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We investigate how the financial fragility in the real economy is affected by the average
level of interdependence among agents across different regions of the economy. To this
end, we develop a parsimonious agent-based model of firms and banks organized in
geographic regions. The model is built on the framework of an existing class of models for
business fluctuations. The goal of our exercise is to clarify the effect on systemic failures of
the interplay between network interconnectedness and financial acceleration. In parti-
cular, we investigate the probability of individual and systemic failures with varying levels
of interconnectedness. We find that, in the absence of financial acceleration, connectivity
makes the system more resilient. In contrast, in the presence of financial acceleration, the
probability of both individual and systemic failures are minimized at intermediate level of
diversification.

& 2015 Published by Elsevier B.V.
1. Introduction

In the current discussion on financial crises, two dimensions are attracting growing interest. The first is the role of
geographic space, given that most financial crises of the few last decades have originated in one country and propagated to
several others (Dornbusch et al., 2000; Vitali and Battiston, 2011a). The second is the role of network spillover in the
propagation of financial distress, both at the level of financial institutions within a single country and at the level of
countries (Allen and Gale, 2000; Kali and Reyes, 2009; Horst, 2007; Prasad et al., 2003; Stiglitz, 2010).

In this paper, we aim to address a specific question, namely how the financial fragility in the real economy is affected by
the average level of interdependence among agents across different regions of the economy both along the trade and the
credit dimensions. A similar question has been investigated in the case of interbank networks by means of stylized models
Gai et al. (2011) and Battiston et al. (2012b) in which the interconnectivity level among the agents is fixed exogenously and
the effects of different levels of interconnectivity are compared statically. In the same spirit, here we develop a parsimonious
agent-based model of firms and banks organized in geographic regions by building on the framework of an existing class of
models for business fluctuations (Battiston et al., 2007; Delli Gatti et al., 2005, 2007, 2009, 2010).
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Thus the goal of our exercise is to clarify the effect on systemic failures of the interplay between network inter-
connectedness and financial acceleration in a model firm–bank network. In particular, we investigate the frequency of
individual and systemic failures with varying levels of interconnectedness. In the absence of financial acceleration, we find
that higher connectivity on both trade and credit networks makes univocally the system more resilient. In contrast, in the
presence of financial acceleration, more credit links lead at some point to larger and more frequent crises. Hence, the
frequency of both individual and systemic failures are minimized at an intermediate level of interconnectedness.

The existence of a trade-off between diversification and contagion as interconnectedness increases has been already
documented in models of interbank networks, e.g. in Wagner (2011) and in models of country networks Stiglitz (2010).
However, the debate is still open and every model utilizes some more or less explicit mechanism in order to obtain the
tradeoff. Our contribution here is to investigate the firm–bank case and to provide an alternative explanation for the tradeoff
that relies only on the financial acceleration mechanism and not, for instance, on some ex-ante cost associated to having
more links. Moreover, we show that the tradeoff emerges directly at the level of the probability of systemic defaults before
even considering the social costs of crises.

More in detail, we propose a multi-agent model in which firms and banks, belonging to various regions, interact in a
network of credit. As in Battiston et al. (2012b), we investigate the fragility of the system taking into consideration two main
mechanisms: (i) the financial accelerator and (ii) the contagion. The financial accelerator is a positive feedback on the
financial fragility of the firms. This mechanism has been discussed by the literature on financial factors as responsible for
business fluctuations and transmission of shocks (Greenwald and Stiglitz, 1993; Bernanke and Gertler, 1995; Bernanke et al.,
2000; Stiglitz and Greenwald, 2003). Suppose, for example, that a firm experiences negative profits. If its equity base
reduces more than its liabilities, then its financial fragility, measured as debt-to-equity ratio, increases. The bank lending
credit to this firm will charge a higher interest rate in order to compensate for the increased risk associated to the firm
financial position.1 Higher financial costs will likely affect negatively the profits, pushing the firm into an even worse
situation. In other terms, when a firm is hit by a negative shock, the probability that it will be more fragile in future periods
is higher than the probability that it will be healthier. On the other hand, the contagion mechanism is due to the credit
relationships between firms and banks. The financial distress of a firm affects other firms indirectly. When a firm faces
consecutive losses, the bank will apply higher financing costs to all the firms in its credit portfolio. This, even if the other
firms are still financially robust. Unlike in Battiston et al. (2012b), here we develop a richer model where balance sheets of
agents evolve in time and become endogenously heterogeneous.

We do not aim to model here the evolution of the links among agents. Moreover, in our model the allocation of credit to
firms and the demand of credit from firms to banks is only stylized. We do not model these aspects through optimization
decision rules. Instead, we are interested in the point of view of the regulator who seeks to know what would be the
desirable level of the average connectivity. To this end, we compare the default probability at different levels of connectivity
that is homogeneous across agents and fixed exogenously as done in previous works, e.g. Gai et al. (2011), and Battiston et al.
(2012b).

The main result of the model is that as long as regions are economically separated, agents do not benefit from potential
access to other markets and they may be only affected by local financial instability. In contrast, when firm and banks can
establish inter-regional relationships, although they benefit from diversification of individual risk, they are also exposed to
financial contagion. In our model, risk diversification and interdependence, arising from economic integration among
regions, go hand in hand.

The intuition suggests that as long as regions are economically separated, agents are not able to benefit from the
potential access to other markets, but in exchange they are only affected by local financial instability and protected from
global crises. In the case where agents have access to cross-region counterparties, both firms and banks benefit from
individual risk diversification, but they are also exposed to systemic risk, i.e. the collapse of a large portion of the economic
system. It is often argued that the more systemic (e.g. larger and severe) the distress event is, the more rare it is (e.g. less
frequent). Our model shows instead that, in the presence of financial acceleration, when the economy is interconnected
above a certain threshold, systemic events are not only larger but they are also more frequent.

Given the purpose of our exercise, we have made a number of simplifications and assumptions. For instance, we focus
only on the bank–firm interaction, while we neglect the interaction among firms and the one among banks. We also neglect
the effect of up- and down-turns of the economy on demand and prices. Moreover, although, over time, agents become
endogenously heterogeneous in size, we make a strong assumption of symmetry regarding the number of their links and
the geometry of their interactions. These hypotheses could be relaxed, certainly making the model more realistic, but would
not help very much in addressing the question we address here.2 Notice also that by assuming that the transmission of
instability between firms happens only indirectly via the banks, makes the scenario of the model setting more conservative.
In contrast, introducing also direct firm–firm relations as in Battiston et al. (2007) and Delli Gatti et al. (2009) would amplify
the contagion and the emergence of larger avalanches of bankruptcies. Analogously, introducing correlations and feedback
loops between up(down)-turns and prices or level of demand would exacerbate the instability of the economy.
1 When the spread of a crisis across markets threatens the financial stability of countries, central banks usually adopt counteracting measures, such as
reducing the interest rate in the attempt of making easier for firms and households to obtain the extension of loans from banks. For the sake of simplicity,
in our model we do not consider any intervention by central banks.

2 For completeness, some robustness analyses with empirical and heterogenous network structures are reported in the Appendix.
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The paper is organized as follows. Section 2 provides references to the relevant literature and Section 3 gives a general
overview of the assumptions of the model and the timing of the events. Then, Section 4 describes the dynamics of the
baseline model (Section 4.1), provides a network interpretation of the economic system (Section 4.2) and compares our
baseline model with the model of Delli Gatti et al. (2005, 2009) (Section 4.3). Section 5 expands the framework of the
baseline model. Section 6 discusses the model and deals with the results of the computer simulations. Finally, Section 7
concludes. In Appendix A we describe the simulation procedure and in Appendix B we report some robustness checks.
2. Related work

A growing number of works investigate the spread of distress across networks of institutions and countries – see e.g.,
Allen et al. (2012), Stiglitz (2010), Kali and Reyes (2009), and Horst (2007).

