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Abstract
Various company interactions can be described by networks, for instance the ownership networks and
the boardmembership networks. To understand the ecosystemof companies, these interactions
cannot be seen in isolation. For this purposewe construct a newmultiplex network of interactions
between companies inGermany and in theUnitedKingdom, combining ownership links, social ties
through joint board directors, R&D collaborations and stock correlations in one linkedmultiplex
dataset.We describe the features of this network and show there exists a non-trivial overlap between
these different types of networks, where the different types of connections complement each other and
make the overall structuremore complex. This highlights that corporate control, boardroom
influence and other connections have different structures and togethermake an even smaller
corporate world than previously reported.We have afirst look at the relation between company
performance and location in the network structure.

1. Introduction

Networks, or graphs, are nowwidely used in economic and financial literature as they represent a natural way to
study connections and systemic effects [1, 2]. Under corporate networks we consider all networks that describe
interactions between companies. Over the last two decades, studies in the broaderfield of economic and
financial networks studies of these systems have shown that the interconnectedness of the economic and
financial system is amain driver of (in)stability [3–5]. The topology of the networks influences the resilience to
shocks [6], and the evolution ofmesoscale topological structures could even indicate early-warning signals of a
crisis [7].

On corporate networks [8, 9], study spreading processes of influence on the network of interlocking board
members. Through boardmembers that work formultiple companies, decision-making spreads and this
network has been shown to exhibit herd behaviour. These board interlocks can limit competition as they
obstruct independent decisions by boards [10].

Ownership networks constructed from (partial) ownership stakes of corporate entities are another type of
corporate networks. These networks have revealed a small corporateworld; a large concentration of ultimate
ownership in a small group of core companies in this network [11]. In [12], ownership networks are studied to
find the role of subsidiaries in control of large parent companies.

Also innovation dynamics have been studied by networks of R&Dpartnerships, showing for example the
effective outsourcing of research by big corporations to start-ups [13]. On thefinancial side, corporate networks
can be constructed from stock price correlations.With techniques like network backbone extraction one can
identify influential companies from these networks [14, 15]. These studies have shownhownetworks can be
used to study the dynamics of competition and innovation, or identify the influence of the corporate topology
one some notion of control and influence between corporations.

Most research until now studied these different types of corporate networks in isolation.However, corporate
networks are strongly interconnected; e.g. a cascading effect between boardmemberswill influence stock
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marketfluctuations and vice versa.We therefore argue that these systems should be studied in parallel, not in
isolation. In this paperwewill unravel the aggregate corporate network and characterise the topology of the
different layers of this system. To this endwe construct a newmultiplex network of interactions between
companies.We identify fourmain connections: ownership links, social ties through boardmembers, research
collaborations, and stock correlations.

2.Data

Weconstruct a uniquemultiplex dataset wherewe go beyond just listed companies and include all registered
companies inGermany and in theUnitedKingdom and Ireland. The company information comes from the
Amadeus database fromBureau vanDijk, this includes stock prices, ownership details, names of directors in the
boards, patent data, and audit firmdetails. The data reflects the state of all registered companies in those
countries as in February 2018.Daily stock prices are collected in the 2 yearwindowbefore this date.

We select companies registered inGermanywith at least ten employees (if employee data is not available this
is estimated by taking the industry average based on revenue). For theUnitedKingdom and Irelandwe study all
listed companies fromdata that comprises 1312 companies that are listed and registeredwithin these countries.

Networks with links of different types are described bymultilayer networks, where every layer corresponds
to the interaction graph of a single type of interaction. The subset of these networkswhere there are no edges
between nodes in different layers, is also calledmultiplex networks. In recent years both theory and applications
ofmultilayer networks has shown that this richer description of a network can give a better representation than
aggregate of single layer networks [17–21]. For example, untangling theworld trade network by industries
reveals a nested structure of countries [22] and differentiating between long-term and short-term interbank
exposures can lead to a different estimation of systemic risk in the banking system [23]. This is driven by the fact
that there are oftenmultiple drivers of an effect, and as these are often connected but have different structures,
the single or aggregate layersmight under- or overestimate the network effects.

