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Abstract: A voltammetric and scanning electrochemical microscopy (SECM) investigation was
performed on an inherently chiral oligomer-coated gold electrode to establish its general properties
(i.e., conductivity and topography), as well as its ability to discriminate chiral electroactive probe
molecules. The electroactive monomer (S)-2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bibenzothiophene
((S)-BT2T4) was employed as reagent to electrodeposit, by cyclic voltammetry, the inherently
chiral oligomer film of (S)-BT2T4 (oligo-(S)-BT2T4) onto the Au electrode surface (resulting in
oligo-(S)-BT2T4-Au). SECM measurements, performed in either feedback or competition mode,
using the redox mediators [Fe(CN)6]4− and [Fe(CN)6]3− in aqueous solutions, and ferrocene (Fc),
(S)-FcEA, (R)-FcEA and rac-FcEA (FcEA is N,N-dimethyl-1-ferrocenylethylamine) in CH3CN solutions,
indicated that the oligomer film, as produced, was uncharged. The use of [Fe(CN)6]3− allowed
establishing that the oligomer film behaved as a porous insulating membrane, presenting a rather
rough surface. This was inferred from both the approach curves and linear and bidimensional SECM
scans, which displayed negative feedback effects. The oligomer film acquired semiconducting or fully
conducting properties when the Au electrode was biased at potential more positive than 0.6 V vs.
Ag|AgCl|KCl. Under the latter conditions, the approach curves displayed positive feedback effects.
SECM measurements, performed in competition mode, allowed verifying the discriminating ability
of the oligo-(S)-BT2T4 film towards the (S)-FcEA and (R)-FcEA redox mediators, which confirmed
the results obtained by cyclic voltammetry. SECM linear scans indicated that the enantiomeric
discriminating ability of the oligo-(S)-BT2T4 was even across its entire surface.

Keywords: Inherently chiral oligomer films; chiral electroactive probes; scanning electrochemical
microscopy; enantiodiscrimination in electrochemistry and electroanalysis

1. Introduction

Conducting polymers (CPs) or oligomers consist of repeating units of conjugated electroactive
organic molecules and display high chemical stability and conductivity [1]. They can mediate reactions
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while in their conductive state, making them viable as electrode materials. In addition, CPs are widely
used as electrode modifiers to fine-tune the performance and quality of a variety of substrates [2].
In this regard, considerable attention has been devoted to the preparation of CP-modified
electrodes to be employed as chemo- and bio-sensors to enhance sensitivity and selectivity in
electroanalytical applications [2–4]. Among other desired sensing properties, enantiomer discrimination
and quantification are fundamental for chiral compounds of interest in pharmaceutical, food,
fragrance and environmental fields. Chirality is often introduced into CPs by attaching chiral pendants
to the monomers to be (electro)oligomerized to yield the CP conjugated backbone [5], but other
alternative approaches have also been proposed [6]. Outstanding chirality properties have been
recently observed with electroactive films electrosynthesized from “inherently chiral” electroactive
monomers, designed so that chirality and electroactivity originate from the same element, coinciding
with the main molecular backbone featuring a tailored torsion on account of an atropisomeric or
helical building block with associated high racemization barrier; this results in powerful chirality
manifestations, possibly also electrochemically modulated [6]. The so far best studied example of
inherently chiral monomer is 2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bibenzothiophene (BT2T4) (Scheme 1),
featuring a 3,3′-bibenzothiophene atropisomeric core (with sterically hindered rotation between its two
halves); its C2 symmetry results in propagation and amplification of its outstanding chirality properties
in macro- and supramolecular structures [7].
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Scheme 1. The (S)- and (R)-enantiomers of the inherently chiral BT2T4 monomer.

Because these monomers are electroactive and have high electrooligomerization ability, they represent
suitable starting reagents for the electrodeposition of inherently chiral oligomers onto electrode
surfaces [6–8]. Chemically produced oligomers can also be dropcasted onto the electrode surface [9].
These oligomer-modified electrodes have displayed outstanding enantiodiscrimination ability for chiral
electroactive probes in terms of large potential differences in voltammetric experiments [6,7,9–12].

