshold value u256

and to the properties of the tail of the flow distribution. The point process character-257

ization of threshold exceedance allows such relationship to be explicitly modeled, thus258

allowing for a simpler and more elegant model. See Coles [2001] and Katz et al. [2002] for259

a discussion of point processes and their use in the analysis of hydrological extremes.260

In the theoretical development, the flow observations ri in the complete record r are

assumed to be independent from each other, and to have an equal probability p = Pr{R >
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u} of exceeding the threshold. Even if the independence of all the ri observations does

not hold, the results which follow can be shown to be valid once independent peaks are

extracted from the original sample. In particular, for a fixed threshold u, the probability of

exceeding the threshold, p, can be derived from reworking equation (2) as (see Appendix):

p = Pr{R > u} ≈ 1

n∗

[
1− ξ (u− µ)

σ

]1/ξ
. (3)

The total number of threshold exceedances can then be described by a Binomial process

Bin(n∗, p), with mean λ = pn∗, which can be approximated by a Poisson distribution

Pois(λ). For a threshold u, a subset of n independent peaks would be larger than u.

A point process Pn, which records the fact that an exceedance of the threshold u was

observed and the value of the exceedance itself Yi, is defined as:

Pn = {(i/(n+ 1), Yi) : i = 1, . . . , n},

where the first component is a counter for the number of threshold exceedances and is261

standardized to the [0, 1] scale as (i/(n+1)) to simplify the notation later on. For a given262

threshold u the Pn process contains information on the number of data points above u263

observed on the whole [0, 1] interval and the magnitudes of the threshold exceedances,264

which have values within [u,∞).265

A point process P (A) in a subset of the plane A = (t1, t2) × [u,∞) (with (t1, t2) ⊂

[0, 1]), which spans the space between the two time points (t1, t2) in the abscissa and the

space between [u,∞) in the ordinate, would record the number and magnitude of events

above the threshold observed in the region A. Threshold exceedances are assumed to be

independent from each other and equally probable in each part of the [0, 1] time line, so

that the number of threshold exceedances recorded in A should be dependent on the value
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of the threshold u and on the properties of the threshold exceeding process, and should

be proportional to the width of the interval (t2 − t1). The number of events recorded in

the region A = (t1, t2)× [u,∞) is thus distributed as a Poisson with mean Λ(A):

Λ(A) = Λ((t1, t2)× [u,∞)) = (t2 − t1)
[
1− ξ (u− µ)

σ

]1/ξ
. (4)

The point processes characterization of threshold exceedances thus allows for a unified266

modeling framework for both the number of exceedances above the threshold and the267

magnitude of such exceedances. The magnitude and number of exceedances are strictly268

connected: for a fixed threshold u, a process characterized by fatter tails (i.e. larger269

exceedances magnitudes) would result in a more frequent crossing of the threshold. Point270

processes make the modeling of such connection straightforward, since the average number271

of exceedances in a year, which is proportional to the equation shown in (4), is described272

by the parameters of a GEV distribution: µ, σ and ξ.273

This is a particularly useful feature when investigating non-stationarity series, as the274

exceedance rate can change as a function of relevant covariates in a pattern similar to the275

one which is observed in the exceedance magnitude. One can then model one or more276

of the parameters as function of some covariates (X1, . . . , Xp). For example, the effect of277

some covariates (X1, . . . , Xp) on the µ parameter can be investigated by fitting a model278

such as µ(X1, . . . , Xp) = β0 +
∑p

j=1 βjXj, so that the impact of (X1, . . . , Xp) on both the279

size and frequency of flood events can be assessed simultaneously.280

In this work point processes are employed to model the annual and seasonal peaks-over-281

threshold (POT) data, and to investigate the potential changes in both the frequency and282

the magnitude of above the threshold events. As a matter of comparison, non-stationary283

block maxima models as described in 4.1 are also investigated.284

D R A F T May 7, 2015, 10:53am D R A F T



X - 16 PROSDOCIMI, KJELDSEN AND MILLER: URBANIZATION AND NON-STATIONARITY

4.3. Summary of models used in the study

Two types of data were extracted from the continuous flow record at both annual and285

seasonal scale for both the urban and the rural catchment:286

• The block maxima values, i.e. annual and seasonal maxima. The random variable287

describing these values is denoted by Q.288

• The values across the whole record and across the seasonal records which exceed289

a fixed threshold u, with u chosen differently for each of the annual and seasonal series.290

The threshold exceedances are extracted from the raw (ri, . . . , rn∗) dataset as independent291

peaks. The random variable describing these values is denoted by Y .292

For each catchment, a set of covariates (X1, . . . , Xp) is available, providing quantitative293

representations of potential drivers of change and variability in the flood records. These294

include: (i) the 99th percentile of the daily rainfall of each season or year (rain), (ii) the295

water-year in which any event was recorded (time) and, (iii) for catchment 70005, the296