A common approach consists in comparing the resilience of different network architectures – see e.g., Allen and Gale
(2000) and Allen et al. (2012). In particular, our paper shares the approach of several works (Gai and Kapadia, 2010; Gai et
al., 2011; Battiston et al., 2012b,a) to focus on different levels of average connectivity given as exogenous. Moreover, in line
with a body of existing works, our paper looks at how aggregate patterns of failures emerge from individual interactions
among firms and/or banks (Delli Gatti et al., 2005, 2009; Iori et al., 2006; Battiston et al., 2007).

In the last decade, the network approach has been extensively applied in many fields, included economics and finance
(Vitali et al., 2011; Martínez-Jaramillo et al., 2010; Haldane, 2009; Lublóy and Szenes, 2008; Stark and Vedres, 2006; Jackson
and Watts, 2002). For instance, it has been used in the investigation of innovation networks (König et al., 2011, 2012),
financial contagion and inter-bank relationships (Allen and Gale, 2000; Iori et al., 2006; Nier et al., 2007; Cajueiro and Tabak,
2008; Lorenz and Battiston, 2008; Amini et al., 2012). In the same vein, it has been applied to the analysis of trade credit
among suppliers of intermediate goods (Battiston et al., 2007). In Delli Gatti et al. (2009), instead, both trade and credit
networks are modeled. In this case, there are two levels of firms, interacting via the supply of intermediate goods and credit.
Firms in the lower level of the chain sell the final output in the good market and borrow from a single bank. In line with this
approach, we build on the model of Delli Gatti et al. (2005).

Since the pioneering work of Allen and Gale (2000), a number of works have considered the geographical aspect of
financial contagion (Dasgupta, 2004; Goldstein and Pauzner, 2004). In this paper, we also introduce a geographic compo-
nent. By allowing firms to cross regional borders and obtain credit from foreign banks, regions get connected in a network of
financial linkages. These linkages emerge from the relation between firms and banks.

Empirical studies of firm–bank relations have been carried out for several countries, such as Italy (De Masi and Gallegati,
2007; Detragiache et al., 2000), Germany (Agarwal and Ann Elston, 2001), Japan (Ogawa et al., 2007), Portugal (Farinha and
Santos, 2002) and Belgium (Degryse and Ongena, 2005). These investigations show that firms, regardless their size, tend to
borrow from several banks. E.g., in Italy and Portugal, each firm on average borrows from more than 10 banks. A larger
number of relations increases transaction costs (e.g., for firms, the renegotiation of loans) and monitoring costs (e.g., for
banks, the surveillance of borrower's wealth). However, there are also substantial benefits, including (i) access to additional
lines of credit for firms and (ii) diversification of credit risk for banks.
3. The model at a glance and timing

We consider the economy as portioned in several regions, which are isolated (e.g., the agents of a region can interact only
with other agents of the same region) in the baseline version of the model (see Section 4), while they get integrated in the
second version (see Section 5). In this section, we sketch the timing and the general settings of the model, while the
problem of the firm and the one of the bank are described in detail in the following sections.

In the economy, there are nz regions, each populated by nb banks, and a number nf of firms. For our purposes, in the
present work, we set nb¼1, since we are focusing on the contagion across regions. In other contexts, the case nb41, possibly
heterogeneous, may be more appropriate.

Each firm i borrows credit establishing a credit link with a number ki of different banks. Overall, the total number of firms
equals nf � nz; the total number of banks equals nb � nz; the number of credit relationships per firm is 1o ¼ kio ¼ nz. Note
that in the case of isolated regions, all the firms borrow only from their regional bank, ki¼1. Instead, with increasing
integration all firms have a number ki41 of credit relationships.

At each time step t, the firms define the optimal level of capital needed for the production, by maximizing the expected
profits in the presence of bankruptcy costs. Then, given such an optimal capital level, they define the amount of credit to be
borrowed from the banks. In turn, the banks offer credit to each firm proportionally to their equity level and at an interest
rate which depends on (i) the trend of financial robustness of the borrowing firms and (ii) the share of financially fragile
firms in their portfolio. Once the firms have received credit, they produce and sell the goods in the market. For each firm, the
selling price of the output is exogenously given and varies stochastically around an average market price. The firms' profits
are positive, if the revenue is higher than the financial and production costs, and negative otherwise. Profits accrue to equity
of period t and determine the production in the future period tþ1. If firms face negative equity, because of large and/or
consecutive losses, they exit the market. At tþ1 they are replaced by new firms. In the same way, also the banks can perform
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positive or negative profits, depending on the solvency of their borrowing firms (for a diagram of the workflow of the model,
see Fig. A1).
4. Baseline model of isolated regions

We first consider the case in which all the regions are isolated. The system can be conceived as an archipelago of islands,
where the economic actors in each region have neither commercial nor financial relationships with the economic actors of
other regions.

4.1. Dynamics

4.1.1. The firms
The financial situation of each firm is described by the stock variables in its balance sheet. The three parts of the balance

sheet, assets (non-mobile capital asset) K, liabilities L and equity E satisfy the accounting equation:

Ki;t ¼ Li;tþEi;t : ð1Þ
On the basis of this identity, we take as measure of firm financial fragility the ratio ϕi;t ¼ Li;t=Ei;t (Delli Gatti et al., 2009). We
will refer to it as the debt-equity ratio, or leverage ratio in the following. In every period t, each firm produces a homogeneous
good which is sold in the domestic region. The production function uses only capital Ki;t as input:

Yi;t ¼ γKi;t ; ð2Þ
where 0oγo1 is the capital productivity. Capital does not depreciate and is subordinated to a minimum efficient scale
requirement, Ki;t4Kmin. The demand of goods is completely inelastic and the whole production is sold in the market. In
other words, firms sell all the output they optimally decide to produce. Therefore, we exclude the accumulation of
inventories.

The relative price of the firm output is exogenous. As in Greenwald and Stiglitz (1993), in the good market the company is
“price taker”. It does not define the price of the goods Pi;t , which, instead, is a stochastic variable:

Pi;t ¼ ui;t : ð3Þ
We assume ui;t being a random variable uniformly distributed on the support ½0;2�, with Eðui;tÞ ¼ 1 and variance Vðui;tÞ ¼ 1=3.
One can think of such prices as an increasing function of the demand variability if the demand is sufficiently elastic.
Consequently, a high value of ui;t can be interpreted as a situation of high demand that rises the relative price of the goods,
while a low ui;t refers to a low demand and may lead the firm to exit the market if it cannot cover the costs. As a result, the
profits of each company are given by the difference between the revenue and the costs:

πi;t ¼ ui;tYi;t�ψYi;t�ri;tLi;t�ri;tEi;t�1 ð4Þ

πi;t ¼ ui;tYi;t�ψYi;t�ri;tKi;t ; ð5Þ
where ψYi;t are the production costs, proportional to the output, with 0oψo1, and ri;t is the interest rate. For the sake of
simplicity, we have assumed that the rate of remuneration of the equity base Ei;t

3 coincides with the interest rate ri;t . Notice
that, moreover, we assume that firms do not pay dividends.

The net worth of the company is defined as the original stock plus the profits of the business activity, and it evolves
according to the law of motion:

Ei;t ¼ Ei;t�1þπi;t : ð6Þ
Negative profits erode the net worth of the firm. Without loss of generality, we assume bankruptcy to occur whenever
Ei;to0. Thus, the probability of bankruptcy Pb for firm i can be written as follows:

Pb
i ¼PfEi;to0g ð7Þ

Pb
i ¼PfEi;t�1þπi;to0g ð8Þ

Pb
i ¼PfEi;t�1þui;tYi;t�ri;tKi;t�ψYi;to0g ð9Þ

Pb
i ¼P ui;tou�

i;t ¼ ri;tKi;tYi;tþψ�Ei;t�1Yi;t

n o
; ð10Þ

where u�
i;t defines the critical value of the selling price. If firm i faces a price below u�

i;t , it goes bankrupt. Since we assumed
prices to follow a uniform distribution p(u) in ½0;2�, it holds Pb

i ¼
R u�i;t
0 p uð Þ du¼ 1

2u
�
i;t . For instance, Pb

i ¼ 0:5 if u�
i ¼ 1. More-

over, Pb
i increases when, ceteris paribus, (i) the net worth at t�1 decreases, (ii) the capital and the total debt increase, and
3 Ei;t is the level of equity of the end of the period t�1 and of the beginning of t.