In previous works, the electrochemical characterization of these electrodes has been performed
considering voltammetry, spectroelectrochemistry and in-situ conductance techniques [6–13].
These techniques normally provide information on the whole and bulk material. Further knowledge
of the chemical and electrochemical phenomena involved in such systems can be obtained by
high spatial resolution electrochemical techniques, such as scanning electrochemical microscopy
(SECM) [14]. SECM is a scanning probe technique based on the amperometric signal generated
at a microelectrode [15] by a redox-active species in solution (redox mediator), which can perform
quantitative local electrochemical experiments for studying heterogeneous and homogeneous reactions
and for high-resolution imaging of the chemical reactivity and topography of various surfaces [14–17].

In the context of conducting polymers, SECM has been used to characterize poly(alkylterthiophene)
films [18] and polypyrrole [19], to establish semiconducting surfaces and to study lateral charge transfer
inside molecular films [20]. To the best of our knowledge, no SECM study exists dealing with the
characterization of chiral polymers or oligomers.

In this work, for the first time, we report a SECM study to characterize the enantiopure (S)-BT2T4

oligomer, electrodeposited onto the surface of a gold disk electrode, starting from the corresponding
(S)-BT2T4 monomer. In particular, the study aims at establishing whether: (i) The oligomer film acts
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as a porous membrane, with resulting electron transfer occurring at the underlying metal electrode;
(ii) the electron transfer is localized at the oligomer/solution interface with the conducting oligomer
film behaving as a conductive electrode material; (iii) a catalytic electron-transfer process occurs
between the conducting polymer and a redox couple present in the bathing solution. In addition,
the investigation aims at establishing how the chiral properties of the film affects the redox process of
chiral compounds. To this purpose, voltammetric and SECM measurements were performed using
different redox mediators charged and uncharged, without and with chiral properties.

2. Results and Discussion

2.1. Electrosynthesis and Voltammetric Characterization of the Oligomeric BT2T4 Film

The chiral oligomer film was electrodeposited onto a polycrystalline gold disk surface, starting
from the enantiopure (S)-BT2T4 monomer and using a protocol analogous to those reported in detail
elsewhere [8,10–12]. In brief, repeated oxidative potential cycling at 0.2 V s−1 was performed over
the potential region 0–1.4 V vs. Ag/AgCl (KCl, saturated), in a CH3CN solution containing 0.5 mM
(S)-BT2T4 and 0.1 M TBAPF6, as supporting electrolyte. The first and fortieth cycles are displayed in
Figure 1 (with black and red line, respectively).
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Figure 1. Cyclic voltammograms (CVs) recorded in a 0.5 mM (S)-BT2T4 CH3CN solution + 0.1 M
TBAPF6 at Au disk electrode: First cycle (black line); fortieth cycle (red line). CV recorded at the
oligomer-modified Au disk electrode in a (S)-BT2T4-free CH3CN solution + 0.1 M TBAPF6 (blue line).
Scan rate 0.2 Vs−1.

In the first cycle a two-peak process was observed, the first of which is due to the oxidation of the
terthiophene moiety; the second corresponds to a further oxidation process of an electroactive product
formed by a chemical follow up reaction, since it disappears at increasing scan rates (instead in less
polar CH2Cl2, a first oxidation system is observed consisting of two nearly merging peaks accounting
for the two molecule moieties behaving as interacting equivalent redox centres [7]). In the second
and following cycles, a shift of the first oxidation peak at less positive potential and an overall
current increase were observed. The potential shift points to an increased effective conjugation as a
consequence of the coupling of terthiophene π systems, resulting in electroactivity features close to
a linear hexathiophene [21]. The current increase, by increasing the number of cyclic voltammetric
cycles, together with the presence of ill-defined cathodic peaks, recorded upon potential scan reversal,
indicate the deposition of a solid, electrochemically active product on the electrode surface. According to
earlier works, the deposited material is made of oligomers, from open and cyclic dimers to higher terms,
with dimers largely prevailing in high-resolution laser desorption ionization (HR LDI) spectra [7–9].
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The stability of the deposited film was verified by performing CV measurements with gold-modified
electrode in a (S)-BT2T4-free acetonitrile solution and in the same potential window. The CV thus
recorded displayed, essentially, the same features of that obtained in the medium containing the
monomer (Figure 1, blue line). The presence of the oligomer onto the electrode surface was also verified
by SEM and relevant EDX analysis (Supporting Materials S1).