URBEXT value in each year (urbext). The covariates available in this work are at best297

a rough approximation of all the different aspects which underlie the flood generation298

process, but they can still be useful to understand the contribution of different elements299

on high flows.300

To assess the potential drivers of change in high flows, different models are constructed,301

in which the effects of the covariates on the parameters describing the flood process302

are quantified. Further, the estimated impact of each covariate is compared between303

the urban and rural catchments to verify if the effect is different in the catchment with304

increasing urbanization. The estimated models investigate the effect of the covariates305

on the location parameter µ, and only linear effects are considered: a visual check of306
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the relationship between the different covariates against the response variables Q and307

Y doesn’t show any striking non-linear relationship. Models to take into account the308

effect of covariates on the scale or skewness parameter could be evaluated within both309

the annual maxima and the point process modeling framework. Initial attempts to have310

the scale parameter changing as a function of the covariates indicated that this yields to311

much less significant improvements in the likelihood than considering change only in the312

location. Consequently, this work will only consider change in the location parameter, and313

the associated challenges of incorporating covariates into block maxima and point process314

models. Nevertheless the modeling frameworks presented in this work could potentially315

be employed to investigate changes in all parameters of the distribution.316

Both annual and seasonal data are analyzed to investigate if the potential changes317

appear to be more pronounced in any of the seasons. Since the seasonal data are a subset318

of the annual data, the interpretation of results for the seasonal analyses should take the319

results for the annual series into account.320

A summary of the models used in this study is given below and in shown schematically321

in Table 1.322

323

Block maxima models324

The following models are fitted to the block maxima (Q), assuming a Generalized325

Extreme Value distribution:326

• Model BM0: Q ∼ GEV(µ, σ, ξ) with all parameters estimated as constants - this is327

the stationary case.328
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• Model BM1r: Q ∼ GEV(µ(rain), σ, ξ) with the location modeled as a function of the329

99th percentile of the daily rainfall, µ(rain) = β0 + β1rain. This model assesses the effect330

of the potential for high rainfall on the high flows recorded in each year.331

• Model BM1t: Q ∼ GEV(µ(time), σ, ξ) with the location modeled as a function of332

the water-year in which each event is recorded, µ(time) = β0 + β2time. This model333

corresponds to the more standard models fitted in many trend studies, and estimates the334

effect of time on high flows.335

• Model BM2rt: Q ∼ GEV(µ(rain, time), σ, ξ) with the location modeled as a function336

of both rainfall and time µ(rain, time) = β0 +β1rain+β2time. This model estimates the337

effect of each one of the two covariates given that the other covariate is also taken into338

account. The value of β2 represents the residual effect of time after the potential for high339

rainfall in each year is included in the model.340

The following models are also fitted to the data from the urbanizing catchment:341

• Model BM1u: Q ∼ GEV(µ(urbext), σ, ξ) with the location modeled as a function of342

the urban extent µ(urbext) = β0 + β3urbext. This model evaluates the impact of the343

increasing urbanization on high flows.344

• Model BM2ru: Q ∼ GEV(µ(rain, urbext), σ, ξ) with the location modeled as345

µ(rain, urbext) = β0 + β1rain + β3urbext. Similar to Model BM2rt, this model assesses346

the effect of both covariates together.347

The models BM1u and BM2ru are an improvement compared to the standard trend348

analysis in the sense that URBEXT, a variable which relates to key properties of the349

catchment, rather than time, is employed as covariate. Although URBEXT and time are350

correlated, and, for this catchment, no decrease in URBEXT is recorded in time, using351
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URBEXT rather than time would deliver a better inference in terms of the ability to352

quantify the effect of changes in the catchment on the high flow process.353

354

Threshold exceedances models355

Next, a set of point process models are defined, which use threshold exceedances to356

investigate the effect on extreme flows of the same covariates used for the block max-357

ima models. These same model fitted to the block maxima are fitted to the threshold358

exceedances Y :359

• Model PP0: Y ∼ PP(µ, σ, ξ).360

• Model PP1r: Y ∼ PP(µ(rain), σ, ξ).361

• Model PP1t: Y ∼ PP(µ(time), σ, ξ).362

• Model PP2rt: Y ∼ PP(µ(rain, time), σ, ξ).363

• Model PP1u: Y ∼ PP(µ(urbext), σ, ξ).364

• Model PP2ru: Y ∼ PP(µ(rain, urbext), σ, ξ).365

366

When fitting all the models presented in Table 1, the values of rain, time and urbext367

are rescaled to (0, 1) to make the estimated βi parameters comparable.368

The parameters of each model are estimated using the maximum likelihood (ML) es-369

timation procedure, which allows to build confidence intervals based on the approximate370

normality of ML estimates. The estimated values of the regression coefficients βi and of371

the scale and shape parameter σ and ξ, with the corresponding 95% confidence inter-372

vals, are computed by numerically maximizing the likelihood functions described in the373