S. Vitali et al. / Journal of Economic Dynamics & Control 62 (2016) 56–7560
(iii) the variable costs increase. Given that the equity base of the previous period depends on the past profits, the history of
the firm profits affects the current probability of bankruptcy, i.e., there is path dependence.

We assume a simple entry-exit dynamics: each failed firm is replaced by a new entrant firm, according to a one-to-one
replacement rule. Therefore, the total number of firms in the economy remains constant across time.

Each firm sets its desired level of production by maximizing the expected level of profits (i.e., Eðπi;tÞ) minus the expected
bankruptcy costs (i.e., EðCb

i;tÞ). Following Greenwald and Stiglitz (1993), we assume that the bankruptcy costs are mono-
tonically increasing and convex with the level of production:

Cb
i;t ¼ cY2

i;t ; ð11Þ

where c is a constant.4 Thus, the problem of the firm can be expressed in the following terms:

max
Ki;t

½Eðπi;tÞ�Pifui;tou�
i;tgCb

i;t �

s:t: Ki;t4Kmin; ð12Þ
the objective function to be maximized takes the form:

Γ ¼ γKi;t�ri;tKi;t�ψγKi;t
� �� c

2
ri;tKi;t

γKi;t
þψ�Ei;t�1

γKi;t

� �
ðγKi;tÞ2; ð13Þ

and the first order condition yields:

δΓ

δKi;t
¼ γ�ri;t�ψγ
� �� cγri;tKi;t�ψcγ2Ki;tþ

cγEi;t�1

2

� �
: ð14Þ

The optimal level of capital, K�
i;t , is given by:

K�
i;t ¼

1
ðri;tþψγÞ

1�ψ

c
�ri;t
cγ

þEi;t�1

2

� �
if K�

i;t4 ¼ Kmin;

Kmin otherwise:

8><
>: ð15Þ

Eq. (15) implies that firm desired level of production is a function of net worth and interest rate (as in Greenwald and
Stiglitz, 1993; Delli Gatti et al., 2005, 2009) and has a minimum. In principle, firms can freely adapt the level of production,
so to match their financial conditions. However, in a real economy, they often face constraints on reducing their production
capacity and their accumulated capital (because of, e.g., costs of assets liquidation and capital hoarding). As a result, they
may prefer to maintain the current level of production, waiting for future better conditions (Battiston et al., 2007). Thus,
when the optimal capital for the production is less than the firm capital stock, the net capacity is reduced by a constant
fraction ηAð0;1Þ. The law of motion of the capital stock is given by:

Kd
i;t ¼

ηKi;t�1 if K�
i;toηKi;t�1;

K�
i;t otherwise:

(
ð16Þ

Note that, without this assumption, there can exist situations in which companies may not borrow credit from banks.
Indeed, after facing a large negative shock, the firm optimal capital stock required reduces considerably. Such reduction of
capital may be enough to cut down the amount of liabilities to zero and, consequently, terminate the credit relationship
with the bank.

Once the desired capital is determined, the investment of firm Ii;t is given by:

Ii;t ¼ Kd
i;t�Ki;t�1: ð17Þ

This quantity can be positive or negative, depending on whether firms reduce or increase the capital. In line with Greenwald
and Stiglitz (1993), we assume that firms operate in a regime of equity rationing constraints. This means that firms prefer to
finance their production by loans instead of issuing equity. Therefore, firms can pool funds from two channels: internally,
with retained profits, and in the credit market, with bank loans. The demand of credit varies according to the profits from
the previous period and to the current investment:

Li;t ¼ Li;t�1�πi;t�1þ Ii;t : ð18Þ
Notice that the loans do not correspond to short-term credit, but to long-term contractual relationships. Thus, only the
interest has to be paid at the end of each period t (see Delli Gatti et al., 2005). The debt commitment of each firm will be
rij;tLij;t , where rij;t is the interest rate charged by bank j to firm i. Given that in this baseline model firms borrow credit from
only one bank, we simplify the notation omitting the reference to the bank.
4 According to Greenwald and Stiglitz (1993), bankruptcy costs should increase with the level of firm output for at least three reasons: (i) as firms
become larger, they presumably involve more managers which, in case of insolvency, have less power of intervention; (ii) managers usually choose the
level of output, consequently, bankruptcy with high levels of output should reflect unfavorably on their ability to take judgment; and (iii) it ensures that the
possibility of bankruptcy is never ignored, while with fixed costs it may have a negligible consideration.
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4.1.2. The banks
In our model, financial institutions are the only sources of external funds for firms and, for simplicity, we assume them to

be commercial banks. Their balance sheet respects the identity: Lt ¼ EtþDt , where L is the total credit supply, E is the bank's
net worth and D are the total deposits, set as a residual. We assume that each bank j can lend at most a multiple of its net
worth:

Lsj;t ¼
Ej;t�1

α
; ð19Þ

with 0oαo1. This assumption is in line with the idea of minimal capital requirement imposed by international agreements
(e.g., Basel I and II). Moreover, credit is allotted to each firm i according to its relative size, that is, to the ratio of the firm
current equity base over the total net worth of all the borrowing firms G:

Lsji;t ¼ Lsj;t
Ei;tPG

i ¼ 1 Ei;t
: ð20Þ

Firms borrow only the amount needed for their desired output, even when the credit supplied by the bank could exceed the
demand for funding. When supplied credit is smaller than the requested amount, firms adjust the production to the level of
funding they have obtained.

The interest rate that bank j charges to firm i is assumed to result from the combination of three terms:

ri;t ¼ rþrfi;tðϕi;tÞþrbðPj;tÞ: ð21Þ

The first term r40 is a base rate, which is the same across firms and can be thought of as the risk-free rate. The second term,
denoted as rfi;tðϕi;tÞ, accounts for the riskiness of the borrowing firm and is responsible for the mechanism of financial
acceleration (Bernanke et al., 2000; Battiston et al., 2012b). The rationale is that the bank increases the rate to the firm, when
its fragility experiences a positive variation that is larger than that expected on the basis of the amplitude of price fluc-
tuations. Conversely, the bank decreases the rate to the firm in the opposite case. Thus, this term varies over time depending
on the shocks hitting the fragility, according to the following dynamics.

rfi;tðϕi;tÞ ¼
minfrfi;tðϕi;t�1Þþa; rfmaxg if Δϕi;t4 ¼ θσ

maxfrfi;tðϕi;tÞ�a;0g if Δϕi;toθσz;

8<
: ð22Þ

where a; θ40 are parameters and σ is the standard deviation of prices σ ¼ σu.
Three remarks are important here:

� The equation above implies that this component of the rate is non-negative and cannot exceed the maximum value rfmax.
� The parameter a can be interpreted as the amplitude of the reaction of the bank to a change in firm financial fragility. It is

a fixed percentage that the bank increases (decreases) to the firm previous level of interest rate, when this is affected by a
shock larger (in absolute value) than θ times the standard deviation of the stochastic price. Thus, the parameter θ can be
thought of as the sensitivity of the bank to the change in firm financial fragility. Notice that the law of motion of this term
of the interest rate is similar to the law of motion of the firm robustness in Battiston et al. (2012b). There, the robustness
of the firm decreases by a fixed amount every time the firm is hit by an unusual negative shock. Here, in contrast, it is the
interest rate that increases or decreases by a fixed amount when the firm is hit by an unusual negative or positive shock.
Overall, the mechanism is essentially the same and leads to the so-called trend reinforcement. If the firm is first hit by an
unusual negative shock, the fact that the bank raises the interest rate increases the chances that the firm makes a negative
profit in the next period and thus to experience another unusual variation in fragility. Conversely, in the case of a positive
shock.5 Notice that “unusual” refers here to the variation that would be expected based on the price fluctuations in the
market.