2.1. Networks

• Ownership.Ownership ties are constructed from shareholder data [24].We are interested in cross-
shareholding for companies in our dataset, i.e. instances where the shareholder of a company is of itself a
company in our data.We thus disregards all shareholders that are foreign or individuals.
Ownership can be defined in variousways. Strict ownership is usually set as stake of> 50%. For control and
influence a smaller stake (5%, 10%, 20%) is often considered sufficient [25, 26]. Peer effects of ownership can
be robust under these different definitions [11].We construct an edge between companies i and jwhen
company i has a stake10% in company j following [11].

• Board of directors.The boardmembership network describes companies that are linked through directors.
The boardmakes strategic decisions for the company. Decisionmaking can spread through directors that sit
inmultiple boards [8]. In this network an edge exists between company i and jwhen the boards of directors of
company i and company j have a least one director in common. This can also be seen as the company-side
projection of the bipartite network of directors and the companies they serve.We rely on unique person
identifiers in the database, which prevents any problemwith name disambiguation.

• Research. Frompatent application datawe obtain two kinds of links; (i) companies that are joint assignees
(owners) of a patent and (ii) inventors that worked formultiple companies at the same time. Thefirst case is a
clear sign of joint researchwhich led to the joint patent application. Following other studies onR&Dnetworks
[27, 28], we also exploit inventors that appear onmultiple patents with different assignee companies, i.e.
inventors workingwithmultiple companies. This can be used as a proxy of joint research [29]. Because of the
long term characteristics of joint research projects, we use the patent application data between 2016 and 2018
(such a 2 year backwardwindow is also used in [27, 29]).

• Stock correlations. From stock price time-series we can identify significant relations between stocks.Here we
follow earlier studies [15, 30], constructing aminimum spanning tree to identify a backbone network of
important links. Themethod extracts a backbone network frompairwise correlations between the time-series.
The pairwise correlations are computed on the logarithmic daily returns of a stock price. For stock swith price
p, the daily log-return is : = - -r p plog logt

s
t
s

t
s

1
.We use a 2 yearwindow of the stock time-series in order to

have ns<nt, for awell-behavedmultiple pairwise correlationmatrix (in the appendixwe show that our
results are robust also under a shorter timewindow). The 2 yearwindow in combinationwith daily returns,
rather than daily closing pricesmake the time seriesmore comparable and diminishes effects of long term
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trends. In a further regression exercise we also use the full set of pairwise correlations without extracting the
backbone network.

3.Network topology

In this sectionwefirst describe the network topology of the various company-to-company interactions.We then
discuss the significance of themultiplex structure and show that all layers convey different structural
information.

3.1. Layer descriptions
The network ofGerman companies results in amultiplex of over a hundred thousand companies, where the
layers describing different types of company interactions are all described by different networks statistics. For all
German companies that have at least one connection to another company, we obtain an aggregate network of
105005 companies. 89% of the companies are connected through a joint boardmember, and slightly less than
half of the companies are connected through an ownership link, see table 1. The network of research interactions
ismuch smaller compared to the other layers, butwith an average degree of 4.5, this ismore densely connected
than the ownership topologywhich has only 1.26. The largest contribution of links in the aggregate network
comes fromboard interactions. From the assortativity of the layers, the tendency of nodes to connect with nodes
of the same size (degree), we see that while through boardmembers companies connect verymuch to similar size
companies, this effect is non-existing in the ownership network. In the research network assortativity is negative,
−0.51, driven by larger companies that collaborate with smaller companies (start-ups).

3.1.1. Listed companies
Wewill focus on listed companies, asmore layers of themultiplex structure are specified. The subset of German
companies that are listed has similar descriptive statistics to those of all German companies. For listed
companies we also have stockmarket price interactions.Whenwe compare the characteristics of the subset of
listed companies to those of thewhole system,many of the dynamics between the layers are the same, see table 1.
I.e. the relative differences in number of nodes, edges, average degree and assortativity between the layers is
broadly conserved. This is in principle not surprising, however, in this case the subset comprises of a particular
set of themost ‘important’ andmainly biggest companies in terms of turnover etc. Nearly all companies are
connected by boardmembers, showing the potentially large influence of thismore informal network.

3.1.2. United Kingdom
For listed firms in theUKwe observe a reasonable similarity to theGerman network, in terms of the assortativity
of the different interactions and the relative sizes of the different layers.Main differences are amore dense board

Table 1.Multiplex descriptive statistics.