Appendix.374
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5. Results

5.1. Block maxima regressions

Results for all the six GEV models (1 stationary, 5 non-stationary) fitted to the annual375

maxima data for the urban catchment are presented in the top left corner of Figure 3.376

The difference between each model resides in the covariates used to model the location377

parameter, while the scale (σ) and shape (ξ) parameters are assumed to be constant and378

not related to the covariate values. ML estimates for σ and ξ and their standard errors in379

each model are shown in Table 2. The table also shows the (double negative) log-likelihood380

and the Akaike Information Criterion (AIC) values for each model. These values can be381

used to assess the potential improvements which adding one or multiple variables can have382

in the model performance. As discussed in Coles [2001], Galiatsatou and Prinos [2007]383

and Madsen et al. [2014], the log-likelihood values can be used to perform likelihood384

ratio (LR) tests and evaluate if the addition of a covariate in a model corresponds to a385

substantial increase in the variance explained by the model. LR tests can be performed386

only for nested models, i.e. models for which the model with less parameters can be387

obtained by constraining some of the parameters of the model with more parameters. For388

example, BM1r is nested within BM2rt, since BM1r corresponds to BM2rt with β2 = 0.389

A likelihood ratio test at a confidence level α is built by comparing the values of the390

difference between the double log-likelihood of two nested models against the (1 − α)391

quantile of a χ2
k distribution, with k being the difference in the number of parameters392

between the two models. For example, for the winter series of the rural catchment the393

difference of the double likelihoods of the BM1r and BM0 models is 24.05, while it is 2.16394

for a test of BM1t against BM0: the first value is larger than 3.84 (approximately the 95th395
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quantile of a χ2
1), which indicates that adding rain as a covariate significantly increases the396

likelihood, while the second LR test indicates that adding time alone as a covariate does397

not add much to explanatory power of the model. Similarly, one can test the significance398

of BM2rt against BM1r and BM1t: the two LR test have values 2.18 and 24.07, indicating399

that adding time once rain is included in the model does not yield a significant increase400

in the likelihood. In contrast, if only time had been added in the model in the initial step,401

the addition of rain would highly increase the explanatory power of the model.402

Comparing the log-likelihoods of nested models via LR tests allows for a formal testing403

procedure, although this is only valid for nested models. To compare models which are not404

nested, and rank models fitted to the same dataset the Akaike Information Criterion [AIC,405

Akaike, 1973] can be used. The AIC is a measure that is also based on the log-likelihood406

value attained by each model. Higher values of likelihood are obtained when adding more407

parameters in a model, so the AIC is constructed by subtracting to the log-likelihood a408

penalty component equal to the number of parameters used in each model. For a model409

parametrized by p parameters, a log-likelihood value log-lik(M̂) is computed and the AIC410

is typically defined as AIC = −2(log-lik(M̂)− p). Models which fit the data very well but411

have a large number of parameters are penalized over models which might yield a similar412

log-likelihood value using a smaller number of parameters. Models with lower AIC should413

be preferred to models with higher AIC, but unlike the LR test, no cutoff value is given414

to determine whether the difference between two AIC values is large enough to dismiss415

one model. To allow for a full comparison between all models, both the log-likelihood and416

the AIC values are reported in Table 2, while detailed information on the estimation of417

the location functions are presented in Figure 3.418
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In Figure 3 estimates for the regression parameters βi in the location models are indi-419

cated by the colored symbols, with each color and symbol identifying a specific covariate.420

The colored bars represent the 95% confidence intervals for the parameters. The first421

location model, the stationary case BM0, has a constant location β0, and its estimate is422

shown as a black downward triangle (H) and is located in the top left panel of the plot.423

The second model (BM1r) includes the 99th annual rainfall quantile as a covariate and the424

estimated β1 value and confidence interval are shown as a blue square (�) and line. The425

symbols and lines in this second model indicate the estimated values and 95% confidence426

intervals for both β0 and β1 in model BM1r respectively. Similarly, estimates of β0 and427

β2 for the model with time as the only covariate (model BM1t) are shown in the third428

block of the plot as a black downward triangle and a green upward triangle (N). The429

same symbol and color scheme applies for the estimates of models in which both the 99th430

rainfall quantile and time are used to model the location (BM2rt). Finally estimates for431

the urbanization parameter (β3 in model BM1u and BM2ru) are shown as purple dots (•).432

