
New Journal of Physics
            

PAPER • OPEN ACCESS

Critical field-exponents for secure message-
passing in modular networks
To cite this article: Louis M Shekhtman et al 2018 New J. Phys. 20 053001

 

View the article online for updates and enhancements.

Related content
Roughening transition and universality of
single step growth models in (2+1)-
dimensions
H Dashti-Naserabadi, A A Saberi and S
Rouhani

-

Cluster-weighted percolation-a novel
approach to the Potts model
T A Larsson

-

Critical behaviour of a forest fire model
with immune trees
E V Albano

-

This content was downloaded from IP address 95.247.238.156 on 01/06/2018 at 16:28

https://doi.org/10.1088/1367-2630/aabe5f
http://iopscience.iop.org/article/10.1088/1367-2630/aa7474
http://iopscience.iop.org/article/10.1088/1367-2630/aa7474
http://iopscience.iop.org/article/10.1088/1367-2630/aa7474
http://iopscience.iop.org/article/10.1088/0305-4470/19/12/023
http://iopscience.iop.org/article/10.1088/0305-4470/19/12/023
http://iopscience.iop.org/article/10.1088/0305-4470/27/23/003
http://iopscience.iop.org/article/10.1088/0305-4470/27/23/003


New J. Phys. 20 (2018) 053001 https://doi.org/10.1088/1367-2630/aabe5f

PAPER

Critical field-exponents for securemessage-passing inmodular
networks

LouisMShekhtman1,8 ,MichaelMDanziger1 , IvanBonamassa1, SergeyV. Buldyrev2,
GuidoCaldarelli3,4,5,6 , VinkoZlatić4,7 and ShlomoHavlin1

1 Center forComplexNetworkResearch andDepartment of Physics,NortheasternUniversity, Boston,MA02115,United States ofAmerica
2 Department of Physics, YeshivaUniversity, NewYork, United States of America
3 IMTAlti Studi Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
4 CNR-ISCDipartimento di Fisica, University of Rome Sapienza, Piazzale AldoMoro 2, I-00185 Rome, Italy
5 Linkalab, Complex SystemsComputational Laboratory, I-09129Cagliari, Italy
6 EuropeanCentre for Living Technology (ECLT)Ca’ Foscari SanMarco I-2940-30124Venezia, Italy
7 Theoretical PhysicsDivision, Institute ‘Ruder Boskovic’, Zagreb, Croatia
8 Author towhomany correspondence should be addressed.

E-mail: lsheks@gmail.com

Keywords: complex networks, securemessage-passing, network resilience, percolation

Supplementarymaterial for this article is available online

Abstract
We study securemessage-passing in the presence ofmultiple adversaries inmodular networks.We
assume a dominant fraction of nodes in eachmodule have the same vulnerability, i.e., the same entity
spying on them.We find both analytically and via simulations that the links between themodules
(interlinks)have effects analogous to amagneticfield in a spin-system in that for any amount of
interlinks the systemno longer undergoes a phase transition.We then define the exponents δ, which
relates the order parameter (the size of the giant secure component) at the critical point to the field
strength (average number of interlinks per node), and γ, which describes the susceptibility near
criticality. These are found to be δ=2 and γ=1 (with the scaling of the order parameter near the
critical point given byβ=1).When two ormore vulnerabilities are equally present in amodule we
find δ=1 and γ=0 (withβ�2). Apart fromdefining a previously unidentified universality class,
these exponents show that increasing connections betweenmodules ismore beneficial for security
than increasing connections withinmodules.We alsomeasure the correlation critical exponent ν,
and the upper critical dimension dc,finding that d 3cn = as for ordinary percolation, suggesting that
for securemessage-passing dc= 6. These results provide an interesting analogy between secure
message-passing inmodular networks and the physics ofmagnetic spin-systems.

As ourworld becomesmore interconnected, the need to passmessages securely has gained increasing
importance [1]. The recently developed applications of statistical physics of networks to anonymous browsing
networks [2] and securemessage-passing [3]promises an interesting newdirection of security based on network
topology.One application is internet routers, which form a physical communication networkwith nodes
belonging to specific countries that can eavesdrop on information passing through their routers [4]. If two nodes
wish to communicate securely and are not directly connected, they could split theirmessages into separate parts
and send each part along a different path such that no single adversary is present on every path. In this way, no
adversary would be able to decode the fullmessage.Most likely,many nodeswill not be able to communicate in
such amanner. For example, a nodewith only one linkmust inherently have all its information pass through
that link.Whether information can be transferred through such a communication network securely and
effectively is strongly dependent on the frequency and structural network properties of vulnerabilities e.g. nodes
belonging to amalicious country in the aforementioned example. In this paperwe define the giant secure
component (GSC) as the fraction of nodes which are capable of communicating securely with one another using
the above describedmethod ofmultiple paths.We note that any node in theGSC can securely communicate
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with any other node in theGSC. Tofind theGSCwe generalize the framework of ‘color-avoiding percolation’
(CAP) [3, 5] to study amore realistic case of securemessage-passing in a communication networkwith a given
community structure and different classes of adversaries (vulnerabilities).