The enantio-recognition ability of the oligomer-modified gold electrode (oligo-(S)-BT2T4-Au) was
assessed by CV in acetonitrile solutions containing the chiral probes (S)-(−), (R)-(+) and racemate rac-(±)
of N,N-dimethyl-1-ferrocenylethylamine (FcEA) ((S)-FcEA, (R)-FcEA and rac-(±)FcEA, respectively),
as shown in Figure 2. For comparison, the CVs of the same probes were performed using the bare
Au-disk electrode (Figure S2).
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Figure 2. CVs recorded at an oligo-(S)-BT2T4- Au electrode in a CH3CN + 0.1 M TBAPF6 solution
containing 1 mM (S)-FcEA, 2 mM rac-FcEA and 0.6 mM (R)-FcEA (as indicated in the figure). Scan rate
0.05 V s−1.

It is seen that at the oligo-(S)-BT2T4-Au a clear separation of the half-wave potentials (E1/2)
(obtained by the half sum of the anodic (Ep,a) and cathodic (Ep,c) peak potentials, E1/2 = (Epc + Epa)/2 [15],
of about 240 mV exists between the (S)-FcEA and (R)-FcEA probes when present in solution either
alone or in the racemic mixture. It must be outlined that no such potential separation was observed at
the naked Au electrode, where E1/2 values are identical (within ± 5 mV, experimental error) regardless
of the probe enantiomer configuration (Figure S2). Thus, as in previous cases [7,10], the combination
(S)-oligoBT2T4 + (S)-FcEA (or specularly (R)+(R) [7,10]) results in a less positive potential respect to
(S)-oligoBT2T4 + (R)-FcEA (or, specularly, (S)+(R) [7,10]). It is however worthwhile recalling that no
particular meaning should be given to such absolute configuration combinations, since the (R) and (S)
stereodescriptors are assigned according to rules with no direct link to physical properties [22].

2.2. SECM Characterization of the Bare Au Surface and Oligo-(S)-BT2T4-Au Substrate

2.2.1. General Aspects

SECM measurements were performed using platinum microdisk electrodes of 12.5 µm radius
with RG varying between 5 and 8 (SECM tips, see experimental for details). The redox mediators
employed were: [Fe(CN)6]4−, [Fe(CN)6]3− in aqueous solutions containing 0.1 M KCl; ferrocene (Fc)
and the chiral (S)-FcEA, (R)-FcEA and rac-FcEA molecules in CH3CN solution containing 0.1 M
TBAPF6. Steady-state voltammograms obtained at the platinum microelectrode for all redox mediators
employed are shown in Figure S3. Relevant E1/2 are summarized in Table S1.
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Preliminarily, the surface status of the bare gold substrate (1 mm radius) for the electrodeposition
of the oligo-(S)-BT2T4 film, was investigated by SECM in feedback mode [14]. In these experiments,
the microelectrode tip was always biased at a potential at which the steady-state diffusion limiting
current of each redox mediator was achieved. Instead, the substrate was either unbiased or biased at
a potential at which the inverse of the reaction occurring at the SECM tip took place (see Scheme in
Figure S4). Since in the case of the bare Au electrode, all redox mediators provided similar responses,
in what follows, the results obtained for the redox system Fc+/Fc are discussed. Typical normalized
approach curves, i.e., normalized current, (I/Ib) (I is the current at given tip-to-substrate distance d, Ib is
the current in the bulk solution), against normalized distance (d/a) (a is the radius of microelectrode)
obtained above the active metal surface and, for comparison, above the surrounding insulating
material, are shown in Figure 3. Above the Au surface, regardless of whether the substrate was
biased or not, a positive feedback current (i.e., current increases as the tip-to substrate distance
decreases), overlapping the theoretical curve for a diffusion-controlled process, was obtained (Figure 3a).
This accords with the regeneration mechanism of the redox mediator characteristic for a conductive
substrate (Scheme in Figure S4 and in inset in Figure 3a) [14,23–28]. The positive feedback response,
also obtained at the unbiased substrate, is due to the phenomenon of the lateral electron transfer that
occurs when the substrate area, bathed by the redox mediator solution, is much larger than that of
the microelectrode [14,23–28], as is the present case (see comments in Figure S4’s caption for details).
Above the insulator, the approach curves provided negative feedback (i.e., current decreases as the
tip-to substrate distance decreases) overlapping that for a diffusion-controlled process. This behavior
is related to the hindered diffusion of the redox mediator towards the microelectrode surface (see inset
in Figure 3b). Approach curves like those described above were also recorded by performing
measurements above different locations of both Au disk and insulator.
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Figure 3. Approach curves recorded using Fc as redox mediator with a Pt microdisk 12.5 µm radius,
above the bare gold surface (a) and the surrounding PTFE insulator (b). Red dashed lines refer to
theoretical diffusion-controlled processes. The tip was biased at 0.4 V and the substrate was either
unbiased or biased at 0.0 V.