The horizontal dashed line which indicates the 0 value is drawn and if a confidence bar433

crosses the dashed line, the parameter cannot be considered significantly different from 0434

at a 95% confidence level and is shown as a hollow symbol.435

Overall, Figure 3 summarises the results for all six GEV regression models fitted to436

the block maxima of all seasons for both the urbanized and the rural catchment. For437

each plot the symbol and color scheme discussed above was used, except that results for438

the rural catchment (right panels) never include urban extent as a covariate. Noticeably,439

time appears to have a significant effect in the annual and summer series of the rural440

catchment when time only is included in the model (BM1t), but falls just short of being441
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significant if rainfall is also included in the model (BM2rt) for the summer series. The442

effect of rainfall in the summer series of the urban catchment is not significant when only443

rainfall is included in the model (BM1r) and is less markedly significant than in the other444

seasons when time or urbanization enter the model. This is partially due to the influence445

of a particular high flow event recorded in 1983, as discussed in Section 5.3. The effect446

of urbanization appears to be markedly significant for the annual and the summer series,447

while in the winter series it is almost non-significant; see Section 5.3 for further discussion.448

The likelihood ratio tests which can be built using the information in Table 2 can also be449

used to understand the impact of including each covariate in the regression model. For450

the annual series of the urban catchment, for example, a LR test of BM2rt against BM1r451

has a value of .68 and falls very short of being significant, while when the urban extent452

is included in the model (BM2ru) the LR test against BM1r with a value of 3.93 is just453

about significant at a 95% confidence level. The BM2ru model also attains the lowest AIC454

value, an additional indication that this would be the preferred model for the data under455

study.456

5.2. Point processes

Results for all six point process models for all seasons (annual, summer and winter) in457

both the urbanized and the rural catchment are presented in Figure 4, using the same458

symbols and color scheme as in Figure 3. Results for the scale and shape parameters,459

along with the negative log-likelihoods and the AIC values, are shown in Table 3. One460

first notable feature of the results is that, unlike the results for the block maxima, for461

all catchments and seasons, rainfall is a significant covariate. Once rainfall is taken into462

account (PP2ru), the urbanization extent appears to be significant for all seasons, with463
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a very strong signal appearing in the summer series. If only urbanization is included464

in the model (PP1u) for the winter series, it appears to be non-significant, but it is a465

non-negligible covariate when rainfall is included (PP2ru). This shows that including the466

rainfall information can lead to a different understanding of the net impact of urbanization.467

Also, while urbanization is significant in the PP2ru model, time is not significant in PP2rt,468

which indicates that the increase observed in the winter high flows is not constant, but469

changes at a speed related to the increase of impervious cover in each year. This shows470

the advantage of describing the changes in the high flows generating process as a function471

of a covariate which describes the actual changes in the catchment rather than looking at472

changes on the temporal scale only.473

For the rural catchment, time is never a significant covariate and no changes can be474

detected for the high flows of this catchment in any season. The AIC values for the PP2ru475

models in all seasons are very close to the PP1r, indicating that the additional complexity476

in the model obtained by adding one variable is not compensated by a noticeable increase477

in the likelihood. For the summer season in fact, the lowest AIC is attained by the PP1r478

model. The fact that no significant effect of time is detected in the rural catchment,479

combined with the strong significance of the urbext parameters in the urban catchment480

gives evidence of a significant effect of the increased urbanisation levels on the location481

parameter of the distribution of peak flows. Compared to the results for the block maxima482

shown in Figure 3, the assessment of the statistical significance of the covariates differs.483

In particular, differences are seen in the significance of the rainfall variable in the rural484

catchment and the effect of rainfall and urbanization on the winter series in the urban485
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catchment, where a strong link between change in floods and change in urbanization is486

identified.487

5.3. The effect of influential points

The exceptional events which characterize some years can have a large influence in488

the assessment of significance of the different covariates. In Figure 5 the annual and489

seasonal maxima series for each catchment are plotted against the corresponding 99th490

rainfall quantile of the catchment averaged daily rainfall. The values corresponding to the491

events in 1980 and 1983 are indicated as, respectively, squares and triangles. Visually, it492

would appear that for some series the events in these years are leverage points. Notably for493

the urbanized catchment the event in 1983 is characterized by very high potential rainfall494

values, although the maximum flow in this year is not equally extreme; the summer495

flow maximum recorded in this year is very low. The events recorded in year 1980 were496

characterized by very high winter 99th rainfall percentiles for both catchments and very497

high annual 99th rainfall percentile for the rural catchment. The recorded values for the498

annual and winter flow maxima in this year are fairly high and in line with the general499

shape of the relationship between the rainfall variable and flow maxima. For the urbanized500

catchment, the odd behavior of the 1983 datapoint can partially be explained by the fact501

that, although in 1983 very high values were recorded for the 99th rainfall quantile (31.75502

mm), the year was not particularly wet and was characterized by an average daily rainfall503

of 2.68 mm, in line with the overall average daily rainfall of 2.76 mm. On the other hand504