� Over time rfi;t is a function of ϕi;t resulting from its stochastic dynamics. Although it is not possible to write this function in
closed form, the resulting relation between ri;t and ϕi;t is illustrated in Figs. B1 and B2 of Appendix B.1. The interest rate
increases monotonically with increasing fragility and saturates around a maximum value (Greenwald and Stiglitz, 1990).

The third term accounts for the credit risk of the lender, i.e. it depends only on the bank j itself (see, for instance, the
optimal debt contract in Bernanke and Gertler, 1989). The bank sets this component of the interest rate for every firm i in its
portfolio as a function of the fraction of the borrowers in its portfolio that are hit by unusual shocks. This means that even
firms that are not hit by unusual shocks see their interest rate increased. The same mechanism has been used in several
previous modeling works, the rationale being the asymmetric information regarding the actual financial soundness of the
firms (Delli Gatti et al., 2010; Boissay, 2006).

In our model, the bank can observe the level of financial fragility as measured by the ratio ϕi of debt over equity of each
firm. However, when several firms are hit by unusual shocks the bank fears that the other firms will also experience similar
5 In Battiston et al. (2012b) trend reinforcement works only for negative shocks while here it is more general and works symmetrically. Lorenz and
Battiston (2008) also use a symmetric trend reinforcement mechanism which they map formally into the so-called “persistent random walk”.
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negative shocks. Clearly, this mechanism generates a negative externality from the firms hit by unusual shocks to the others.
Notice that this is the only channel of financial contagion across firms that we assume in our model.

In formal terms:

rb Pj;t
� �¼ rbmax

jPd
j;t j

jPj;t j
; Pd

j;t≔fzAPj;t Δϕz;t4θσg:
�� ð23Þ

In the expression above, rbmax is the maximum rate charged by the bank according to the level of distress in its portfolio, Pj;t

denotes bank j's credit portfolio to firms, while jPj;t j denotes its cardinality, i.e. the number of firms which bank j lends to. Pd
j;t

is a subset of firms, belonging to bank j's portfolio, that are hit by unusual shocks at time t.
The banks' profit is the difference between their revenues and the remuneration of the deposits and investors:

πj;t ¼
X
i

ri;tLi;t�rDj;tDj;t�1�rEj;tEj;t�1: ð24Þ

For the sake of simplicity, we assume that the rate of interest on deposits and the rate of return of the bank's equity are
equal to zero: rDj;t ¼ rEj;t ¼ 0, then Eq. (24) yields:

πj;t ¼
X
i

ri;tLi;t : ð25Þ

The equity base of the banks obeys the following law of motion:

Ej;t ¼ Ej;t�1þπj;t�Bj;t ; ð26Þ

where Bj;t is the sum of the bank losses due to the failure of its borrowing firms. Recalling that a firm goes bankrupt when
Ei;to0, that is, when it is not able to pay back its liabilities, Ki;t�Li;t ¼ Ei;t (cfr. Eqs. (6) and (7)), the bank's bad debt is:

Bj;t ¼
X

i:Ei;t o0

�Ei;t ð27Þ

Finally, as firms, banks go bankrupt when their equity level become negative and are replaced by new entrant banks in the
following period. In this way, firms can immediately have access to credit from the new bank.6

4.2. Network description

The economy can be represented as a graph of nodes (i.e., firms and banks) and directed links (i.e., loan relations).
Liabilities, thus, form a matrix L in which firms are listed along the rows and banks along the columns. The element Lij of the
matrix is non zero, if and only if firm i borrows from bank j. The value of the element indicates the nominal value of the debt
of firm i towards bank j, and, at the same time, the amount claimed by bank j to firm i.

In this baseline model, the regions are separated and each region has only one bank. Thus, the corresponding network
consists of several disconnected stars.7

4.3. Comparison with previous models

In our baseline model, the economic dynamics of each region in isolation is very similar to the one introduced in the Delli
Gatti et al. (2005), with the following main differences. First, in Delli Gatti et al. (2005) the interest rate charged by the banks
is given by the equilibrium between credit demand and credit supply. In contrast, we model the interest rate close to the
model of Delli Gatti et al. (2009), where the rate depends on the firm leverage ratio and on the bank's bad debt. Second, we
define the optimal level of production following the method suggested in Delli Gatti et al. (2005), i.e., considering both the
expected profits and the expected bankruptcy costs. We have also introduced: (i) a constraint in the reduction of the level of
capital and (ii) a minimum requirement of capital for the production. Thirdly, while they have assumed that the population
in the system grows in time, in our model it remains constant. Finally and most importantly, we have included the geo-
graphical component. Even though in this baseline version of the model it does not play any role, it becomes important
when the regions open their borders and the agents establish connections with agents of other regions (see Section 5).
Indeed, as we will see, the economic and financial integration affects the individual and the systemic probability of failure.8
6 The new bank is born with a fixed endowment of net worth. Therefore, after the failure of a bank, the only effect is a possible decrease in the supply
of credit to firms.

7 Since there are no links among banks nor among firms, the network is a bipartite graph.
8 However, the above differences do not change substantially the emerging stylized facts of the economy w.r.t. to the model of Delli Gatti et al. (2005).

We have verified that there is a qualitative agreement with the results of that model. More information is available upon request.



S. Vitali et al. / Journal of Economic Dynamics & Control 62 (2016) 56–75 63
5. Model of integrated regions

We now extend the baseline model by allowing for a flow of goods and credit among regions. The objective is to
investigate how the level of integration affects the probability of both individual and systemic failures. To do so, we study
the dynamics of the whole economy for fixed levels of average openness of the regional borders. The incentive for firms to
cross regional borders and sell their goods in other regions is to take advantage of price diversification. Since prices are
stochastic and independent in each region, firms can reduce the price fluctuation by selling shares of output in several
markets. At the same time, they have access to the credit markets of these other regions by borrowing from the banks
located there. This is in line with the empirical evidence that trade and financial openness tend to go hand in hand both for
industrialized and emerging markets (IMF, 2006).

5.1. The network

In order to avoid confusion in the following, let us emphasize that the only type of relation among agents that is assumed
and modeled in this paper is the relation of credit between a firm and a bank (the firm borrows and the bank extends the
credit). When firms borrow only from the bank of their own region, they are indirectly connected, via the bank, to all – but
only – the other firms in that region. When firms borrow from banks of several other regions, firms are indirectly connected
via the banks also to the firms of these other regions.

In principle, the connections among firms and banks could be arranged in very many possible network structures. For
instance, one could model the endogenous formation of linkages among banks and firms (Delli Gatti et al., 2010), or one
could assume a network structure that reflects the empirical distribution of the number of banks per firm (De Masi and
Gallegati, 2007) (see the robustness analysis carried out in Appendix B.2).

In this paper, similar to the approach of several previous works – e.g. Gai et al. (2011), Battiston et al. (2012a,b) –we want
to study the effect of the network density on financial stability in an homogeneous network. In other words, we address the
specific question of how the average level of connectivity affects the failure probability. To this end, we assume a symmetric
structure, where each firm is borrowing from the same number k of banks.9

Even under this strong assumption, there are still several ways of arranging the links. For the sake of simplicity, we
assume the following arrangement, which is often used in the literature on economic networks and geography (see e.g.
Carayol et al., 2008). Regions are positioned in a ring and, for a given level of connectivity k41, firms borrow from the k�1
closest banks in clockwise direction. For instance, firms in region 1 are indirectly connected to firms in region 2 via the bank
of region 2, and there is a path of length 2 among these firms. Firms in region 1 are connected even to firms in region nz, via
a path of 2ðnz�1Þ indirect links. In this way, already with k¼2 we ensure that there are no isolated regions. For higher levels
of k, the distance among firms in different regions decreases. When k¼ nz�1, for any two chosen regions z1 and z2, all firms
of z1 are connected to firms of z2, through the bank of z2, and thus with a path of length 2. This arrangement is referred to as
“clockwise” in the following.