The uniformity of the responses across the substrate was also assessed by performing one-dimensional
(1D) and bi-dimensional (2D) scans. In these experiments, the microelectrode was initially located at
10 µm above the substrate and the scans were started with the microelectrode positioned above the
insulator. Then, it was moved towards the active metal surface. Typical 1D and 2D scans are shown
in Figure 4. Insulating (or not active) and conducting (or active) materials correspond to the zones
with lower and higher currents, respectively. The abrupt current changes, from low to high values
(or vice-versa in Figure 4a), indicate the transition from the insulating to the conducting zone of the
material (or vice-versa). Current spikes and oscillations over the active zone (see inset in Figure 4a)
reflect, conceivably, the high roughness of the substrate. An estimate of the roughness of the bare
Au surface was made by using the arithmetic mean value of the current oscillations obtained in
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the 1D scans and using the theoretical approach curves, to transform current values in distances
(Supporting Materials, S5). In particular, the roughness average (Ra) was 1.5 µm, while maximum
peak to valley height (Rmax) was 2.6 µm.
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Figure 4. One-dimensional (a) and bi-dimensional (b) scans obtained by using Fc as redox mediator
and a Pt microdisk with 12.5 µm radius. The tip was positioned at 10 µm above the substrate.

Series of SECM measurements, as those described above, were performed using the oligo-(S)-BT2T4-Au
substrate in feedback and competition mode; in the latter case, the applied potentials at both SECM
tip and substrate were such that the same process of the redox mediator (oxidation or reduction)
occurred. In addition, to differentiate between general (conductivity, permeability and topography)
and enantiomeric properties of the oligo-(S)-BT2T4 film, the results obtained with the conventional
(i.e., achiral) and chiral redox mediators are discussed separately.

2.2.2. Achiral Redox Mediators

Typical approach curves obtained at the unbiased oligo-(S)-BT2T4-Au are shown in Figure 5.
As is evident, all redox mediators provide I/Ib vs. d/a profiles that fit the theory for negative feedback
responses. Comparative measurements, performed above the insulating material surrounding the Au
surface, gave similar responses (not shown). These results suggest that, under the above conditions,
the oligomer film acts as an insulating membrane and that no ion exchange process takes place between
ion species, eventually trapped within the oligomer, and the charged redox mediators in solution.
This can be because the oligomer film was in its uncharged state. On the other hand, based on the
E1/2 values shown in Table S1, the above results are congruent with the circumstance that the various
redox mediators were not able to locally inject or subtract electrons, i.e., to act as reductant or oxidant,
towards the oligo-(S)-BT2T4-film, whose oxidation or reduction processes occur at higher (Figure 1) or
much lower potentials [21]. The latter occurrence would have involved the regeneration of the redox
mediator at the oligomer/solution interface, which would manifest through positive feedback currents.
Permeation of the redox mediators within the oligomer film down to the underlying gold surface
(whose open circuit potential would be defined by the solution redox species) cannot be excluded.
However, even if this were the case, the I/Ib vs. d/a responses in Figure 5 would indicate that the local
portion of the substrate surface bathed by the redox mediator solutions, and therefore participating
in the feedback loop, was not large enough to support any substantial current enhancement [23–29].
It must be noticed that the lack of current enhancement could also be related to both the thickness
of the oligomer film, which could be too thick for redox mediator regeneration at the Pt microdisk
surface [18,19], and the actual closest tip- to-substrate distance, which could be achieved to avoid film
penetration. As for the latter aspect, from the approach curve in Figure 5, and considering the I/Ib

value of 0.4 (approximately corresponding to the closest d/a achieved while bringing the tip towards
the substrate), an average tip to- substrate separation of about 8 µm was estimated. In fact, attempts to
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bring the SECM tip closer led to a flattening of the tip current, indicating that the tip came into contact
with the oligomer film. Possible explanations for such behavior include a significant roughness of the
substrate material and lack of precise perpendicular alignment of the tip above the substrate. Clearly,
the above circumstances limited to some extent the resolution of the measurements and can in part
explain the observed negative feedback effects.
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Figure 5. Approach curves recorded with the indicated redox mediator above the unbiased
oligo-(S)-BT2T4-Au. The scheme shown in the inset represents, as an example, the process occurring
using Fc as redox mediator.