In CAP each node in the network is assigned a specific color. A path between twonodes is considered to
avoid a particular color (i.e., is secure from that color) if no nodes of that color exist along the path (not counting
its endpoints).Wefind the set of nodes that can avoid a particular color by removing all nodes of that color,
determining the largest component of the remaining nodes, and then adding back those nodes of the removed
color that have a direct link to the largest component (see the example in the supplementarymaterial available
online at stacks.iop.org/NJP/20/053001/mmedia). If between two given nodes there is for each color at least
one path avoiding that color, the two nodes are considered securely connected. Equivalently, only nodes that can
communicate such that no single color exists on every path between them are considered secure.

Here we consider CAPonnetworks with given community structure, a realistic case formany networks
[6–14]. Continuing the above example of internet routers, in each countrymost of the routers presumably
belong to that countrywith a smaller number of routers belonging to other countries [3, 15, 16]. To study the
community structure we use the stochastic blockmodel [17, 18], where each community is recognized as a
‘block’ in an adjacencymatrix, and assign a certain color to dominate eachmodule. This imposes correlations on
the distribution of colors in the network, naturallymodeled as amodular network.

For simplicity,wedemonstrate ourmodel and results on a networkwith two communities having an internal
average degree kI and an external average degree

9 kE.Webeginby assuming (for simplicity butwithout loss of
generalization) that there are twocolorswith a single dominant color (Cd=1)occupying a fraction qnodes of each
module and the remaining fraction1−qbeing of the other color (seefigure 1(a))10 . This same framework canbe
used to describe networkswhere the links are correlated by color (see SM). To identify theGSC,wefind the
standard giant component under the removal of nodes of a single color, and then addbacknodes of the removed
colorwhich have a direct link to the largest component (reflecting the assumption that the endpoints of every path
are secure) [3]. This is done for each color and then the intersectionof all these components is theGSC.

Figure 1. Illustration of themodel. In order for two nodes to be securely connected, theymust have at least one path between them
that avoids each color. In (a)we show the case of two colors,C=2, with a single dominant color,Cd=1, in eachmodule with
q=0.8. In (b)wedemonstrate the case ofCd=2 (total number of colors,C=4) againwith q=0.8. For this case each dominant
color occupies only q/Cd=40%of its respectivemodule.

9
In the supplementarymaterial we consider the case ofmore than two communities.

10
In the supplementarymaterial we discuss themore general case of different values of q in eachmodule, which shows similar qualitative

results.

2

New J. Phys. 20 (2018) 053001 LMShekhtman et al

http://stacks.iop.org/NJP/20/053001/mmedia


To solve ourmodel analytically, we adopt the generating function framework defining g z p zk k
k

0 = å( ) as
the generating function of the variable kwith pk being the probability of a node having k links [19, 20]. For our
model we have generating functions for the internal and external connections defined by g z0kI

( ) and g z0kE
( )

respectively. For the case of 2 colors, wemustfind: u1,0, the likelihood that a link fails to avoid the color
dominant in itsmodule; u0,1, the likelihood that the link fails to avoid the color dominant in the othermodule;
and u1,1, the likelihood that the link does not avoid either of the two colors.We then assume that the sender and
receiver nodes are secure, by taking g u g ui j j i0 , 0 ,kI kE

( ) ( ), which adds back nodeswith a direct link to the giant
component in both the internal and externalmodules. Naively onemight think that tofind the size of theGSC,
Sc, one couldmerely take g u g u g u g u1 0 1,0 0 0,1 0 0,1 0 1,0kI kE kI kE

- -( ) ( ) ( ) ( ) i.e., take the conjugate of the probability
that a randomly chosen node fails to avoid both colors. However, this neglects the fact that some nodes fail to
avoid either color. To deal with this overcountingwemust add back g u0 1,1kI kE+