the high 99th rainfall quantile value of 1980 coincided with a fairly wet year with a mean505

daily rainfall well above the average (3.73 mm).506
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In Figure 6 and 7 the results for the GEV models fitted to the block maxima without507

the data points of 1980 and 1983 respectively are shown. These should be compared508

with the results shown in Figure 3. Unsurprisingly, the biggest differences between the509

results for the complete series and the results of the modified series can be seen for the510

catchments and seasons for which either the datapoint of 1980 or the datapoint of 1983511

was visibly different from the bulk of the data points. For example, for the winter series512

of the urbanized catchment a more pronounced effect of time and urbanization is visible513

in Figure 6. The 1980 winter record is characterized by a high rainfall and a high flow514

value. In contrast, the 1983 winter, is characterized by a rainfall value of magnitude515

similar to the one of 1980, but by a much smaller flow value. Since both records are also516

characterized by relatively low URBEXT values, the difference in the flow value can not517

be explained by this additional covariate in the models fitted to the whole dataset. When518

the 1980 event is removed, the relatively modest peak flow of 1983 in the presence of a519

high rainfall can partially be explained by the low URBEXT value recorded in that year.520

Considering the urban catchment, removing the 1980 annual, winter or summer events521

from the dataset lowers the estimated effect of the rainfall variable, while the estimated522

effect of urbanization increases. For the rural catchment, the removal of the 1980 leverage523

point has the opposite effect and allows the estimated effect of rainfall to increase. A524

similar effect is observed for the summer series for the urbanized catchment when the525

datapoint for 1983 is removed: the estimated effects of rainfall in the left bottom corner526

of Figure 7 are stronger than the ones seen in Figure 3. This is due to the relatively low527

flow maxima registered in the summer of 1983 despite the rainfall variable being one of528
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the highest on records. Removing the 1983 event also changes the significance assessment529

of the rainfall variable in the BM2rt and BM2ru models in the urbanized catchment.530

The interpretation of the results is not radically changed if the year 1980 or 1983 are531

removed from the dataset, but the strength and the significance of some results is slightly532

different. The differences in the results for the point process models (not shown) when533

the data for year 1980 or 1983 are similar to the ones seen for the GEV model, although534

somewhat smaller, since more data points are used to fit the model and the parameters535

show less variability. This stresses once more the challenges connected with attribution of536

change in block maxima series: due to the relative short series it is enough for one point537

to behave somehow differently from the main pattern for the results to become so variable538

that they can mask the actual signal of change. The use of POT data ensures that larger539

sample sizes are used for trend detection, making the testing procedure generally less540

variable and more powerful.541

6. Conclusions

Overall, the results for the point process models presented in Section 5 indicate that542

there is a statistically significant effect of increased urbanization levels on the high flows543

recorded at the Station 70005 for all seasons such that the magnitude and frequency of544

floods increase with increasing urbanization extent. This effect is significant in all seasons,545

with a stronger impact detected for the summer extreme flows. The observed effect has546

been shown to be present especially when the high year to year variability, represented by547

process related variables such as the 99th quantile of daily rainfall is taken into account548

in a non-stationary model. Further, no statistically significant effect of time has been549

detected in a paired, almost pristine, nearby catchment which is hydrologically similar to550
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the urbanized catchment under study. Since URBEXT, a variable specific to the actual551

urbanization process, rather than time is used in the model, the effect identified by the552

statistical models can be directly attributed to the land-use change from predominantly553

rural in 1970 to heavily urbanized by 2010.554

Peaks-over-threshold series, rather than block maxima, have proven to be useful to555

perform such attribution. The use of POT data rather than block maxima results in556

larger samples which are representative of only the high end of the hydrograph and can557

be less affected by specific conditions observed in one year. In this study, the point process558

characterization of POT series is advocated, rather than the traditional POT approach.559

Point processes allow for a unique framework in which the effect of different covariates on560

the process parameters can be easily included. The direct inclusion of the covariates and561

the larger series used when analyzing threshold exceedances allow for a better assessment562

of the impact of urbanization on high flows.563

The point processes framework has been employed to assess the impact of different564

covariates on high flows and to carry out flood frequency analysis in a non-stationary565

framework. Nevertheless such analysis requires the availability of long records of the566

instantaneous flow data and of the covariates of interest, like a good measure of land-use567

change and some summary information of the rainfall observed in the catchment. The568

high demands in term of data availability and modeling continues to make the attribution569

of drivers of changes in high flows a challenging task.570
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Lang, M., T. B. M. J. Ouarda, and B. Bobeè (1999), Towards operational guidelines for640

over-threshold modeling, Journal of Hydrology, 47, 103–117.641

Leopold, L. B. (1968), Hydrology for urban land planning: A guidebook on the hydrologic642

effects of urban land use, Geological survey circular 554, United States Department of643

the Interior. Geological Survey, Washington.644

Lins, H. F., and T. A. Cohn (2011), Stationarity: Wanted dead or alive?, JAWRA Jour-645

nal of the American Water Resources Association, 47 (3), 475–480, doi:10.1111/j.1752-646