Ownership Board Research Stock Aggregate

German Nodes 49 385 90 690 3744 105 005

companies Edges 38 594 308 123 8420 335 213

Average degree 1.56 6.80 4.50 6.38

Assortativity −0.03 1.00 −0.18 0.98

Germany listed Nodes 86 330 64 535 535

companies only Edges 54 504 212 534 1214

Average degree 1.26 3.05 6.62 2.00 4.54

Assortativity −0.18 0.48 −0.42 −0.03 0.29

UK listed Nodes 301 1043 25 1312 1312

companies Edges 293 2778 25 1311 4354

Average degree 1.95 5.33 2.00 2.00 6.64

Assortativity −0.51 0.69 −0.19 −0.21 −0.11
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membership network, with an average degree of 5, and less research interactions, as theUK economy in general
ismore geared towards less research intensive services than theGerman economy, see table 1.

3.2.Multiplex structure
In the previous sectionwe described the topology of the isolated layers, butwe are interested in these interactions
in parallel.Wewant to understandwhetherwe need to distinguish these different interactions, or whether the
aggregate would suffice. As themultiplex literature is a recent one, there is not one establishedmethod to
evaluate this question of the relevance of themultilayer structure. Thereforewe answer this with three different
availablemethods for the analysis of themultiplex structure:

(i) the node and edge overlap of the layers;

(ii) the structural reducibility;

(iii) a network regression.

All these threemethods on their ownwill show that all layers are significant and that themultiplex representation
has an added value.We have illustrated themultiplex of listedGerman companies infigure 1.

3.2.1. Node and edge overlap
Node and edge overlap shows similarities between the layers and the level of connectedness. The node and edge
overlap in two networks ismeasured by the fraction of nodes (edges) that occur in both networks over the
aggregate number of nodes (edges) in those two networks. Results in table 2 indicate that all layers are connected
since a significant fraction of the nodes overlaps. The overlapping edges are however fewer. This holds both for
theGerman companies and theUK companies. The low edge overlap indicates that the different layers do not
replicatemany connections specified in other layers and thus that these corporate networks do not simply overlap.

3.2.2. Structural reducibility
Structural reducibility is a recently introducedmeasure [17] formultilayer networks that indicates whether pairs
of layers can be aggregated based on redundant information. The information encoded in a network can be

Table 2. Layer overlap. Overlap of nodes and edges between the
layers, asmeasured by the fraction of nodes/edges which appear in
both layers over the aggregate number of nodes/edges of the two
layers. Edge overlap is small but non-zero, indicating layers are
complementary.

(a)Node overlap ofGermanmultiplex

Ownership Board Research Stock

Ownership 1

Board 0.767 1

Research 0.190 0.174 1

Stock 0.742 0.950 0.170 1

(b)Edge overlap ofGermanmultiplex

Ownership 1

Board 0.067 1

Research 0.015 0.044 1

Stock 0.007 0.016 0.023 1

(c)Node overlap ofUKmultiplex

Ownership 1

Board 0.235 1

Research 0.019 0.023 1

Stock 0.236 0.827 0.020 1

(d)Edge overlap ofUKmultiplex

Ownership 1

Board 0.006 1

Research 0 0.001 1

Stock 0 0.009 0 1

4

New J. Phys. 21 (2019) 025002 J A v L d Jeude et al



quantified by the entropy. The structural reducibility quantity calculates the relative entropy between a network
ofmultiple layers and its aggregate. By analysing whether some layers can be aggregated, without loosing
distinguishability from the aggregate, one canfind the configuration of themultilayer thatmaximises the
information in the system. The information is quantified by the entropy (VonNeumann entropy) of the
network. Formally wemaximise the value

= -( ) ( )q G 1
combined entropy of the multiplex

entropy of the aggregated network
. 1

See the appendix for details and the formal introduction of thismethod. Calculating the structural reducibility
quality between all the layers, wefind the the optimal structure is themultiplexwith all original layers present,
see figure 2. This indicates that all layers convey different structural information.

3.2.3.Multiplex network regression
A thirdwaywe can probe the significance of the different layers is bymeans of a regression. Themultiplex
network describes different types of interaction between the actors.With a regressionwe can test the explanatory

Figure 2. Structural reducibility of themultiplex based on entropy of the layers. The relative entropy qmeasures the structural
information of themultiplex compared to its aggregate. The larger q, themore distinguishable themultiplex is from the aggregate
network.When none of the layers are aggregated the entropy ismaximal. I.e. none of the layers are structurally reducible based on
redundant structural informationmeasured from the entropy. For a complete description of themultiplexwe do require all
information encoded in all layers/types of interactions.