( ) in accordancewith the
inclusion–exclusion principle [21]. The kI+kE subscript in this casemeans that we are now counting over the
total number of links of the given node, such that g u p uk k k k

k
0 1,1 1,1kI kE I E

= å = ++
( ) , where pk is now the likelihood

of the node having a total of k=kI+kE links, independent of whether they are external or internal. For an
Erdős–Rényi degree distribution this would be g u e k k u

0 1,1
1

kI kE

I E 1,1= - + -
+

( ) ( )( ). Using this, we obtain

S g u g u g u g u g u1 . 1c 0 1,0 0 0,1 0 0,1 0 1,0 0 1,1kI kE kI kE kE kI
= - - +

+
( ) ( ) ( ) ( ) ( ) ( )

To solve equation (1)weneed to calculate the probabilities ui,jwhich, for Erdős–Rényi topologies of internal and
external connections, are obtained by solving self-consistently the system

u q q

u q q

u q q

1 e

1 e

e 1 e . 2

k u k u

k u k u

k u k u k u k u

1,0
1 1

0,1
1 1

1,1
1 1 1 1

I E

I E

I E I E

1,0 0,1

0,1 1,0

0,1 1,0 1,0 0,1

= + -

= - +

= + -

- - - -

- - - -

- - - - - - - -

( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

Formore details on the derivation and solving of equations (1) and (2) see supplementarymaterial. Results
comparing the above theory to simulations are shown infigure 2.

Wefind from figure 2 that only in the case where kE=0 does the systemundergo a phase transition at the
critical point q k1 1c I= - [5], while for any kE>0 there is always some fraction of nodes in the secure
component. This is because even if one of the twomodules disintegrates when the dominant color is removed
from it, there always exists afinite fraction of its nodes which can communicate securely through external links
to the othermodule. Thus kE>0 removes the transition bymaking the disconnected phase unreachable [22],
just as an externalmagnetic field ofmagnitudeH does with respect to the disordered phase in the Isingmodel
[23]. Inwhat followswe further support, both analytically and by extensive simulations, this intriguing analogy
between spinmodels and securemessage-passing onmodular networks.

To this aim, we investigate the scaling relations of ourmodel with Sc, q, and kE as theCAP analogues of total
magnetization, temperature, and the externalfield respectively. Let usfirst stress that for the caseCd=1, that is
a single dominant color in eachmodule, the scaling exponentβ defined by S q q qc c c~ - b( ) ( ) was found to be

Figure 2.Normalized size of theGSC,Sc, as a functionofdominance, q, for anetworkwith2modules havingErdős–Rényi structure, a single
dominant color in eachmodule,fixed kI=4, and increasing levels of kE. The lines, representing theory according to equations (1) and (2),
showexcellent agreementwith simulations (symbols)on systemsof sizeN=106nodes. For the casekE=0,weobserve aphase transition as
the level of dominance reaches the critical pointqc=0.75,while for non-vanishing kEnophase transitionoccurs.Due to themodel symmetry
for 2modules,we alsoobserve a transition at 1−qc=0.25.
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β=1 [3]. To extract information about the universality class of themodel, wewill nowmeasure the scaling
exponents δ and γwhich relate to the properties of the field.We choose these exponents since they are directly
related to the field and are easiest tomeasure. Note that for CAP, exponents relating the distribution of
component sizes are computationally challenging to calculate sincewemust calculate the overlaps ofmany small
components of the various colors. In addition, once any two of the exponents are known, the rest arefixed due to
known scaling relations between the various critical exponents [24].We thus beginwith δ, which defines the
variation of the order parameter with the externalfield at criticality. According to our analogy, this is given by

S k . 3c E
1~ d ( )

ForCd=1, wefind from simulations that δ=2 (figure 3(a)), setting the critical properties of thismodel within
themean-field percolation universality class. On a practical side, these exponents suggest that, in the case of one
dominant color, increasing external connectivity between themodules ismore beneficial near the critical point
since 1 1 1

2
b d= > = .

Based on the above results, we introduce hereafter the CAP-analogue of themagnetic susceptibility, which
we define bymeans of the scaling relation

S

k
q q . 4c

E k
c

0E

¶
¶

~ - g



-
⎛
⎝⎜

⎞
⎠⎟ ∣ ∣ ( )

Using equations (1) and (2), wefind (figure 3(b)) γ=1 forCd=1which, together with the other exponents
obtained (δ=2 andβ=1), is indeed consistent withWidom’s identity δ−1=γ/β [24, 25].