1688.2011.00542.x.647
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Figure 1. Location of the two study catchments upstream of gauging station 70005 (urbanized

catchment) and station 72014 (rural catchment). Key catchment descriptors [from Institute of

Hydrology , 1999] are also displayed.
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Figure 2. Evolution of the urban extent in the Lostock at Littlewood Bridge catchment

(station 70005). The year to which the image refers to is in indicated, with the corresponding

URBEXT value in parenthesis.
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Figure 3. Results for the block maxima models: results for the urbanized catchment in the left

panels and for the rural catchment in the right panels; results for the annual series (top panels),

winter series (central panels) and the summer series (lower panels).
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Figure 4. Results for the point process models: results for the urbanized catchment in the left

panels and for the rural catchment in the right panels; results for the annual series (top panels),

winter series (central panels) and the summer series (lower panels).
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Figure 5. Scatterplot of annual and seasonal maxima against the appropriate rainfall covariate.

Datapoints for the year 1980 and 1983 are indicated respectively as squares and triangles.
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Figure 6. Results for the block maxima models for series without the datapoint of 1980:

results for the urbanized catchment in the left panels and for the rural catchment in the right

panels; results for the annual series (top panels), winter series (central panels) and the summer

series (lower panels).
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Figure 7. Results for the block maxima models for series without the datapoint of 1983:

results for the urbanized catchment in the left panels and for the rural catchment in the right

panels; results for the annual series (top panels), winter series (central panels) and the summer

series (lower panels).
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Model Covariates
Model Name rain time urbext Location function

Block BM(µ, σ, ξ) BM0 ◦ ◦ ◦ µ = β0
maxima BM(µ(rain), σ, ξ) BM1r X ◦ ◦ µ(rain) = β0 + β1rain

BM(µ(time), σ, ξ) BM1t ◦ X ◦ µ(time) = β0 + β2time
Q ∼ BM(µ(rain, time), σ, ξ) BM2rt X X ◦ µ(rain, time) = β0 + β1rain+ β2time

BM(µ(urbext), σ, ξ) BM1u ◦ ◦ X µ(urbext) = β0 + β3urbext
BM(µ(rain, urbext), σ, ξ) BM2ru X ◦ X µ(rain, urbext) = β0 + β1rain+ β3urbext

Point PP (µ, σ, ξ) PP0 ◦ ◦ ◦ µ = β0
process PP (µ(rain), σ, ξ) PP1r X ◦ ◦ µ(rain) = β0 + β1rain

PP (µ(time), σ, ξ) PP1t ◦ X ◦ µ(time) = β0 + β2time
Y ∼ PP (µ(rain, time), σ, ξ) PP2rt X X ◦ µ(rain, time) = β0 + β1rain+ β2time

PP (µ(urbext), σ, ξ) PP1u ◦ ◦ X µ(urbext) = β0 + β3urbext
PP (µ(rain, urbext), σ, ξ) PP2ru X ◦ X µ(rain, urbext) = β0 + β1rain+ β3urbext

Table 1. Summary of the models fitted to the block maxima and peaks-over-threshold data.

Urban Rural
catchment catchment

Model σ̂ (s.e.) ξ̂ (s.e.) -2 log-lik AIC σ̂ (s.e.) ξ̂ (s.e.) -2log-lik AIC
Annual BM0 4.78 (0.67) 0.03 (0.13) 206.38 212.38 6.18 (0.92) 0.21 (0.16) 210.51 216.51

BM1r 4.27 (0.62) 0.01 (0.14) 199.62 207.62 4.53 (0.70) -0.02 (0.17) 198.98 206.98
BM1t 4.07 (0.60) -0.07 (0.13) 199.47 207.47 5.79 (0.85) 0.24 (0.15) 205.09 213.09
BM2rt 3.96 (0.57) -0.02 (0.13) 195.94 205.94 4.82 (0.85) 0.17 (0.23) 195.90 205.90
BM1u 4.15 (0.59) -0.03 (0.13) 199.18 207.18
BM2ru 4.04 (0.57) 0.01 (0.12) 195.69 205.69