Figure 1.Multiplex network of listedGerman companies showing: cross-stockholding ownership network, joint board directors
network, research interactions,minimum spanning tree of stock correlations and the aggregate.We show amultiplex layout; the
position of nodes is the same in all layers, but isolated nodes in a layer are not shown.Nodes are coloured by theirMultiRank centrality
in themultiplex. The visualisation illustrates clearly that these interactions have different structures. Allmultiplex figures are created
with theMuxViz software [16].
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power of these interactions for an observed interaction. For sparse networks a classic regression, where
observations are formed by all possible edges (all adjacencymatrix entries), onewould regress withmany zero
entries.We use a newly proposedmethodmore suited for network regressions that uses a graph nullmodel to
look at significant links. It is well known that interactions described by a network structure should be tested
against a nullmodel, to see which part of the observed network can be explained by randomness.With a null
model we answer the question: out of themany combinations the network structure could possible be
configured, how (im)probable is the empirically observed structure? This waywe can filter out observed
interactions that arise from randomness from combinatorial factors.

To this endwe use a recently introduced network regressionmodel that uses a generalised hypergeometric
graph ensemble as the graph nullmodel. This regression estimates the influence of a layer of themultiplex and,
using the nullmodel, tests the statistical significance of the layer structure on observed interactions. A detailed
explanation can be found in [31].We setup a regression to see if the stock correlations can (in part) be explained
by the network structures:

~ + + ( )stock correlation ownership ties board ties research ties. 2

As dependent variable we take the pairwise correlation values between all stock time-series and scale them to
integer values in the interval [0, 100], as themultiplex regressionmodel allows for the dependent variable to be
weighted (positive, integer)—see [31] for details on this regressionmethod. The dependent variables are the
unweighted network structures; theOwnership network, the Board network and the Research network.The
regression identifies all dependent variables to be significant in explaining the stock correlations, see table 3. In
appendix Bwe show that this result is robust with respect to the 2 yearwindow of the stock data as discussed in
section 2.1.

On the basis of the abovewe conclude that the different layers have distinct information to convey. The three
differentmethods have shown the significance of all layers in themultiplex. These results highlight that the
different channels of influence between companies have very different structures. The complementary
characteristics of the different layers show that the corporate world is an even smaller one than previously
reported based on the studies of ownership [32] or the boardmembership network [9].

3.3. Network dynamics
Wenow take the first steps to explorer the dynamics of thismultiplex structure, and analyse how the network
structure is related to company properties. The small world network that we described before is characterised by
the presence of hub nodes. Such core nodes act as connectors of different parts of the network.We calculate the
centrality of the nodes within the separate layers, andwith theMultiRank centrality [33] quantify the node
prominence in themultiplex.We regress node centralities on company characteristics like revenue, stock return,
revenue growth, and the Sharpe ratio of the stock returns, in an ordinary least squares regression.Wefind that
centrality in themultiplex is significantly correlated to revenue of the companies—see the appendix formore
details. Larger companies, asmeasures by revenue, aremore central in the network. The result is not necessarily
surprising [11], as larger companies havemore resources to form connections, like subsidiaries andR&D
collaborations.

Now,we look at the position of the companies in the network, related to the stock performances.We
measure stock performancewith the Sharpe ratio instead of the direct stock returns. This ratio evaluates
mean returns compensated for (high) volatility of the stock. A high Sharpe ratio corresponds to a high return
and low volatility: a consistent steady high return. The Sharpe ratio is calculated from the returns of a portfolio
of stocks r as:

Table 3.Multiplex network regression on pairwise
stock correlations. All layers are found significant
independent variables for explaining the stock
correlations.

German stock

correlations

UK stock

correlations

Coef. SE Coef. SE

Board 0.44 *** 0.49 ***

Ownership 0.89 *** 0.72 ***

Research 0.40 *** 1.39 ***

Note. * p<0.05, ** p<0.01, *** p<0.001.
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s
=

á ñ ( )S
d

, 3
d

where d=rportfolio−rrisk free.We take the risk free return on capital as zero (an assumptionwhich is valid as the
return onGerman governmental bonds is currently zero, or even negative).We calculate the centrality also in
themultiplex excluding the stock interactions layer.