Thenumerical results above canalsobe foundanalytically by expanding for kInear its critical value, kI q

1

1 c

=
-

. By

defining x u11,0 1,0º - and x u10,1 0,1º - andexpanding equation (2) to leadingorders inx1,0 and kE,weobtain

x q q q q
k x

k

2
. 5c c

E

I
1,0

2 0,1
2

= - + - +( ) ( )

It follows that δ=2, as x1,0 scales with the square root of kE, and γ=1 as can be found by taking the derivative
of equation (5)with respect to kE.

Having discussed the case of a single dominant color, we now study the case ofmultiple colors (Cd>1)
sharing dominance in a single community as depicted infigure 1(b). Each of these dominant colors will occupy a
fraction q/Cd of themodule. Following logic similar to that used forCd=1, theGSC in this case can be found by

S
C

i

C

j
1 e 6c

i

C

j

C
i j d d k u k u

0 0

1 1
d d

I i j E j i, ,åå= -
= =

+ - - - -⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) ( ) ( )

where the probabilities ui, j satisfy the systemof self-consistent equations

u
q

C
j

q

C

q
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j

q

C
i e

1
e 1 i

1
e

7

i j
d

k u k u

d
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d d

k u k u
,

1 1 1 1 1 1I i j E j i I i j E j i I i j E j i1, , 1 , 1 1, , ,= +
-

+ - -
-- - - - - - - - - - - -- - - -

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( ) ( ) ( ) ( ) ( )

with i�Cd, j�Cd, and u u u 10,0 0, 1 1,0= = º- - . For kE=0we recover the equations obtained byKrause
et al in [3, 5].

In contrast with the results forCd=1, wefind that for everyCd�2 the critical scaling exponents are given
by γ=0 and δ=1 (figure 3)which, to the best of our knowledge, define a novel universality class. These results,

Figure 3.Critical scaling and higher-order transitions. (a) Scaling of Sc as a function of kE at the critical level of dominance qc=0.75
with k C C 0.75I d d= -( ). ForCd=1we obtain δ=2, whereas forCd>1we find δ=1. (b) Shown is theCAP-analogue of the
magnetic susceptibility near criticality as kE→0.We take the difference between the curves for Scwith kE=0 and kE=10−6. For
Cd=1we find γ=1, whereas γ=0 forCd>1. The latter result suggests that the systemundergoes higher-order phase transitions
[26] formore than twodominant colors.
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togetherwith the exponentβ=Cd obtained in [5], suggest that formore than one dominant color the system
undergoes higher-order phase transitions. In general, forCd=iwewill have an (i+1)-order transition, i.e. for
Cd=2we have a third order transition, forCd=3we have a fourth order transition, etc. To verify this claim,
we evaluate the higher-order derivatives of Scwith respect to kE, thefirst of which is given by

S

k
q q , 8c

E k
c

G
2

2
0E

¶
¶

~ -


-
⎛
⎝⎜

⎞
⎠⎟ ∣ ∣ ( )

whereG satisfies the generalized scaling relation G C 1db d= -( ) [26]. In particular, forCd=2we expect an
exponentG=2, whichwe confirmwith numerical results (see SM). ForCd�3, equation (8) breaks down and
we obtainG=1. As far aswe know, the present study represents the first time that this novel universality class
with higher-order transitions is observed in percolation type systemswith the higher-order scaling exponents
defined andmeasured.

Finally, though ourmodel does not have any spatial embedding, we can gain insights into the upper critical
dimension of theCAPprocess, by invoking the scaling relations and the results above. In fact, we can indirectly
evaluate the product dcn , where ν is the scaling exponent related to the singular part of the correlation length at
criticality and dc is the upper critical dimension [27] of the process.We do this by analyzing how the size of the
GSC, NS qc c( ), scales at criticality with the number of nodesN in the absence of external connections (i.e.,
kE=0). Specifically, we know that the correlation length, ξ, has power-law scaling q qcx ~ - n-∣ ∣ near

criticality, and that in particular it scales with the size of the system, i.e. N d1 cx ~ at the critical threshold
[24, 25]. Combining these properties with the critical scaling of theGSC, yields NS q Nc c

d1 c~ b n-( ) for the
GSC’s size. Recalling thatβ=Cd, bymeasuring NS qc c( ) for varyingN, we can find cdcn from simulations. In
figure 4we carry out this simulation for differentCd and obtain in every case that d 3cn = , most likely with

1

2
n = and dc=6 as for classical percolation on Erdős–Rényi networks.