Notice that the above construction corresponds to a conservative assumption on the spreading of crises from a region to
another because financial contagion can only propagate in one direction. The reverberation of contagion (from the
“infected” agent back to the “infector”) is ruled out by construction, thus reducing the potential amplification of distress. The
connectivity k and the network structure are exogenous and fixed during the dynamics. One could introduce a mechanism
allowing firms to switch from a bank to another one (e.g., because it offers a lower interest rate). However, this would lead to
an evolving topology and would not allow us to focus on the question of how aggregate patters of the dynamics are affected
by varying levels of k.

We check the robustness of the results with a “side-to-side” arrangement, in which at every density level a link is added
both the region to the left and to the right. Finally, in the Appendix, we consider the case in which starting from empirical
data of the Japanese firm–bank relationships, we gradually increase the connectivity k by adding random links.

5.2. Dynamics

5.2.1. The firms
With the openness of trade relationships to other regions, firms have the opportunity to reduce the variability of their

revenues. Although the optimal capital (determined via Eq. (15)) is, for given financial conditions, the same as in the case of
isolated regions, the average selling price is now closer to its expected value. To make this point clear, suppose that firm i
sells the output in several regions, ki41. The total revenue is given by the sum of the quantity sold in each region z, yi;z;t ,
times the selling price faced in that region. For the sake of simplicity, we assume that the shares si of goods sold by firm i in
each region z are the same across regions, si;t ¼ 1=ki. Thus, the firm total revenue is:

Ri;t ¼
Xki;t
z ¼ 1

ui;z;tyi;z;t ¼
Xki;t
z ¼ 1

ui;z;t
yi;z;t
Yi;t

Yi;t ¼
Xki;t
z ¼ 1

ui;z;tsi;tYi;t ¼
1
ki

Xki;t
z ¼ 1

ui;z;t

 !
Yi;t : ð28Þ
9 Random graphs can be expected to behave closely to symmetric graphs in our model.
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It then follows that total revenue is proportional to the average of the prices faced by i across regions. Since in each
region firms face prices which are independent stochastic variable with the same standard deviation σu, the standard
deviation of the average price u for firm i is smaller than and equal to σ ¼ σu=

ffiffiffiffi
ki

p
. Thus, by selling their output in many

regions, firms diversify the risk associated to price shocks. This is similar to the diversification of asset returns assumed in
Battiston et al. (2012b). Furthermore, we assume that the network is symmetric, that is, each firm sells the same amount of
goods in the same number of regions, that is, ki ¼ k. Therefore, the amplitude of the average price faced by all firms is the
same: σ ¼ σu=

ffiffiffi
k

p
.

Not only there is a flow of goods, but also a flow of loans among regions. Indeed, firms diversify their bank portfolio
asking for credit to the financial institutions j, located in the new regions where they also sell goods. Consequently, the firm
profits are now described by the following equation:

πi;t ¼
1
k

Xk1;t
z ¼ 1

ui;z;t

 !
Yi;t�

X
j

rij;tLij;t� ~r i;tEi;t�1�ψYi;t ; ð29Þ

where rij;tLij;t corresponds to the financial costs to be payed by firm i to all its lending banks j¼ 1 ,..k, and ~r i;t is the average
interest rate charged to firm i: ~r i;t ¼ ð1=kÞPk

j ¼ 1 rij;t . Because profit fluctuations are mainly driven by price fluctuations, the
distribution of profits is also rescaled so that the amplitude of the typical profit fluctuation is reduced by a factor 1=

ffiffiffi
k

p
.

5.2.2. The banks
In the case of a connected economy, the interest rate charged by the banks to each firm still follows Eq. (21), where it is

now σ ¼ σu=
ffiffiffi
k

p
. In other words, the behavioral rule of banks does not change w.r.t to the case of isolated regions. What

changes is the distribution of profits, as explained in the previous section about firms. Such new value of σ indicates that
banks react to the new level of profit fluctuations. However, it is clear that the probability that a firm experiences variations
larger than the standard deviation σ is constant, because both shocks and standard deviation are rescaled by the very same
factor. This means that the probability that a firm is hit by a shock that induces the bank to increase the interest rate is
completely independent of the connectivity level k. As a consequence, at all levels of diversification firms have, ex-ante, the
same opportunities. That is, our model does not penalize a more diversified market. For a more formal argument on this
point, see Battiston et al. (2012b).

However, notice also that the adjustment of the interest rate is carried out by discrete changes of fixed amplitude a. This
is where too much diversification can be harmful. A highly diversified firm that fulfills condition (22) (first case) a first time
is likely to fulfill it also in the next period. Indeed once a firm is subject to an increase in interest rate, it needs a positive and
large enough shock in order to escape the trend and not to be subject to a further increase in the next period. Because well
diversified firms have smaller fluctuations, this is less likely to happen. In other words, when firms are too much diversified
they progressively lose the ability to escape the downward spiral of net worth. This mechanism is similar to the one
described in Battiston et al. (2012b). Therefore, the fact that at higher levels of k the trend reinforcement is more likely to be
triggered is an unanticipated effect of the behavioral rule used by the bank and it arises as an externality.

In addition, at a high level of integration, the contagion mechanism (Eq. (23)) increases the correlation among the values
of fragility of firms located in connected regions. Indeed, a large number of firms belonging to different regions become
connected via banks, and the financial fragility suffered by one of them can be directly transmitted to the others. Conse-
quently, with increasing integration, also the probability of simultaneous failures rises.

In contrast to the baseline model of Section 4, now firms can obtain credit from more than one bank and have to decide
how much credit to accept from each of them. The banks allocate the credit considering the relative net worth of each
borrowing firm, which is used as a proxy for collateral, as shown in Eq. (20). Once the firms know how much they can
borrow from each bank j, and at which interest rate, they order the credit supplied by increasing interest rate and borrow
more from the first and less from the last banks in the rank (according to the rule: Li;tðð1=rij;tÞ=ð1=

P
jrij;tÞÞÞ, as long as all their

credit demands are satisfied.
Note that, although firms prefer to borrow from the banks with the lowest interest rate, at the same time, they keep open

more than one line of credit. This assumption relies on two main motivations. On the one hand, empirical studies (Sharpe,
1990; Degryse and Van Cayseele, 2000; von Thadden, 2004) found that the firm–bank relations usually last for long periods,
because the firm switching from one bank to another one is costly. Indeed, a bank gains information on its borrowing firm
over time, generating a lock-in problem to that firm that cannot transfer costlessly to another lender what its bank knows
about it. Thus, the loan interest rate a firm i accept by a bank j might be higher than the one offered by other new banks. On
the other hand, we intended to capture a typical behavior of firms, which prefer to maintain a bank portfolio, even if this is
costly, in order to reduce the risk of liquidation in bad periods, i.e. the inability to roll over existing debt (Detragiache et al.,
2000; Ongena and Smith, 2000). This could be seen as a sort of profit maximization over a longer term. However, since we
assume that firms operate under incomplete information and bounded rationality, they are not able to estimate exactly the
probability of not obtaining funds from a given bank. Consequently, they are not able to determine an optimal portfolio size.
Thus, we assume that firms are willing to reduce the risk of running out of credit by keeping open more than one line of
credit, depending on the credit supply.