Calculating the Sharpe ratio of the portfolio of the highest ranked quantile, using theMultiRank centrality
ranking on themultiplex network, wefind the core companies perform significantly better compared to the rest
of the network. In fact, wefind a Sharpe ratio for the portfolio of companies in the core of 0.37, while only 0.18
for the rest of the network for theGermanmultiplex (0.21 versus 0.07 for theUKmultiplex). However, this effect
seemsmostly driven by the companies with largest revenue, rather than uniformly by all companies in the core.
These preliminary results on the dynamics behind themultiplex structure indicate a relation between company
performance and network formation, and invitemore research on this topic.

4. Conclusion

In this paper we have described a uniquely compiled dataset which combines various known company-to-
company interaction networks into one singlemultiplex structure. The layers of this systemdescribe different
types of interactions between the same set of companies.We have included ownership ties, social ties through
joint boardmembers, R&D collaborations, and stock correlations.With three separatemethodswe show the
significance of themultiplex structure. Node and edge overlap highlights that different types of ties connect
different sets of players; i.e. the structures are not overlapping and the layers complement each other. The
structural reducibility quality was used to show that all layers are structurally different and irreducible from an
information theory perspective. In the thirdmethodwe used a regressionmodel to estimate the explanatory
power of themultiplex structure on all pairwise stock correlations. The independent variables of network
structures of ownership network, boardmembership network andR&Dnetworkwere all found to be significant
estimators of the structure in the stock correlations.

These threemethods confirmed that themultiplex representation is different to the single layers or the
aggregate, and that these interactions have different structures. For company interactions this indicates studies
of peer effects of control should take thesemultiple connections into account.We evaluated the characteristics
of companies related to themultiplex structure. These initial results indicate a relation between company
performance andmultiplex centrality.

Our results show that the corporate world is an even smaller world than the small world already described by
various previous studies on corporate control and studies of the ‘old boys network’ of board rooms. The
significance of the different layers of the corporatemultiplex invitemore research on the interconnectedness of
diverse economic andfinancial networks.
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AppendixA. Structural reducibility framework

The structural reducibilitymeasure evaluates whether some layers of amultilayer network can be aggregated
without loss of distinguishability from the aggregate [17]. Let ourmultiplex of four layers be, = {A A, ,1 2

}A A,3 4 , whereAα denotes the adjacencymatrix of layerα. TheVonNeumann entropy of thismultiplex is
 = å a( )H hA1

4 , where l l= -å =
a ( )h logA i

N
i i1 2 , the VonNeumann entropy ofN×N layerαwith

eigenvaluesλ.We now sum two ormore of the layers tofindmultiplex ̃. Themeasurewe aremaximising, the

relative entropy is   = -( ˜ ) ( ˜ )q 1
hA

, where hA is the entropy of the aggregate of all layers.

Appendix B. Robustness of themultiplex regression

We test themultiplex network regression for robustness towards the 2 year timewindowwe have considered for
the stock-correlations. This windowwas chosen to have awell-behavedmultiple pairwise correlationsmatrix.
The regression results are robust under a different timewindow. In table B1we show the regression both for the
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2 year timewindow, and a 1 year timewindow (the entire year of 2017).Most importantly, in both cases all
variables are significant, themagnitude of the coefficients varies but the relations between them are conserved.

AppendixC.Node properties regression

To establish properties of nodes that can drive the network dynamics we perform a simple regression of
company properties to seewhich of these variablesmight drive the node ranking in the network.We include
company characteristics revenue, revenue growth, average log return, Sharpe ratio in an ordinary least squares
regression:

~ á ñ + á ñ + á ñ + á ñ ( )node ranking revenue revenue growth return Sharpe ratio . C.1

Wefind that only revenue is a significant independent variable of the node ranking. This results is robust for the
multiplex ranking (with andwithout the stock interactions layer) andwith the node centrality (PageRank) from
the single layers.

AppendixD. Applications

We illustrate the use of thismultiplex approachwith two further examples of an interactions network of two
companies before a partial takeover, and a network structure that shows clustering around audit firm choice.