Winter BM0 5.03 (0.66) 0.20 (0.11) 209.36 215.36 5.55 (0.84) 0.19 (0.17) 204.26 210.26
BM1r 3.85 (0.55) 0.15 (0.14) 193.51 201.51 2.96 (0.54) -0.26 (0.21) 180.21 188.21
BM1t 4.86 (0.62) 0.19 (0.09) 207.00 215.00 5.24 (0.77) 0.15 (0.15) 202.10 210.10
BM2rt 4.10 (0.71) 0.37 (0.22) 189.54 199.54 3.19 (0.64) -0.07 (0.29) 178.03 188.03
BM1u 4.74 (0.61) 0.19 (0.09) 205.32 213.32
BM2ru 4.86 (1.16) 0.85 (0.29) 182.42 192.42

Summer BM0 5.54 (0.95) -0.08 (0.21) 220.38 226.38 4.83 (0.68) -0.05 (0.12) 216.52 222.52
BM1r 5.57 (0.88) 0.01 (0.18) 217.30 225.30 3.89 (0.54) 0.00 (0.12) 199.14 207.14
BM1t 4.52 (0.72) -0.16 (0.16) 209.96 217.96 4.86 (0.67) 0.06 (0.12) 212.15 220.15
BM2rt 4.02 (0.70) -0.24 (0.19) 205.02 215.02 3.79 (0.50) 0.05 (0.11) 195.62 205.62
BM1u 4.12 (0.73) -0.27 (0.20) 207.81 215.81
BM2ru 3.66 (0.70) -0.35 (0.23) 202.56 212.56

Table 2. Estimate (standard error) of the scale and shape parameters, negative log-likelihood

and AIC for the GEV models. Bold values indicate the lowest negative log-likelihood and AIC

attained.
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Urban Rural
catchment catchment

Model σ̂ (s.e.) ξ̂ (s.e.) -2*log-lik AIC σ̂ (s.e.) ξ̂ (s.e.) -2log-lik AIC
Annual PP0 4.57 (0.39) 0.06 (0.08) 569.29 575.29 4.49 (0.58) -0.23 (0.13) 519.18 525.18

PP1r 4.45 (0.34) 0.12 (0.07) 554.16 562.16 4.20 (0.40) -0.02 (0.09 ) 495.62 503.62
PP1t 4.59 (0.40) 0.05 (0.08) 564.15 572.15 4.48 (0.57) -0.22 (0.13) 518.52 526.52
PP2rt 4.46 (0.35) 0.11 (0.07) 550.59 560.59 4.18 (0.39) 0.00 (0.09) 493.32 503.32
PP1u 4.57 (0.40) 0.05 (0.08) 559.65 567.65
PP2ru 4.45 (0.35) 0.11 (0.07) 546.10 556.10

Winter PP0 4.49 (0.55) 0.11 (0.14) 373.39 379.39 4.60 (0.70) -0.07 (0.20) 354.51 360.51
PP1r 4.56 (0.46) 0.28 (0.09) 356.83 364.83 4.95 (0.55) 0.20 (0.10) 334.07 342.07
PP1t 4.48 (0.55) 0.11 (0.14) 373.09 381.09 4.60 (0.70) -0.07 (0.21) 354.51 362.51
PP2rt 4.66 (0.46) 0.41 (0.16) 353.84 363.84 4.98 (0.54) 0.24 (0.10) 331.90 341.90
PP1u 4.46 (0.54) 0.10 (0.14) 371.05 379.05
PP2ru 4.65 (0.45) 0.67 (0.17) 346.66 356.66

Summer PP0 6.57 (0.76) 0.15 (0.09) 410.34 416.34 4.32 (0.57) -0.06 (0.13) 379.34 385.34
PP1r 6.63 (0.71) 0.25 (0.10) 393.95 401.95 4.54 (0.54) 0.09 (0.10) 361.18 369.18
PP1t 6.35 (0.74) 0.07 (0.08) 390.86 398.86 4.41 (0.57) 0.00 (0.12) 377.85 385.85
PP2rt 6.31 (0.71) 0.11 (0.08) 380.05 390.05 4.52 (0.54) 0.08 (0.11) 361.14 371.14
PP1u 6.37 (0.73) 0.09 (0.08) 389.77 397.77
PP2ru 6.32 (0.71) 0.12 (0.08) 376.65 386.65

Table 3. Estimate (standard error) of the scale and shape parameters, negative log-likelihood

and AIC for the point process models. Bold values indicate the lowest negative log-likelihood

and AIC attained.
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Appendix

Derivation of equation (3)696

Given a set of independent identically distributed random variables (R1, . . . , Rn∗) with common

distribution function FR(x), the distribution of Mn∗ = max(R1, . . . , Rn∗) can be derived as

Pr(Mn∗ ≤ u) = Pr(R1 ≤ u)× . . .× Pr(Rn∗ ≤ u) = FR(u)n
∗

(A.1)

by virtue of the independence of the Ri.697

Taking the traditional Extreme Value theory result: F (g(Mn∗))→ GEV (µ, σ, ξ), with g(Mn∗)

an appropriate standardization of Mn∗ , from equation (2) follows

FR(u)n
∗
≈ exp

{
−
[
1− ξ u− µ

σ

]1/ξ}
. (A.2)