The law of motion of the bank's equity level does not change, while the bad debt is now calculated considering the credit
diversification of the firm. The entity of the loss caused to the bank by the firm bankruptcy is shared among all the banks the
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firm is linked to, proportionally to the amount lent. Formally, the bad debt of the bank j is:

Bj;t ¼
P

iLij;t 1�Ki;t

Li;t

� �
if Ei;to0

0 if Ei;t4 ¼ 0:

8><
>: ð30Þ
6. Simulation results

A trend of increasing openness of inter-regional trade and financial flows has been empirically observed in the last
decades world-wide, with many regions and countries becoming part of a single integrated system (Lane and Milesi-Ferretti,
2003). Part of the literature on globalization has focused on the consequences of such openness for the economic agents,
both at micro- and at macro-level (Stiglitz, 2000; Summers, 2000).

In our model, in the presence of an increasing number of trading and financial linkages, agents in the economy become
more interdependent. On the basis of the dynamics described in Sections 4 and 5, we study the impact of integration on
(1) the frequency of individual defaults and (2) the frequency of large numbers of simultaneous failures. We study the
dynamics of the economy for varying levels of openness, starting from a situation in which each region is separated from the
others (k¼1), up to the case in which regions form a fully connected network ðk¼ nzÞ. Simulations were carried out with 50
regions. All details concerning the values of the parameters and the simulations procedures are reported in Appendix A.1.

The fraction νf ;t of firms that are in bankrupted state is recorded at each time step. Since bankrupted firms are replaced
by new firms, we are interested in the average fraction (over time) of failing firms (see also details in Appendix A.2). We
refer to this in the following as the “average percentage of firms failing at any given time”. Notice that this is not the
cumulative number of bankruptcy observed during the simulation time. In contrast, it is meant to be a proxy of the
probability of failure of the individual firm.

We first analyse separately the effect of the trade integration and the financial integration. The results are shown in Fig. 1.
When the density of credit linkages is increased (left panel) – i.e. when firms borrow from banks located in an increasing
number of other regions but sell only in one region – the percentage of defaulting firms increases (a part from small
fluctuations). Conversely, when the density of trade linkages is increased (right panel) – i.e. when firms sell their goods in
markets located in an increasing number of other regions, but borrow only from one region – the percentage of defaulting
firms decreases steadily.

Notice that the reason why financial integration lead to more defaults is in the financial acceleration mechanism
embedded in Eq. (21). If the interest rate is independent of the individual fragility and of the number of defaults in the
bank's portfolio, then the number of defaults is independent of the network density (figure not shown). In other words, in
the absence of acceleration, the net result of financial and trade integration would be univocally beneficial, in line with
previous results (Battiston et al., 2012b).

Fig. 2 shows the case in which financial and trade integration increase together in the presence of financial acceleration.
As firms have increasing access to the good and credit market of other regions, they largely benefit from price diversification
and from accessing to lower interest rates. In the whole economy, the share of firms that goes bankrupt decreases from 4% to
1.7%. Thus, an increase of connectivity leads to less individual failures until a minimum value. Such a minimum is con-
siderably lower (more than 2 times) than the starting point, corresponding to isolated regions. Then, the failures slowly
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Fig. 1. Average percentage of firms' defaults at different levels k of network density. (A) Only the density of credit linkages increases. (B) Only the density of
trade linkages increases.
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Fig. 2. Average percentage of firms' defaults at different levels k of network density the case in which financial and trade integration increase together in
the presence of financial acceleration.
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Fig. 3. (A) Standard deviation of the number of failures in each time step. Note that the standard deviation of the failures first reduces from 4.62 (with
k¼1) to 3.02 (with k¼5), and then drastically increases to 20.97 with k¼50. (B) Frequency of events in which the percentage of simultaneous failures is
larger than a value c, for varying levels of connectivity k. The different curves correspond to c¼ 3%, 6%, 9%, 12% and 15%. The result are obtained with
T¼1000 and averaged over 10 runs.
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increase with higher k. This means that the two mechanisms of financial accelerator and contagion more than offset the
benefits of risk diversification. Note that this result is robust to the values of several parameters (see Fig. B5 in Appendix B.3).

Although each firm individually takes advantage from diversification, as the economy becomes more connected, the
system as a whole becomes less stable and faces a growing number of bankruptcies. Indeed, as shown in Fig. 3A, the
standard deviation of the number of firm failed increases dramatically with the degree. This suggests the existence of
cascades of defaults, which we then investigate in more detail.

Technically, the term cascade of defaults refers to a sequence of failures in which one or more failures at a given time step
induce other failures at the next time step. This may also occur in our model through the mechanism of contagion, described
after Eq. (23), that works as follows. The failure of few borrower firms induces the corresponding lender banks to increase
the interest rate to the remaining firms. Among them, there can be fragile firms that are not able to bear the increase in the
interest rate and fail at the next time step. Depending on the level of fragility across firms, this process may continue
recursively and involve a large fraction of firms in the economy. The size of the cascade is simply the number of firms failing
during this process. When regions are connected, failures in one region may induce failures in other regions, leading to
global cascades.

Notice that, in practice, it is not convenient to deal with the size of the cascade, as defined above, in a dynamic model.
This is because, over time: (i) two cascades originating at different locations may end up merging, and (ii) a new cascade can
start at one location in the network before the previous one, occurring somewhere else, has ended. In addition, the nature of
the cascade varies: a cascade can involve many firms but propagate slowly, few firms at a time; on the contrary it can be fast
but involve many firms at once. In principle, simultaneous failures of firms can occur either due to common exogenous



Fig. 4. Time evolution of the percentage of failures (scale on the left y-axis) and size (in equity) of the failed firms (scale on the right y-axis) in the time
range T ¼ ½800–1000�. The degrees of firm connectivity considered are k¼1, k¼5 and k¼50. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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shocks (which are absent in our model), or by coincidence. However, a large number of simultaneous failures are very
unlikely and it is typically due to an on-going cascade. For all the above reasons, and in particular for the difficulty of
identifying precisely real cascades, as a measure of the level of distress in the systemwe take the fraction of firms that fail at
the same time and we refer to it as “simultaneous failures”. In particular, we are interested in the frequency, νc, that the
fraction of simultaneous failures at time t, νf ;t , is larger than a certain threshold. Over all the time steps T, we count those
periods in which a fraction of failures larger than c occurs. Then, we divide this value by the total number of periods T. In
formal terms:

νc ¼
jft:1o ¼ to ¼ T ; νf ;t4cgj

T
: ð31Þ

In the limit of a large number T of periods, this frequency tends to the probability of numerous simultaneous failures.
As it is possible to observe in Fig. 3B, the frequency of events with a large number of simultaneous default increases with

the density k. In particular, when the network is fully connected, although the average fraction of defaulting firms is about
3.2%, the instantaneous fraction of defaults displays almost regular oscillations with peaks of about 15%. Moreover,
simultaneous defaults involving more than 9% of the firms are about 100 times larger with k¼50 than with k¼5.

The results can be read as follows. On the one hand, when the connectivity is not too high, firms benefit from the
diversification on the trade across several regions but crises remain restricted to one region at a time and do not spread all
over the economy. In this way, the average number of defaults remains low. On the other hand, when the connectivity is
very high, the economy tends to synchronize.

In order to better understand the issue of simultaneous defaults, in Fig. 4, we show the time evolution of failures at
different values of k. The percentage of failures first decreases as the degree k increases, moving from an average of 4.02
with k¼1 (left panel) to 1.67 when k¼5 (middle panel). Then for higher values of degree, defaults increase (e.g., with degree
k¼50, the average percentage of failing firms is 3.25). Moreover, we see how failures tend to be synchronized over time
(right panel). The reason is that, when the economy is fully integrated and the financial acceleration is present, sooner or
later a shock that is perceived as unusual hits the firms and triggers a spiral in which banks raise the interest rate, more
firms default and interest rate raises further. At the same time, after firms have defaulted new firms enter the market with
better financial situation. As a result of these two processes, the number of defaults reaches a peak and then goes to zero.