D.1. Interwoven relations before a partial takeover: EON—RWE
The interactions between twoGerman energy companies reveal different interactions throughout the network.
Companymergers and takeovers are sometimes preceded by collaborations between the companies. Fromour
network point of view these relations can be visualised, to help understand how interwoven companies are, but
also to highlight possible conflicts of interest. As an example of the this we look at the recent deal between
German energy conglomerates EONandRWE. In July 2018 the two companies reached a deal where EONwill
acquire the Innogy subsidiary of RWE, andRWEwill end upwith a significant stake in EON [34]. Ourmultiplex
dataset shows a snapshot of the network from early 2018, well before the announcement of this deal. However
we can observe a number of directors which areworking both for EONand the RWE subsidiary, as well as a
number of ownership ties between subsidiaries of the two companies, see figureD1.

D.2. Clustered auditor choice
Peer effects, whether through the old boys boardroomnetwork or through herd behaviour, can steer decision
making. All exchange traded companiesmust have their finances checked every year by an auditor. Big
companies usually choose for one of the ‘Big Four’ auditfirms; KPMG,
Ernst&Young, PriceWaterhouseCoopers, andDeloitte.While there is a choice, a recent Financial Times article
explains that there are limitations to this free choice [35]. Auditfirms also do consultancy jobs forfirms, which
presents a conflict for also auditing the books. There are also examples where directors of a company are former
partners at auditingfirms, and therefore create a conflict of interest with that auditing firm [35]. The same goes
for the relations between companies that we have described in ourmultiplex network.We can askwhether there
is any relation between existing connections between companies and their choice of an auditing firm.With our
multiplex network, a simple test is to check whether connected nodes (companies) aremore likely to use the same
audit firm. For a given audit firmwe calculate for all nodes, n, the average number of neighbours that use that
auditfirm.We then compare this average fraction of neighbours which uses an audit firm for all nodes, with the
fraction for just the nodes that use that audit firm:

Table B1.Robustness of themultiplex network regression on pairwise stock correlations. All
layers are found significant independent variables for explaining the stock correlations, both for
the 2 year and 1 year timewindow of stock correlations.

German stock correlations UK stock correlations

2 year 1 year 2 year 1 year

Coef. SE Coef. SE Coef. SE Coef. SE

Board 0.44 *** 0.47 *** 0.49 *** 0.13 ***

Ownership 0.89 *** 1.06 *** 0.72 *** 0.18 ***

Research 0.40 *** 0.40 *** 1.39 *** 1.34 ***

Note. * p<0.05, ** p<0.01, *** p<0.001.
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å= ( )f
xneighbors with audit firm

total number of neighbors
, D.1n

n

å= ( )f
xneighbors with audit firm

total number of neighbors
. D.2n

xwith audit firmn
auditor

FigureD1.Themultiplex network ofOwnership andBoard interactions betweenGerman energy conglomerates EONandRWE
shows thefirms are interconnected well before a partial takeover took place. This network shows relationsmonths before the
announcement of a deal inwhich EON (red) agreed to acquire the Innogy subsidiary (green) of RWE (blue). The two larger nodes are
the stockmarket traded parent entities. Differences in connections in the two visualised layers show certain subsidiaries of EON that
are connected to EONby ownership, but that are solely connected through commondirectors with RWE.Differences in these layers
show the insight that can be gained from consideringmultiple types of corporate ties.

0

FigureD2. Firms that are connected aremore likely to use the same audit firm, especially in the Board layer. Shown side by side is the
average fraction of neighbours of a node that use the same indicated audit firm; for all nodes and for just the nodes of that that use that
audit firm. The higher fraction for nodes of just the auditor indicates that connected firms aremore likely to use the same audit firm
compared to unconnected firms. There seems to be a relation between o.a. commonboardmembers and the choice for a specific audit
firm. Such relation is not observed in the the stock interaction network.
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Wecalculate these fractions for each of the big four audit firms individually.Wefind that companies which
use the same auditfirm aremore connected among themselves than to other firms, especially for connections
from the Boardmembership network, see figureD2. This suggests that there is a certain clustering of auditfirm
choice for connected firmsThis effectmight be due to other factors, as the co-evolution of the node attribute
values (auditfirm) and the network structure. The point is that results can be different on different layers of the
multiplex and to showhow amultiplex network can help in evaluating such questions.
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