The effect of the application of the potential to the oligo-(S)-BT2T4-Au was then investigated.
The case of Fe(CN)6

3− redox mediator is discussed in detail as, unlike Fc and Fe(CN)6
4−, at the

microelectrode, a diffusion limiting current is achieved by applying a potential negative to its E1/2 value
and the experiments provided somewhat different results. In the measurements, the microelectrode
tip was biased at 0.0 V, at which the reduction of Fe(CN)6

3− to Fe(CN)6
4− is under diffusion control

(see schemes in Figure 6a–c and Figure S3f). The substrate was biased at different potentials over the
range 0–1.2 V at which either the competitive reduction (scheme in Figure 6a) or the regeneration
(scheme in Figure 6b) of the redox mediator could occur.
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Typical approach curves thus recorded are displayed in Figure 7.
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microelectrode tip biased at 0.0 V, above the oligo-(S)-BT2T4-Au biased at different potentials as indicated.

When the substrate is biased at 0.0 V, the tip current decreases, starting far away from the substrate.
This is because the redox mediator is reduced competitively at both microelectrode and substrate,
as schematized in Figure 6a. The redox process at the substrate, conceivably, occurs at the underlying
Au surface, through permeation of [Fe(CN)6]3− within the film or through film defects and porosity.
Therefore, the I/Ib vs. d/a profile follows the depletion of the concentration of Fe(CN)6

3− within the
diffusion layer that grows in the solution above the substrate. At higher applied potentials, the I/Ib

vs. d/a profile changes from negative into positive feedback, indicating the occurrence of the redox
mediator regeneration, as schematized in Figure 6b. However, over the potential region 0.6–0.8 V,
the current increase (Figure 7 with blue and green line) is below the diffusion-controlled process for
positive feedback (Figure 7, magenta dashed line). This can be due to the fact that the location of
the electron transfer can be at the underlying gold surface, which being coated by the oligomer film
can work as a partially blocked electrode, at which the electron transfer process can be somewhat
inhibited [23,30]. Notably, the problem of Au surface availability is here more important respect
to the above case of competition mode, since to obtain positive feedback the mediator should both
diffuse to the Au surface to be oxidized and retro-diffuse out of the porous layer to reach the tip.
It is also worthwhile noting that, unlike in the above case of competition mode, in this case only the
surface below the microelectrode tip is involved [14,23,28,29]. Moreover, over the latter potential range,
the oligo-(S)-BT2T4 begins to be doped (see Figure 1), the film can acquire semiconductive properties
and the process can occur at the oligomer/solution interface (or within the film). At potentials above
0.8 V, the conductivity of the oligomer remarkably increases [13], with the film behaving as a metal
electrode. In fact, at 1.0 and 1.2 V, the experimental approach curves almost fit the theory. The positive
feedback current can also be due to a catalytic electron-transfer process between the oxidized oligomer
(reaction (1) and the reduced form of redox mediator (reaction (2)), formed at the microelectrode tip
and diffusing towards the oligo-(S)-BT2T4 film:

oligo-(S)-BT2T4 � oligo-(S)-BT2T4
n+ + ne− (n = 1 or 2) (1)

oligo-(S)-BT2T4
+ + [Fe(CN)6]

4− � oligo-(S)-BT2T4 + [Fe(CN)6]
3− (for n = 1) (2)

The latter sequence, however, would include, in step (1), an anion exchange process, in which the
redox mediator itself might be involved although the supporting electrolyte anion is smaller and at
higher concentration. This would limit the overall kinetic of the process.