Moreover, Fig. 4 reports the time evolution of the size, in terms of total equity of failed firms (curves in green). Failing
firms have typically small size. Indeed, firms, when hit by a negative shock, enter a trend in which their financial position
tend to worsen and their size to shrink, until they go bankrupt. In this respect, there is a body of literature which assumes
that some financial organizations, but also non-financial ones, when they are considered by the government to be too
important to the overall health of the economy (Gup, 2004) are simply “too-big-to-fail” (Chan-Lau, 2010). In our model, it
can happen that medium and large size firms also fail. These rare events are observed in our model as well. For example, as
it is possible to see in the first chart with k¼1, the firms that go bankrupt in the economy, on average, represent the 2% of
the whole firms’ equity. However, around period 950 the failure of a large firm happens and the economy loses about 12% of
its total equity value. In addition, one should consider that the size of simultaneous failures could have been even larger if
we had modeled a less conservative behavior for the bank sector. Indeed, in this model the financial contagion is only due to
the failure of firms and not of banks. Bank failures would have additional direct repercussions on firms: as they depend
heavily on bank credit, the whole regionwhere the bank fails would be depressed, and the consequences for the economy in
terms of systemic risk would be even stronger.

Note that we obtain a similar finding with a network structure different from the one we have introduced in Section 5.
See Appendix B.2 for the results obtained by simulating the model on the real Japanese network and other configurations.

Finally, it is worth noticing that as long as simultaneous failures involve only few firms, the economy can well absorb
these negative shocks. On the contrary, when a large number of simultaneous failures become frequent (see Fig. 3), the
economy experiences large oscillations and suffers from instability. As we show in Fig. 5, as long as k is small, the aggregate
equity displays moderate fluctuations. With large values, (e.g., k¼50), instead, wide fluctuations appear, with consequent
hampering of economic growth (see Fig. 5). In fact, when financial distress spreads in the whole economy, firms are always



Fig. 5. Time evolution of the aggregate equity (log) in the time range T ¼ ½800–1000�, with firm connectivity k¼1, k¼5 and k¼50.
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charged an interest rate much higher than the risk-free rate, which prevents them to grow in size. In this way, they remain
close to the bankruptcy level, and when some of them exit the market, the shock is transmitted to all the others, creating
simultaneous failures.
7. Conclusions

In this paper we have studied the spread of financial distress in an economic system consisting of several regions. The
focus of our investigation has been on how the level of openness across regional borders affects the fragility dynamics of
firms and the probability of individual as well as systemic failures. In the spirit of previous works (Allen and Gale, 2000;
Allen et al., 2012; Gai and Kapadia, 2010; Gai et al., 2011; Battiston et al., 2012b,a), we have compared the resilience of
different static network architectures. In particular, we have focused on different levels of the average number of
connections.

From a policy perspective, our work contributes to the growing literature on the relation between interconnectedness
and systemic risk. Our finding is that in the absence of financial acceleration network density both on trade and credit is
always beneficial. In contrast, in the presence of financial acceleration (i.e. the interest rate charged by a bank to a firm is a
function of the history of the fragility of the firms in the bank's portfolio), the benefit of risk diversification on the trade
network is offset at some point by the risk of contagion on the credit network.

One limitation of our model is that, because of a number of simplifications, the model cannot be easily calibrated at this
stage and thus it is not able to provide reliable numbers on the optimal connectivity levels. In particular, further work should
try to relate our model to the process of transformation of the banking sector in various countries in the last decades. For
instance, Illueca et al. (2014) have studied how joint bank exposures have increased in Spain after the liberalization of the
financial sector and the increase of the regional outreach of formerly local savings banks.

The intuition behind our results is that when firms concentrate both trade and credit within their own region, they are
only exposed to local shocks. Instead, when firms trade and borrow across borders, regions in the system become inter-
dependent and crises are not local any longer. As long as the average degree of connectivity is low, firms take advantage of
price diversification while contagion remains local. On the other hand, with full connectivity, the diversification benefits are
overcome by the financial accelerator and the contagion mechanisms, and the financial distress diffuses in the whole
system.

The central assumption behind the tradeoff results is that financial acceleration and contagion are at work through the
dynamics of the interest rate. There are theoretical arguments why financial acceleration could be quite pervasive in real
economic settings (Bernanke et al., 2000; Stiglitz and Greenwald, 2003). To what extent and in which situations financial
acceleration is at work remains an open question. Also, it remains to be clarified empirically what is the exact dynamics. Our
claim is that in the presence of positive feedbacks in the relation between the financial fragility of firms and the interest rate
charged, such as the one emerging from the financial acceleration mechanism proposed here, the connectivity on credit can
become at some point detrimental.

To this end, we have adopted from Delli Gatti et al. (2005, 2010) the mechanism by which a large fraction of ‘risky’ firms
in the bank's portfolio imply a high rate demanded by the bank from the next potential borrower. Similar to Gai et al. (2011),
we focus on a given exogenous level of connections and exposures and we do not develop an optimization approach on the
side of the bank. Future work could extend this aspect of the model.

The model can be used for a number of further investigations. First, one could consider several network structures and
compare their resilience to systemic risk. In this respect, it would be worth considering structures reflecting the empirical
distributions of the number of banks and regions per firm. The network structure could also be endogenized and let evolve
in time according to some link formation rule. In particular, one important limitation of the present model is that we do not
develop an optimization approach for the credit demand of firms. Empirically, firms are observed to maintain several credit
lines. How to explain this empirical fact in terms of an optimal credit demand rule remains an open question.

Second, one could add heterogeneity among firms and banks on the basis of their geographical preferences. For example,
by assuming that smaller firms prefer local bank contacts, while larger ones are more global and establish relations with
foreign banks. Moreover, one could assume the existence of “costs of going abroad”. Although nowadays decreasing (thanks
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to the advances in information and communication technology and to the international process of making laws and pro-
cedures homogeneous) these costs can still influence the firm decision to interact with agents located in many other regions.

Finally, one could introduce other forms of financing for firms and investigate the possible implications on the propa-
gation of financial distress. For example, the possibility for firms to issue and purchase corporate bonds creates direct
financial ties among firms, which may foster the propagation of financial fragility. Finally, a validation of the model with
empirical data would shed light on the correct calibration of the model.
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Appendix A. Simulation procedure

In this Appendix, we provide information on the setting used for the computer simulations and how we have performed
such simulations.

A.1. Parameter setting

All simulations refer to a benchmark parameter setup. We considered the economy as divided in nz¼50 regions, each of
them populated by nf¼10 firms and nb¼1 bank. Hence, there are nf � nz ¼ 500 firms and nb � nz ¼ 50 banks in the whole
economy. In total, there are 9 parameters, which are calibrated as follows: α¼ 0:08, γ ¼ 0:1, η¼ 0:8, ψ ¼ 0:75, r ¼ 0:02,
θ¼ 1:7, rfmax ¼ 0:04, rbmax ¼ 0:04 and a¼0.005.

The values of these parameters have been assigned in an empirically plausible range. In some cases, we have proposed the
values assigned in the reference model (Delli Gatti et al., 2005). In particular, ψ, the parameter for the variable costs, has been
defined so that, on average, firms are left with the 25% of revenue to pay the financial costs and, eventually, storing positive profits.
The parameter η for the constraint in the capital reduction has been fixed to 0.8 so that from a period to the following one a firm
cannot liquidate more than 20% of its capital level. Both values are empirically plausible. Moreover, we have run robustness checks
around these two values. The bank risk coefficient, α, has been fixed in order to reflect the Basel agreements. The risk-free rate, r ,
has been set as close to the one currently in use in Europe, while rfmax and rbmax are chosen so that the maximum level of the interest
rate charged by banks to their portfolio firms cannot exceed 10%. The parameter a is defined so that the increase of interest rare is
gradual, i.e. 70:5%. Finally, θ, which corresponds to number of standard deviations abovewhich a shock triggers the reaction of the
bank, is set to 1.7. In this way, the chance of occurrence of such a shock is only 4%.