This result can be equivalently understood as follows. The scaling of NS q NS q S q S q...c c c c C c1 2 d
~ =( ) ( ) ( ) ( )

NS q NS q NS q...N

N c c C c1 2Cd d
´ ´( ) ( ) ( ), where S q S q, ,c C c1 d

¼( ) ( ) represent the scaling of the size of the
component avoiding color 1,K,Cd respectively. Each NS q NS q, ,c C c1 d

¼( ) ( ) scales like an Erdős–Rényi network
[3]with NS q NS q N, ,c C c1

2 3
d

¼ ~( ) ( ) . If we rearrange and substitute this into our expression abovewe obtain

NS q N N N...c c
N

N
2 3 2 3 2 3

Cd
~ ´ ´( ) andfinally

NS q N N N . 9c c
C C1 1 3d

Cd
d

2
3~ =- -( ) ( )

This can then be set equal to N d1 cb n- , justifying this way the numerical result d 3cn = .
This constant value of dcn combinedwith the increasing value ofβ as the number of colors increases, leads to

the apparently surprising behavior offigure 4where the size of the largest cluster, NS qc c( ), decreaseswith the
system sizeN, whenCd>3.We explain this scaling by noting that we assume that nodes in the intersection of
the largest component avoiding each color respectively are in theGSC (in the next paragraphwewill analyze this
assumption). The likelihood of being in the largest component avoiding any single color scales withN−1/3, such
thatwhen two colorsmust be avoided the scaling isN−1/3×N−1/3, and so on for additional colors. Oncemore

Figure 4. Size of the secure component at criticality. The points represent averages over at least 400 simulations, while the dashed lines
represent slopes of 1−Cd/3 as predicted in equation (9). For allCdwe observe excellent agreement between these predictions and the
simulations.We note that thefigure is obtained only from taking the overlap of the largest component avoiding each color, which for
Cd�3may not give the actual largest color-avoiding component (seemain text).
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than three colorsmust be avoided, the decreasing likelihood of being in all of the colors overpowers the linear
growth of the system size leading to the observed decrease in the overlap of the largest components for each
color. Further, this suggest that at criticality the overlap of the largest components for each color has vanishing or
negative fractal dimension forCd�3 [28]. These values of the fractal dimension are indeed surprising in the
context of percolation on networks. For instance, in classical percolation on scale-free networks,β increases as
the degree distribution becomes broader [29, 30], but this increase is counteracted by the simultaneous increase
of the upper critical dimension, thus the fractal dimension remains positive.

However,wemust note that there is some subtlety in this calculation, especially forCd>3. Specifically,we return
to the above assumption that the overlap of the largest component avoiding each color gives theGSC. Inmost cases this
will indeedbe true, howeverwhen this overlap is very small, thenoverlapbetween smaller componentsmust be
considered inboth the simulations and thederivationof equation (9). Specifically in the casewhere the expected
overlapof the largest component for each color is less thana single node,weknow that the actualGSCmust be at least
a singlenode and thus the assumptiondoesnot hold. In any case,we can say that for allCd�3 the actual size of the
GSCscales asO(1), as opposed to thenegative exponent suggestedby equation (9). This also implies that theGSChas
a vanishingbut non-negative fractal dimension since it always includes at least onenode.

Finally, our results suggest the breakdown of the scaling relation d 2cn b g= + [24, 25] forCd>1 since
d 3cn = for allCd>1 but C2 2 db g+ = (forCd>1)which increases withCd. This scaling relation originated
from the distribution of small clusters at criticality, n(s), having finite-size scaling n s N~ t-( ) as long as τ<3
[24, 25]. Its failure here implies that for CAPwithCd>1, the critical exponent τ�3. This can be understood
based on previous results on bicomponent-percolation [31], which is less restrictive thanCAP [3], where it was
shown that there are in general (almost)no small bicomponents in the network, rather only a giant bicomponent
can exist. A circumstance is then paved concerning the possibility that also for CAP there are in general almost
no small secure components inmodular structures.

In summary, our resultsmap the study of securemessage-passing between nodes inmodular networks to the
statistical physics of Isingmodels with amagnetic field. Previous attempts to introduce the idea of afield into
percolation relied on a ghost site [32–34], to which every node connects with some probabilityH and thus
allowing it to remain functional even if it is separated from the ‘rest’ of the largest cluster. Herewe obtain the
field-exponents, δ and γ, naturally as a result of the realistic effects ofmodules rather than from the artificial
introduction of a ghost site. Further, we find novel universality classes, the breakdown of a known scaling
relation and higher-order phase transitions. This work highlights the potential for incorporating the idea of an
externalfield into complex systems and shows how this idea can be used to shed light on the fundamental
physics underlying its collective behaviours.
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