The uniformity of the properties of the oligo-(S)-BT2T4-Au was established by performing 1D
and 2D scans across the substrate surface, using Fe(CN)6

3− as redox mediator. For the 1D scan,
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the microelectrode was initially located at 10 µm above the insulating zone and then moved towards
the oligo-(S)-BT2T4-Au material. The 2D scans were instead made on a 150 µm × 150 µm square
zone above the oligomeric film and at a tip-to substrate distance of 10 µm. The tip was always
biased at 0.0 V, while the substrate was either unbiased or biased at 1.0 V. Under these conditions,
the oligo-(S)-BT2T4-Au behaved as an insulating or an active material, respectively, at which the
electrode processes schematized in Figure 6c,b respectively, occurred. Typical 1D and 2D images thus
obtained are shown in Figures 8 and 9.
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Figure 8. One-dimensional scans recorded in a 2 mM K3Fe(CN)6 + 0.1 M KCl water solution with the
microelectrode tip located at 10 µm above the oligo-(S)-BT2T4-Au. Microelectrode tip biased at 0.0 V
substrate unbiased (black line) and biased at 1 V (red line).
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Figure 9. Bi-dimensional scans recorded in a 2 mM K3Fe(CN)6 + 0.1 M KCl water solution with the
microelectrode tip located at 10 µm above the oligo-(S)-BT2T4-Au. Microelectrode tip biased at 0.0 V
substrate unbiased (a) and biased at 1 V (b).

The I vs. d profile in Figure 8 with the black line and the image in Figure 9a, both characterized by
relatively low currents, reflect, essentially, the topography of the material; the current spikes in Figure 8
are conceivably due to the surface roughness (including defects in the film), which as mentioned
above, seems to be rather high. The scan displayed with the red line in Figure 8 and the image in
Figure 9b, characterized by larger currents, reflect both activity (i.e., conductivity) and topography
of the oligo-(S)-BT2T4 film. The current spikes, again, are due to the rather rough topography of the
investigated material. An estimate of the roughness of the oligo-(S)-BT2T4 film was made by the
analysis of the current oscillations of the 1D scans, using the same approach employed above for the
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bare Au surface. Ra and Rmax values were 2.1 and 4.1 µm, respectively, indicating a higher roughness
with respect to the bare Au surface, as also appears from SEM images shown in Figure S1.

The above scenario concerning the general characteristics (conductivity and topography) of the
oligomer film was also supported from SECM measurements performed with both Fc and Fe(CN)6

4−

as redox mediators. In these experiments, the substrate was also kept either unbiased or biased over
the same potential window as above. At the microelectrode tip, the potential applied was 0.55 and
0.4 V for Fc and Fe(CN)6

4−, respectively, to achieve steady-state diffusion limiting currents. Again,
with both redox mediators, a negative feedback current was recorded above the oligo-(S)-BT2T4-Au
substrate (same as in Figure 5), kept either unbiased or biased at potentials less positive than the
corresponding E1/2 of the two redox mediators. This was due to the above mentioned less availability
of the underlying gold surface and to the diffusion and retro-diffusion of the redox mediator couple
through the oligomer film. Instead, a competitive oxidation process of the redox mediators occurred
at both microelectrode tip and substrate (see, for example, scheme in Figure 6d for Fc), when the
latter was biased at a potential more positive than the E1/2 values of Fc and Fe(CN)6

4−. The I/Ib vs.
d/a profiles (not shown for the specific cases) were as that displayed in Figure 7 with the black line.
In fact, under the latter conditions, the oxidation of the two redox mediators occurs at both substrate
(either at the underlying Au surface or at the oligomer/solution interface, the electroactive film being
now conductive) and the microelectrode tip.