It then follows that

n∗ lnFR(u) ≈ −
[
1− ξ u− µ

σ

]1/ξ
. (A.3)

Using a Taylor expansion of lnFR(u) around FR(u) = 1 gives

lnFR(u) ≈ −{1− FR(u)} . (A.4)

which, combined with equations (A.2) and (A.3), gives:

Pr(R > u) = 1− FR(u) ≈ − lnFR(u) ≈ 1

n∗

[
1− ξ u− µ

σ

]1/ξ
698

Likelihood function for a (non-stationary) GEV model699

Denote by q = (q1, . . . , qM) the vector of M observed block maxima. The log-likelihood to be

maximized to derive ML estimates for the µ, σ and ξ parameters of a GEV distribution with
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ξ 6= 0 can be derived from equation (1) as:

l(µ, σ, ξ; q) =
M∑
i=1

ln(f(µ, σ, ξ; qi))

= −M lnσ −
n∑
i=1

{
ti(1− ξ) + e−ti

}
(A.5)

taking ti = −ξ−1 ln(1− ξ(qi − µ)/σ).700

For the non-stationary case in which the location is defined as a function changing linearly

with one covariate X, i.e. µ(x) = β0 + β1, the log-likelihood would then become a function to be

maximized over 4 parameters (β0, β1, σ and ξ), and is obtained by conveniently adjusting (A.5)

as:

l(β0, β1, σ, ξ; q,x) = −M lnσ −
n∑
i=1

{
ti(1− ξ) + e−ti

}
taking ti = −ξ−1 ln(1− ξ(qi − β0 − β1xi)/σ).701

702

Likelihood function for a (non-stationary) point process model703

The likelihood for a point process model can be derived from the threshold exceedance process704

building on the Generalized Pareto assumption for the threshold exceedances.705

Consider that out of the n∗ observations (r1, . . . , rn∗), only a small number of independent

peaks n exceeds the threshold u, while for (n∗ − n) observations the only information relevant

to the extremal part of the distribution is that they are below the threshold. Denoting as Y the

random variable which describes the magnitude of the peaks above the threshold, the likelihood
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of the threshold exceedance model can then be written as:

L(µ, σ, ξ; r) =
n∗−n∏
i=1

Pr(ri < u)︸ ︷︷ ︸
ri under the threshold

n∏
i=1

{Pr(Yi = yi)}︸ ︷︷ ︸
ri peaks above the threshold

= (Pr(R < u))n
∗−n

n∏
i=1

Pr{Yi = yi} (A.6)

Points not exceeding the threshold contribute to the first component. The non-exceedance of the

threshold happens with probability 1 − p, with p defined in (3). The first component can then

be further reworked to be:

(Pr(R < u))n
∗−n ≈ (1− p)n∗ ≈ exp{−n∗p}

= exp

{
−
[
1− ξ (u− µ)

σ

]1/ξ}
(A.7)

where the fact that n is small compared to n∗ and that n∗ is large are used.706

The second component of the likelihood, which describes the contribution of the actual thresh-

old exceedance, assuming a Generalized Pareto distribution (Y ∼ GP (σ̃, ξ), with σ̃ = σ + ξ(u−

µ)), can be reworked to be:

Pr{Yi = yi} = Pr{Yi > u}Pr{Yi = yi|Yi > u} = pf(yi − u; σ̃, ξ)

= pσ̃−1

[
1− ξ(yi − u)

σ̃

]−1+1/ξ

= (n∗)−1

[
1− ξ (u− µ)

σ

]1/ξ
σ̃−1

[
1− ξ(yi − u)

σ̃

]−1+1/ξ

= (σn∗)−1

[
1− ξ (yi − µ)

σ

]−1+1/ξ

(A.8)

Plugging the results of equations (A.7) and (A.8) in (A.6) gives the likelihood of a point process:

L(µ, σ, ξ; r) ∝ exp

{
−
[
1− ξ (u− µ)

σ

]1/ξ}
σ−1

n∏
i=1

[
1− ξ (yi − µ)

σ

]−1+1/ξ

(A.9)

D R A F T May 7, 2015, 10:53am D R A F T



PROSDOCIMI, KJELDSEN AND MILLER: URBANIZATION AND NON-STATIONARITY X - 47

For the non-stationary case in which the location parameter is taken to be a linear function of

the covariate X, µi = β0 + β1xi, the likelihood in equation (A.9) becomes:

L(β0, β1, σ, ξ; r,x) ∝ σ−1

n∏
i=1

exp

{
−
[
1− ξ u− β0 − β1xi

σ

]1/ξ}[
1− ξ yi − β0 − β1xi

σ

]−1+1/ξ
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