A.2. Simulation procedure

The simulation starts at time t¼1 and ends at t¼1000, when the system has reached sufficiently stable patterns. At t¼1
all banks are identical, and all firms are identical, and are assigned certain initial values. Homogeneity of initial conditions is
assumed in order to not bias the dynamics of the system, and to better appreciate the emergent heterogeneity of the firms’
and banks’ dynamics. For firms, the initial level of equity base, liability, capital and profits are Ei;0 ¼ 2, Li;0 ¼ 8, Ki;0 ¼ 10,
Pi;0 ¼ 0 and Kmin ¼ 2. The aggregate credit supply of each bank is given by Lj;0 ¼ Li;0nf ¼ 80, while the bank's equity base can
be derived by the definition of credit supply (see Eq. (19)): Ej;0 ¼ αLj;0 ¼ 64. After bankruptcy at time t, firms and banks failed
are reintroduced at tþ1 with an endowment equal to their initial level of net worth, liabilities and capital. Once we have set
all the parameters and the initial conditions, we run the algorithm for each degree of connectivity: k¼ 1;…;nz. That is, in
each simulation we suppose that all the companies have the same degree k. In this way, we have the time evolution of the
key variables, like the number of individual failures, the level of production, etc., at different levels of market integration. In
Fig. A1, a diagram with the description of the algorithm is presented. Moreover, in order to also better clarify the procedure
employed in the simulation, a bullet point with the description of the work flow is illustrated in what follows:
1. set parameters & initial conditions, and simulate the model for t¼1…1000; this is referred to as “a run”;
2. for each time step, we record the fraction of firms that fail, as well as aggregate values of economic variables described in

the model, e.g. output, profit, etc.
3. perform several runs;
4. compute average, across time and runs, of fraction of failing firms;
5. vary the level of connectivity and/or other parameters.

Variations in the values of the parameters of the model differ in term of the impact that they have on the overall
dynamics. Some parameters, e.g., g, do not affect the outcome remarkably. Other parameters e.g., α or the parameters



Fig. A1. Diagram of the main loop algorithm.
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referring to the interest rate, are bound to be in a narrow empirical range. Moreover, in some cases, the outcome of the
robustness check is quite obvious. For example, an increase of the parameters defining the interest rate will rise the firm
financing costs, causing higher probability of bankruptcy, larger simultaneous failures and a reduction in the production
level. Therefore, we focus on the two parameters η and ψ, for which ex ante variations do not have a clear impact.
Appendix B. Robustness analysis

In this Appendix, we provide information on the results of the robustness analysis.

B.1. Robustness analysis of the interest rate definition

In order to better understand the behavior of the interest rate r and its relation to the firm fragility ϕi;t (see Eq. (21)), here
we report in Fig. B1 the scatter plot of the interest rate charged to each firm i against its level of fragility, for 500 time steps
(T¼500–1000) at different connectivity levels k. Each dot corresponds to a given firm at a given time. Different colors
correspond to different times. The patterns observed in the bottom right plot reflect a certain synchronization in the level of
fragility across firms when the connectivity is very high.

In addition, Fig B2 is obtained from Fig. B1 by binning the fragility range and by taking, for each bin, the average ð7stdÞ
of the values of interest rate corresponding to fragility values in that bin. As we can observe, on average the interest rate
increases monotonically with the fragility and saturates at a maximum value. Moreover, the higher the level of connectivity
in the network, the higher is the curve.
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Fig. B1. Scatter plot of the interest rate charged to each firm i against its level of fragility, for 500 time steps (T¼500–1000) at different connectivity levels
k¼[8, 18, 26, 34, 42, 50]. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. B3. Time evolution of the percentage of failures (scale on the left y-axis) and size (in equity) of the failed firms (scale on the right y-axis) in the time
range T¼[800–1000]. The degrees of firm's connectivity considered are k¼[8, 18, 26, 34, 42, 50], cfr. Fig. 4.
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B.2. Robustness analysis of the network structure

In this section we perform a robustness analysis of the results by considering different network structures.
First, we perform simulations where actors of one region have access to actors belonging to other regions not following a

clockwise connection rule, but connecting to actors on both sides along the ring. Both the average fraction of firms in default and
its standard deviation depend on the degree of diversification. This indicates that, at least if the degree is homogeneous, the
results are robust to changes in the way regions are connected on the ring. The result suggests that in our model, the number of
connections among regions matters more than the way these connections are arranged, if the structure is homogeneous in the
degree. The two mechanisms at work are the risk diversification and the contagion. For the risk diversification, only the number
of regions matters in our model to determine the fluctuations on the prices. For the contagion, if regions have similar degree, the
main driver is the number of firms defaulting in each region, which in turn depends mostly on the degree.

Further, we have used real data credit relationships between Japanese firms and financial institutions in the year 2005.
The dataset is the same that was studied in De Masi et al. (2011) where the firms are those quoted in the Japanese stock-
exchange market, while information on the borrowing relationships are compiled from firms' financial statements, inte-
grated by surveys of Nikkei Media Marketing Inc. in Tokyo. Financial institutions consist of long-term credit banks and
insurance companies, representative of the universe of financial institutions in Japan.

The size of this dataset (i.e., 2674 firms, 182 banks and 21,811 credit relations) confronted us with computational diffi-
culties in the simulations. We have thus extracted a random sub-network trying to obtain approximately the same number
of banks, firms and links that we used in the first part of the analysis and trying also to maintain the original statistical
properties, such as the average degree and the degree distribution of both the number of firms per bank and the number of
banks per firm. Notice that both in the original dataset and in the sub-network the average number of banks per firm is
about 8 (De Masi and Gallegati, 2007; De Masi et al., 2011).

As we can observe in Figs. B3 and B4, the results obtained on the Japanese network are similar to those reported in
Section 6 with a regular graph. The case k¼8 looks similar to the case k¼5 in Section 6, Fig. 4. When we add links randomly
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Fig. B5. Average percentage of failures at different connectivity k, varying the parameters η and ψ.
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Fig. B6. Frequency of events in which the percentage of simultaneous failures is larger than a value c, for varying levels of connectivity k and varying
parameters of η and ψ.
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(thus increasing k), the number of failures increases. Moreover, large numbers of simultaneous failures emerge (compare
Fig. 3, right side, with Fig. B3).

This finding has two implications. First, it suggests that the way we constructed the network structure in the first part of
the analysis does not affect the results. Second, the level of connectivity in the empirical network structure is close to the
most desirable one from the point of view of systemic risk. We cannot say how general this result is and in any case it refers
only to one particular year. A systematic analysis on other empirical structures is beyond the scope of this paper.
B.3. Robustness analysis of parameters

In this section we carry out a robustness analysis of the effect of the two parameters η (referring to the restriction on the
capital reduction) and ψ (referring to the variable costs). As one can see in Fig. B5, the number of failures as a function of k
remains non-monotonic if we vary η and ψ. In Fig. B6, we report the frequency of numbers of simultaneous failures at
different values of η and ψ. Also in this case, the general trend does not change: a large number of simultaneous failures
become more frequent as k increases.

However, the model is quite sensitive to the parameter ψ, which defines the level of the variable costs. This is due to the
multiplicative nature of profit accumulation in the model. If costs are too low no firm will ever default. If costs are too high
the economy never grows. The interesting range in which there are some failures is around 0.75. Here, we vary ψ in the
range from 75% to 80%, corresponding to a variation of 5% in revenues, quite significant for a firm. Indeed, variable costs can
affect considerably both firm capacity to pay all the liabilities and firm level of optimal capital.
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