2.2.3. Chiral Redox Mediators

Figure 10 shows typical approach curves obtained with the different chiral redox mediators
while the microelectrode tip was positioned above the unbiased (Figure 10a) and biased (Figure 10b,c)
oligo-(S)-BT2T4-Au substrate.
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Figure 10. Approach curves recorded in 2 mM of (S)-FcEA or and 1 mM (R)-FcEA CH3CN solution
with a Pt microdisk 12.5 µm radius, biased at 0.5 V, above the unbiased oligo-(S)-BT2T4-Au (a) and
biased at different potentials (b,c) as indicated. Approach curves with dashed red lines refer to the
theory for negative and positive feedback.
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Apparently, the results obtained by using the enantiomers of the chiral redox mediator are
qualitatively similar to those described above for Fc. This is not surprising as, at the microelectrode
tip, they share as expected the same E1/2 value (within experimental error, see Figure S3 and Table
S1) and, as discussed above, the oligomer film behaved as an insulating porous membrane when it
was in its uncharged form. Thus, at the unbiased substrate, negative feedback currents were recorded,
regardless of the configuration of the chiral redox mediator (Figure 10a). Similarly, when the substrate
was biased at 0.0 V, negative feedback currents were obtained (black lines in Figure 10b,c), due to
both the limited active substrate area below the microelectrode tip and the relatively high d/a at which
the microelectrode could be brought above the substrate (see above discussion). At higher applied
potentials, the typical I/Ib vs. d/a responses for competitive oxidation of the redox mediators at both
microelectrode tip and substrate occurred (blue, green and magenta lines in Figure 10b,c). However,
in these cases, a careful analysis of the SECM responses allowed verifying that the decrease of I/Ib,
at same d/a, was larger for (S)-FcEA with respect to (R)-FcEA, indicating a clear discriminating ability
of the oligo-(S)-BT2T4 film towards the two probe enantiomers. For instance, when the substrate was
biased at 0.45 V, at which only (S)-FcEA could be oxidized (Figure 2), I/Ib were about 0.65 and 0.77,
at d/a = 2 and 4, respectively; the corresponding values (i.e., at same d/a) for (R)-FcEA were 0.78 and
0.92, respectively. As the substrate potential was shifted further towards more positive values (i.e.,
1 V), the oxidation of both (S)-FcEA and (R)-FcEA was under diffusion control, and I/Ib vs. d/a acquired
very close profiles.

To further support the above view, 1D scans were performed above the oligo-(S)-BT2T4-Au
substrate using rac-(±)FcEA, as redox mediator (Figure 11). The microelectrode tip was biased at
0.55 V, while the substrate was either unbiased (blue line) or biased at 0.45 V (red line) and 1 V
(black line). Again, the scans were started from the insulating portion of the substrate and the microtip
moved towards the entire section of oligo-(S)-BT2T4-Au. At the unbiased substrate, current spikes,
conceivably due to the substrate topography (see above discussion), were recorded. When the substrate
was biased at 0.45 V only (S)-FcEA could be oxidized (Figure 2) and the current decreased to a significant
extent, due to the consumption of the probe at the underlying gold surface. The current decrease was
much more marked when the substrate was biased at 1 V, at which both (S)-FcEA and (R)-FcEA could
be oxidized. These results therefore confirm the enantiodiscrimination ability of the oligo-(S)-BT2T4

film and that the phenomenon occurred, essentially, evenly across the entire substrate surface.
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3. Materials and Methods

3.1. Chemicals

Acetonitrile (anhydrous, 99.9%), tetrabutylammonium hexafluorophosphate (TBAPF6), ferrocene
(Fc), (S)-(−), (R)-(+) and racemate of N,N-dimethyl-1-ferrocenylethylamine (FcEA) ((S)-FcEA, (R)-FcEA and
rac-FcEA), potassium ferro- and ferri-cyanide, potassium chloride, hexaammineruthenium(III)
trichloride, were purchased from Sigma Aldrich (Aldrich, St. Louis, MO, USA) and used as received.
The monomer (S)-BT2T4 was prepared, purified and resolved into antipodes as reported earlier [7].
The aqueous solutions were prepared with deionized water purified via a Milli-Q unit (Millipore system).
When required pure nitrogen (99.99%, from SIAD, Bergamo, Italy) was used to de-aerate both acetonitrile
and the aqueous solutions.

3.2. Apparatus and Electrodes

A CHI920B workstation (CH Instruments, Austin, TX USA) was employed for both voltammetric
and SECM measurements, and unless otherwise stated all experiments were performed in an
electrochemical cell in a three-electrode configuration. For the voltammetric characterization of
the of the redox probes/mediators and the electrosynthesis of the oligo-(S)-BT2T4 film, a polycrystalline
gold disk 2 mm diameter (from Amel, Milano, Italy) embedded in a PTFE rod, was employed as
working electrode; a platinum spiral and an Ag/AgCl (KCl, saturated) were employed as counter
and reference electrode, respectively. For the measurements performed in acetonitrile, the reference
electrode was placed in a compartment ending in a porous frit, filled with the working solvent and
supporting electrolyte, to avoid contamination of the working solution with water and chloride ions.
The Au disk, prior use, was mechanically polished with a diamond suspension (0.1 µm diameter)
placed over a Buehler microcloth, and then rinsed with milli-Q water and acetonitrile.

Platinum disk microelectrodes with nominal radius of 12.5 µm were employed as tip/working
electrodes in either SECM or voltammetric measurements to characterize the redox mediators by
steady-state voltammetry, and the local activity of the oligo-(S)-BT2T4-Au material. The microelectrodes
were prepared by sealing platinum wires (Goodfellow Metals, Cambridge, UK) within glass capillaries,
following a standard procedure [24]. Afterward, they were tapered to a conical shape, polished with
graded alumina powder (5, 1 and 0.3 µm), placed on a Buehler microcloth and then characterized
by cyclic voltammetry at low scan rates and by SECM to evaluate the actual electrode radius of the
microelectrode and the overall tip radius to the electrode radius ratio (RG) [14]. The geometric radius
of the microdisk was calibrated by recording the steady-state diffusion limiting current (Ib) from a
1 mM Ru(NH3)6Cl3 solution containing 0.1M KCl and using the following equation [31]:

Ib = 4 n F D cb a (3)

where n is the number of electrons, F is the Faraday constant, D is the diffusion coefficient of the
electroactive species (in this case 7.0 × 10−6 cm2s−1 [32]), cb is the bulk concentration and a is the radius
of the microdisk. The RG parameter was evaluated by fitting fitting experimental approach curves
recorded under purely diffusion-controlled conditions to the theoretical curves [33,34]. The RG thus
estimated varied between 5 and 8.

In all SECM and voltammetric measurements, the reference/counter electrode was a Ag/AgCl
(in saturated KCl); a platinum wire acted as counter electrode. Unless otherwise stated, approach curves
were plotted using normalized currents, I/Ib, against normalized distances d/a.

4. Conclusions

The voltammetric and SECM behaviour of the chiral (S)-BT2T4 oligomer, electrodeposited onto
the surface of a gold disk electrode, was investigated by using a range of redox mediators with different
characteristics (i.e., charged and uncharged, racemate and enantiopure antipodes). The results obtained
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with all achiral redox mediators have indicated that the oligomeric film, as produced, was uncharged.
Using [Fe(CN)6]3− in the SECM experiments allowed establishing the local properties of the fabricated
oligomeric film in terms of topography and conductivity. Thus, it has been verified that the oligomeric
film behaved as a porous insulating membrane, presenting a rather rough surface exposed to the
bathing solution, when the substrate was biased at potentials below about 0.6 V vs. Ag/AgCl. This was
inferred from the approach curves, which have displayed essentially negative feedback effects. The film
acquired semiconducting properties over the potential region 0.6–0.8 V vs. Ag/AgCl, while it became
fully conductive at 1.0 and 1.2 V vs. Ag/AgCl. Under these conditions, the approach curves have
displayed positive feedback effects. In addition, SECM measurements, performed in competition
mode, using chiral probes, have allowed assessing the discriminating ability of the oligo-(S)-BT2T4

film towards the (S)-FcEA and (R)-FcEA redox mediators, thus confirming results obtained by cyclic
voltammetry. Thanks to the high spatial resolution of SECM, it has also been shown that the enantiomeric
discriminating ability of the oligo-(S)-BT2T4 occurred evenly across the entire substrate surface.

Improvements in the spatial resolution of the SECM measurements can be obtained by using
smaller microelectrode tips (e.g., at sub-micrometer levels). However, this would also require the
use of smoother oligomer films, which in principle can be obtained by decreasing the number of CV
cycles during the electrodeposition step and smoother surfaces of the underlying electrode material.
These aspects will be addressed in future investigations.

Supplementary Materials: The following are available online, Figure S1: SEM Images of the oligomer modified
gold electrode and elemental analysis. Figure S2: cyclic voltammograms recorded at the bare Au (2 mm)
dimeter electrode in CH3CN solutions containing Fc, (S)-FcEA, (R)-FcEA and rac(±)-FcEA. Figure S3: steady-state
voltammograms recorded at the Pt microdisk 25 µm diameter in solutions containing all redox mediators employed
in this work. Figure S4: Scheme of the redox mediator regeneration also due to lateral electron transfer occurring
in the SECM experiments. S5: Method employed to evaluate the roughness of the bare Au and(S)-BT2T4 oligomer.
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